Bibliography on Treatment of Produce with Gamma-Radiation

Compiled by
Robert L. Buchanan
Center for Food Safety and Security Systems
College of Agriculture and Natural Resources
University of Maryland
College Park, MD, USA 20742

Apples

Fan, X. Effects of calcium ascorbate and ionizing radiation on the survival of *Listeria monocytogenes* and product quality of fresh-cut 'Gala' apples. Journal of Food Science 70:M352-M358. 2005.

Celery

Prakash, A. et al. Effects of low-dose gamma irradiation and conventional treatments on shelf life and quality characteristics of diced celery. Journal of Food Science 65:1070-1075, 2000.

Cucumber

Khattak, A.B. et al. Shelf life extension of minimally processed cabbage and cucumber through gamma irradiation. Journal of Food Protection 68:105-110. 2005.

Dhokane, V.S. et al. Radiation processing to ensure safety of minimally processed carrot (*Daucus carota*) and cucumber (*Cucumis sativus*): Optimization of dose for the elimination of *Salmonella* Typhimurium and *Listeria monocytogenes*. Journal of Food Protection 69:444-448. 2006.

Dried Produce

Ic, E. et al. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden. Journal of Food Protection 70:981-985. 2007.

Frozen Vegetables

Fan, X. and Sokorai, K.J.B. Effects of ionizing radiation on sensorial, chemical, and microbiological quality of frozen corn and peas. Journal of Food Protection70:1901-1908. 2007

General

Thayer, D.W. and Rajkowski, K.T. Developments in irradiation of fresh fruits and vegetables. Food Technology 53(11):62-65. 1999.

Bidawid, S. et al. Inactivation of hepatitis A virus (HAV) in fruits and vegetables by gamma irradiation. International Journal of Food Microbiology 57:91-97. 2000.

Bari, M.L. et al. Effectiveness of irradiation treatments in inactivating *Listeria monocytogenes* on fresh vegetables at refrigeration temperature. Journal of Food Protection 68:318-323. 2005.

Lee, N.Y. et al. Effect of gamma-irradiation on pathogens inoculated into ready-to-eat vegetables. Food Microbiology 23:649-656. 2006.

Thayer, D.W. et al. Synergy between irradiation and chlorination in killing *Salmonella*, *Escherichia coli* O157:H7, and *Listeria monocyto*genes. Journal of Food Science 71:R83-R87. 2006.

Fan, X. and Sokorai, K.J.B. Retention of quality and nutritional value of 13 fresh-cut vegetables treated with low-dose radiation. Journal of Food Science 73:S367-S372. 2008.

Juices

Buchanan, R.L. et al. In activation of *Escherichia coli* O157:H7 in apple juice by irradiation. Applied and Environmental Microbiology 64:4533-4535. 1998.

Niemira, B.A. Citrus juice composition does not influence radiation sensitivity of *Salmonella* Enteritidis. Journal of Food Protection 64:869-872. 2001.

Niemira, B.A. et al. Irradiation inactivation of four *Salmonella* serotypes in orange juices with various turbidities. Journal of Food Protection 64:614-617. 2001.

Foley, D.M. et al. Pasteurization of fresh orange juice using gamma irradiation: Microbiological, flavor, and sensory analyses. Journal of Food Science 67:1495-1501. 2002

Niemira, B.A. et al. Effect of freezing, irradiation, and frozen storage on survival of *Salmonella* in concentrated orange juice. JOURNAL OF FOOD PROTECTION 66:1916-1919. 2003.

Wang, H. et al. Inactivation of *Escherichia coli* O157:H7 and other naturally occurring microorganisms in apple cider by electron beam irradiation. Journal of Food Protection 67:1574-1577. 2004.

Song, H.-P. et al. Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiology 23:372-378. 2006.

Wang, Z. et al. Influence of gamma irradiation on enzyme, microorganisms, and flavor of cantaloupe (*Cucumis melo* L.) juice. Journal of Food Science 71:M215-M220. 2006

Leafy Greens

Harber, A.H. and Luippold, H.J. Dormancy from gamma-irradiation of lettuce seeds. International Journal of Radiation Biology 1:317-327. 1959.

Hagenmaier, R.D. and Baker, R.A. Low-dose irradiation of cut iceberg lettuce in modified atmosphere packaging. Journal of Agricultural and Food Chemistry. 45:2864–2868. 1997.

Thayer, D.W. and Rajkowski, K.T. Developments in irradiation of fresh fruits and vegetables. Food Technology 53(11):62-65. 1999.

Bidawid et al. Inactivation of hepatitis A virus (HAV) in fruits and vegetables by gamma irradiation. International Journal of Food Microbiology 57:91–97. 2000.

Prakash, A. et al. Effects of low-dose gamma irradiation on the shelf life and quality characteristics of cut Romaine lettuce packaged under modified atmosphere. Journal of Food Science 65:549-553. 2000.

