Walnut Drying Design and Operation Don Osias Jim Thompson Selecting Dryer Type Tray Drying Before 1920

Stack Dryer

- Energy efficientHigh capital cost

Pothole

- For small lots
- High labor cost

Hopper-bottom Trailer

Stadium

- · Low labor cost
- High capacity 25 ton increments

Grain Bin

Dryer size

- Handle peak harvest
 - Nut volume = 80 85 ft 3 /ton
 - Large dryers are built in trailer load increments (12 to 13 tons)
- · Number of lots

Bin Geometry Self unloading Pallet bin Self unloading 30°

25 Ton Dryer Design

Holding Volume for 25 tons of nuts:

 $25t \times 80ft^3/ton = 2000ft^3$

Fan Selection

- Fan type
- Airflow
- Static pressure

Fan Selection

Centrifugal (squirrel cage)

•High Volume
•Slow speed = low energy use

•Noisy
•Portable

Fan Selection

- Fan type
- Airflow
- Static pressure

Airflow Capacity

- High airflow
 - Faster drying
 - Less MC variability
 - Higher fuel cost
 - Higher electricity cost
 - Higher capital cost

25 Ton Dryer Design

Airflow for 2000 ft³ of nuts:

 $2000 \text{ ft}^3 \text{ x } 20 \text{ cfm/ ft}^3 = 40,000 \text{ cfm}$

Static Pressure (in w.c.)

. Thru nuts

	Nut depth (ft)				
Airflow (cfm/ft ³)	4'	6'	8'		
10	0.1	0.4	8.0		
20	0.4	1.3	2.9		
30	0.9	2.7	6.1		

. Plus pressure drop at fan inlet and in plenum (<1/2" w.c.)

Fan Curve - Table Size 35 DWDI Backward Inclined Airfuil Whed Director 35.42* Whed Circumstance 5.34* Whed Circumstance 5.34* Whed Circumstance 5.38 II. Max. 1879 = 21.53 x (1978 + 10000)* The Circumstance 5.38 II. Max. 1879 = 21.53 x (1978 + 10000)* The Circumstance 5.38 II. Max. 1879 = 21.53 x (1978 + 10000)* The Circumstance 5.38 II. Max. 1879 = 21.53 x (1978 + 10000)* The Circumstance 5.38 III. Max. 1879 = 21.53 x (1978 + 10000)*

Inlet Designs

Burner before fan

Burner after fan

Burners

Air Pollution Regulations

- Air Quality Management Districts increasingly strict applying NOx regulations to agricultural applications.
- Each AQMD has different requirements.
- Check with your local AQMD before building a new dryer.
- Low NOx burners readily available but more expensive.

Burner Capacity

- Minimum air temperature during drying season is about 50°F.
- Air recirculation increases minimum to about 70°F.
- Maximum outside air temperature during drying = 100+ °F.
- Turn-down ratio, at least 10 to 1

Burner Control System

- Modulating gas flow control.
- Flame out detection.
- Excellent digital controls now better and cheaper than analog or gas bulb.
- · Should meet Safety Codes!
- Must have PID to use with VFD.
- Digital communication a plus.

25 Ton Dryer Design

Burner capacity for 40,000 cfm:

40,000 cfm x 60,000 Btuh/1,000 cfm = 2.4 million Btuh

60,000 Btuh/1000 cfm is a rule of thumb for California conditions, assuming a maximum temperature rise of 60°F.

Air Plenum Dimensions

• Maximum air speed = 1500 fpm

25 Ton Dryer Design

Air plenum area:

 $40,000 \text{ cfm} / 1500 \text{fpm} = 27 \text{ ft}^2$

Uniformity of Airflow and Temperature

- It <u>rains</u> inside the dryer at night. The air is too wet. Recirculation is useless.
- If I add some exhaust fans in the roof I can get rid of that wet air and dry better.
- I do not have a wall between the fan and bins but recirculation works fine.
- · Recirculation is complicated and expensive.

Psychrometric Chart

Recirculation Psychrometrics

- It <u>rains</u> inside the dryer at night. The air is too wet. Recirculation is useless.
- If I add some exhaust fans in the roof I can get rid of that wet air and dry better.
- I do not have a wall between the fan and bins but recirculation works fine.
- · Recirculation is complicated and expensive.