Fan, X. and Sokorai, K.J.B. Sensorial and chemical quality of gamma-irradiated freshcut iceberg lettuce in modified atmosphere packages. Journal of Food Protection 65:1760-1765. 2002.

Niemira, B.A. et al. Suspending lettuce type influences recoverability and radiation sensitivity of *Escherichia coli* O157:H7. Journal of Food Protection 65:1388-1393. 2002.

Fan, X. and Sokorai, K.J.B. Changes in volatile compounds of γ-irradiated fresh cilantro leaves during cold storage. Journal of Agricultural and Food Chemistry 50:7622–7626. 2002.

- Fan, X. et al. Warm water treatment in combination with modified atmosphere packaging reduces undesirable effects of irradiation on the quality of fresh-cut iceberg lettuce. Journal of Agricultural and Food Chemistry 51:1231-1236. 2003.
- Fan, X. et al. Sensorial, nutritional and microbiological quality of fresh cilantro leaves as influenced by ionizing radiation and storage. Food Research International 36:713–719. 2003.
- Niemira, B.A. et al. Ionizing radiation sensitivity of *Listeria monocytogenes* ATCC 49594 and *Listeria innocua* ATCC 51742 inoculated on endive (*Cichorium endiva*). Journal of Food Protection 66:993-998. 2003.
- Niemira, B.A. Radiation sensitivity and recoverability of *Listeria monocytogenes* and *Salmonella* on 4 lettuce types. Journal of Food Science 68:2784-2787. 2003.
- Foley, D. et al. Irradiation and chlorination effectively reduces *Escherichia coli* O157:H7 inoculated on cilantro (*Coriandrum sativum*) without negatively affecting quality. Journal of Food Protection 67:2092-2098. 2004.
- Niemira, B.A. et al. Irradiaton and modified atmosphere packaging of endive influences survival and regrowth of *Listeria monocytogenes* and product sensory qualities. Radiation Physics and Chemistry 72:41-48. 2004.
- Ahn H.-J. et al. Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (*Brassica rapa* L.). Food Chemistry 89:589–597. 2005.
- Khattak, A.B. et al. Shelf life extension of minimally processed cabbage and cucumber through gamma irradiation. Journal of Food Protection 68:105-110. 2005.
- Niemira, B.A. Nalidixic acid rsistance icreases snsitivity of *Escherichia coli* O157:H7 to inizing rdiation in slution and on green leaf lettuce. Journal of Food Science. 70:M121-M124. 2005.
- Kim, J.-H. et al. Effect of gamma irradiation on *Listeria ivanovii* inoculated to iceberg lettuce stored at cold temperature. Food Control 17:397-401. 2006.
- Lee, N.Y. et al. Effect of gamma-irradiation on pathogens inoculated into ready-to-use vegetables. Food Microbiology 23:649-656. 2006.
- Mintier, A.M. and Foley, D.M. Electron beam and gamma irradiation effectively reduce *Listeria monocytogenes* populations on chopped romaine lettuce. Journal of Food Protection 69:570-574. 2006.
- Zhang, L. et al. Effect of gamma irradiation on microbial growth and sensory quality of fresh-cut lettuce. International Journal of Food Microbiology 106:348-351. 2006.

Zhang, L. et al. Effect of γ irradiation on quality-maintaining of fresh-cut lettuce. Food Control 17:225-228. 2006.

Groth, E. Food irradiation for fresh produce. The Organic Center Critical Issue Report (April). 2007.

Niemira, B.A. Relative efficacy of sodium hypochlorite wash versus irradiation to inactivate *Escherichia coli* O157:H7 internalized in leaves of Romaine lettuce and baby spinach. Journal of Food Protection 2526-2532. 2007.

Nthenge, A.K. et al. Efficacy of gamma radiation and aqueous chlorine on *Escherichia coli* O157:H7 in hydroponically grown lettuce plants. Journal of Food Protection 70:748-752. 2007.

Gomes, C. et al. E-beam irradiation of bagged, ready-to-eat spinach leaves (*Spinacea oleracea*): An engineering approach. Journal of Food Science 73:E95-E102. 2008.

Neal, J.A. et al. Reduction of *Escherichia coli* O157:H7 and *Salmonella* on baby spinach, using electron beam radiation. Journal of Food Protection 71:2415-2420. 2008.

Niemira, B.A. Irradiation compared with chlorination for elimination of *Escherichia coli* O157:H7 internalized in lettuce leaves: Influence of lettuce variety. Journal of Food Science 73:M208-M213. 2008.

Rajkowski, K.T. and Fan, X. Microbial quality of fresh-cut iceberg lettuce washed in warm or cold water and irradiated in a modified atmosphere package. Journal of Food Safety **28:**248–260. 2008.

Melons, Squashes, and Gourds

Khattak, M.K. et al. Effect of irradiation on microbial safety and nutritional quality of minimally processed bitter gourd (*Momordica charantia*). Journal of Food Science 70:M255-M259. 2005.

Boynton, B.B. et al. Effects of low-dose electron beam irradiation on respiration, microbiology, texture, color, and sensory characteristics of fresh-cut cantaloupe stored in modified atmosphere packages. Journal of Food Science 71:S149-S155. 2006.

Fan, X. et al. Combination of hot-water surface pasteurization of whole fruit and low-dose gamma irradiation of fresh-cut cantaloupe. Journal of Food Protection 69:912-919. 2006.

Miscellaneous

Kim, J.-H. et al. The combined effects of N₂-packaging, heating and gamma irradiation on the shelf-stability of kimchi, Korean fermented vegetable. Food Control 19:56-61. 2008.

Pineapple

Shashidhar, R. et al. Effectiveness of radiation processing for elimination of *Salmonella* Typhimurium from minimally processed pineapple(*Ananas comosus* Merr.). Journal of Food Science 72:M98-M101. 2007.

Root Crops

Asselbergs, E.A.M. et al. Effects of sodium metabisulphite, antibiotics, and gamma irradiation on the shelflife of prepeeled potatoes at room temperature. Applied Microbiology 8:311-314. 1960.

Hagenmaier, R.D. and Baker, R.A. Microbial population of shredded carrot in modified atmosphere packaging as related to irradiation treatment. Journal of Food Science 63:162-164. 1998.

Kamat, A. et al. Effect of low-dose irradiation on shelf life and microbiological safety of sliced carrot. Journal of the Science of Food and Agriculture 85:2213-2219. 2005.

Caillet, S. et al. Influence of antimicrobial compounds and modified atmosphere packaging on radiation sensitivity of *Listeria moncytogenes* present in ready-to-eat carrots (*Daucus carota*). Journal of Food Protection 69:221-227. 2006.

Dhokane, V.S. et al. Radiation processing to ensure safety of minimally processed carrot (*Daucus carota*) and cucumber (*Cucumis sativus*): Optimization of dose for the elimination of *Salmonella* Typhimurium and *Listeria monocytogenes*. Journal of Food Protection 69:444-448. 2006.

Sprouted Seeds

Rajkowski, K.T. and Thayer, D.W. Reduction of *Salmonella* spp. and strains of *Escherichia coli* O157:H7 by gamma radiation of inoculated sprouts. Journal of Food Protection 63:871-875. 2000.

Rajkowski, K.T. and Thayer, D.W. Alfalfa seed germination and yield ratio and alfalfa sprout microbial keeping quality following irradiation of seeds and sprouts. Journal of Food Protection 64:1988-1994. 2001.

SCHOELLER, N.P. et al. Assessment of the potential for *Listeria monocytogenes* survival and growth during alfalfa sprout production and use of ionizing radiatin as a potential intervention treatment. Journal of Food Protection 65:1259-1266. 2002.

Rajkowski, K.T. et al. Irradiation D-values for *Escherichia coli* O157:H7 and *Salmonella* sp. on inoculated broccoli seeds and effects of irradiation on broccoli sprout keeping quality and seed viability. Journal of Food Protection 66:760-766. 2003.

Thayer, D.W. et al. Gamma-radiation decontamination of alfalfa seeds naturally contaminated with *Salmonella Mbdanka*. Journal of Food Science 68:1777-1781. 2003.

Thayer, D.W. et al. Inactivation of *Escherichia coli* O157:H7 and *Salmonella* by gamma irradiation of alfalfa seed intended for production of food sprouts. Journal of Food Protection 66:175-181. 2003.

Bari, M.L. et al. Chemical and irradiation treatments for killing *Escherichia coli* O157:H7 on alfalfa, radish, and mung bean seeds. Journal of Food Protection 66:767-774. 2003.

Bari, M.L. et al. Irradiation to kill *Escherichia coli* 0157:H7 and *Salmonella* on ready-to-eat radish and mung bean sprouts. Journal of Food Protection 67:2263-2268. 2004.

Saroj, S.D. et al. Effectiveness of radiation processing in elimination of *Salmonella* Typhimurium and *Listeria monocytogenes* from sprouts. Journal of Food Protection 69:1858-1864. 2006.

Saroj, S.D. et al. Radiation processing for elimination of *Salmonella* Typhimurium from inoculated seeds used for sprout making in India and effect of irradiation on germination of seeds. Journal of Food Protection 70:1961-1965. 2007.

Tomatoes

Schmidt, H.M. et al. Improving the microbiological quality and safety of fresh-cut tomatoes by low-dose electron beam irradiation. Journal of Food Protection 69:575-581. 2006.