Recirculation Myths

- It <u>rains</u> inside the dryer at night. The air is too wet. Recirculation is useless.
- If I add some exhaust fans in the roof I can get rid of that wet air and dry better.
- I do not have a wall between the fan and bins but recirculation works fine.
- Recirculation is complicated and expensive.

- It <u>rains</u> inside the dryer at night. The air is too wet. Recirculation is useless.
- If I add some exhaust fans in the roof I can get rid of that wet air and dry better.
- I do not have a wall between the fan and bins but recirculation works fine.
- Recirculation is complicated and expensive.

Recirculation Instrumentation

- Outside Temperature
- Temperature at Roof Inside
- Monitor Recirculated Air Flow
- Keep Plenum Humidity Below 40%

- It <u>rains</u> inside the dryer at night. The air is too wet. Recirculation is useless.
- If I add some exhaust fans in the roof I can get rid of that wet air and dry better.
- I do not have a wall between the fan and bins but recirculation works fine.
- Recirculation is complicated and expensive.
- Got anymore??

Do Not Over Dry

Nut MC variability caused by

- Differences in maturity
- Position in bin
- Airflow

Incoming Moisture Content Variability Incoming Moisture Content (%wb)

Moisture Uniformity

Nut Moisture Content At Top of Bin Which Corresponds To An 8% Average Moisture

Bin depth		4 foot			6 foot			8 foot	
Air velocity (fpm) Initial moisture	50	100	150	50	100	150	50	100	150
15% 25% 35%	11.6 14.0 16.7	9.9 11.3 12.6	9.4 10.4 11.1	12.8 16.9 20.4	10.8 12.7 14.9	9.9 11.4 12.7	13.7 19.0 23.8	11.7 14.2 17.2	10.7 12.2 14.4

Define Moisture Content

Wet Basis Moisture (Industry Standard)

Dry Basis Moisture

$$\frac{Water}{DryNuts + Water} \cdot 100$$

Water
DryNuts

mwb%	Water Pounds	Nuts Pounds	mdb%
10	10	90	11.1
40	60	90	66.6
60	135	90	150

What is 1% Worth?

At 8% MC a lot weighs 25 tons, what does it weigh at 7%, 6%, 5%?

MC wb%	Weight tons	Weight difference	Weight difference
8	25.0		
7	24.7	-1.1%	-538 lb
6	24.5	-2.1%	-1064 lb
5	24.2	-3.2%	-1579 lb

Moisture Meters

- Hand held
 - Dickey-john
 - John Deere
- Membrane test
 - Usually brittle at 6%.

Minimize Drying in Early Morning

• Keep burner on during the day

Solar Heating

• Expensive

Fire Safety

- Prevent fire by regularly cleaning air plenum.
- Adjust and control burner to produce short flame.
- Adequate transition length.
- Have a water supply available.

Extinguish a Fire

- 1. Turn off burner.
- 2. Direct a spray of water into fan inlet.

Dryer Designs Trends, Problems, Possibilities **Trends** • Shrinking Season Requires More Capacity. • Capital costs drive move to longer rows, larger fans & burners. • VFDs now cost effective. • Electronics allows automation of many tasks. Variable Speed Drives • Variable speed or variable frequency drives now readily available. • Huge advantage for outdoor dryers. • Recirculation better for indoor dryers. · Require different burners with combustion air supply. These burners are more expensive and less flexible.

Specify Variable Speed Drive

- · Specify Carefully!
- Must do PID.
- Someone must program and provide user interface. May cost more than the drivel
- MUST have proper burner and burner controls!

Problems

- Longer rows, shorter transitions, bigger burners, higher plenum velocities make temperature and air flow uniformity MUCH worse.
- Pushing burners too hard may increase flame length beyond safe limit.
- Processors struggling with shorter season also are having increasing problems with moisture variability.
- Industry needs more dry storage and lot traceability.

Uniformity of Airflow and Temperature Low airflow to first bin Turning vane Burner

•			
•			
•			
•			
•			
•			
•			
•			

Temperature & Airflow Solutions • Profile plates for burners. • "H", "Box", "T", or other burner configurations. • Must RAMP burner up slowly on startup or when setpoint changes. • One or more baffles to create turbulence and mixing • Tunnel in a tunnel? **Possibilities** • Find better ways to use electronics. • Field to package traceability? • Automate dryer tasks like air doors & recirculation. • Bin level detection. · Automated grading. • Computer model can fine-tune dryers. Thank You!