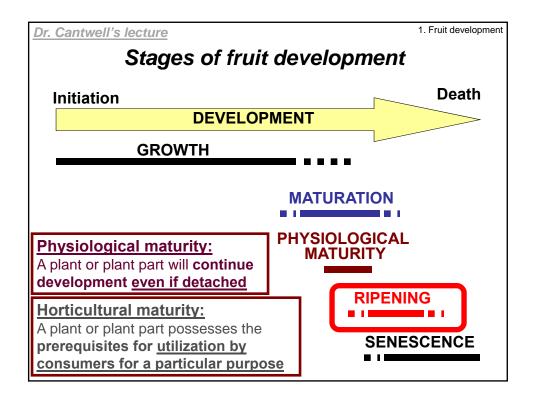




Fruit ripening
Biology and Technology

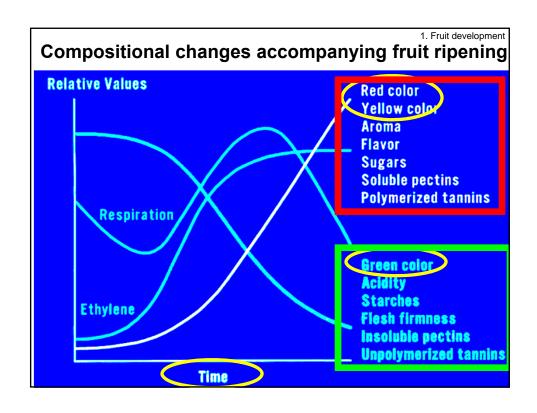


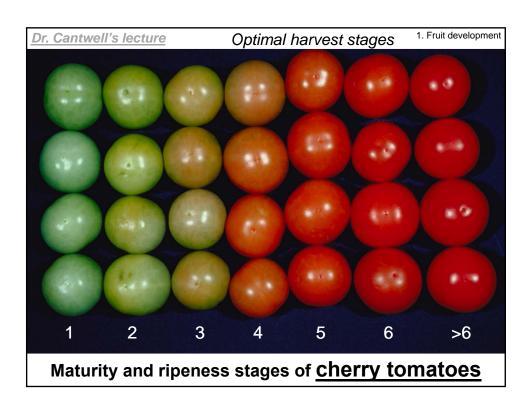



Kentaro Inoue University of California, Davis kinoue@ucdavis.edu June 17<sup>th</sup>, 2014

# Fruit ripening Biology and Technology

- 1. Fruit development
- Definition of Ripening
- 2. Importance of color
- 3. Technology control of ripening
- Some examples





1. Fruit development

### Ripening

- Made of multiple processes
- Occurring from the <u>latter stages of growth</u> <u>and development</u> through the <u>early stages</u> <u>of senescence</u>
- Resulting in characteristic cosmetic and/or food quality, as evidenced by changes in composition, color, texture, or other sensory attributes
- = <u>accumulation</u> or <u>disappearance</u> of metabolites (nutrients, pigments, sugar, acid, aroma compounds, etc.)

**KEY DETERMINANTS FOR QUALITY** 



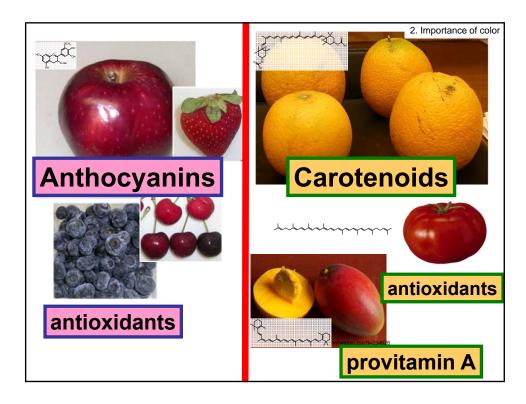


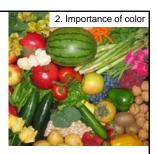
## Importance of "Color"

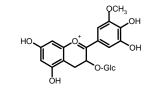
- Indicator of ripening

### For us (people)..

- Cosmetic value
- Nutritional value .. provitamin A .. antioixdant


### For plants..


- Green capture light (photosynthesis)
- Red, orange, etc.


Attract animals and insects that scatter seeds (fruits) or help pollinate (flowers)

Photosynthesis (in green tissue)

Protect themselves from oxidative stress

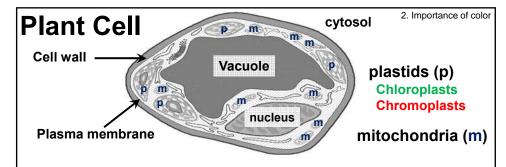






"Phenylpropanoids"

## **Anthocyanins**


2. Importance of color

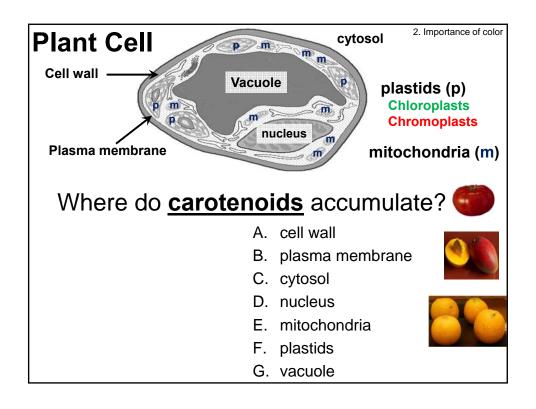
"Isoprenoids (terpenoids)"

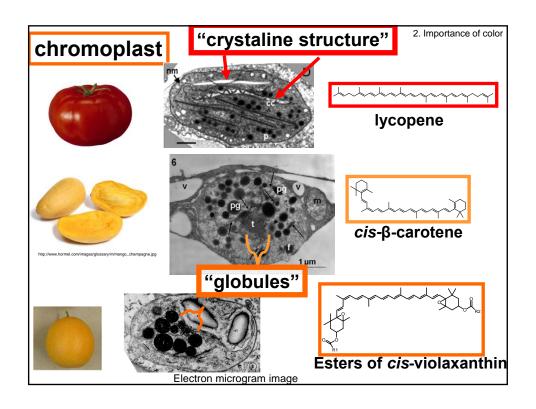
**Carotenoids** 

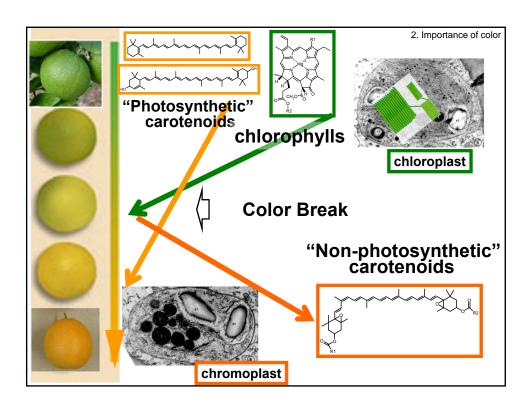
### Which one is water soluble?

- A. Carotenoids
- B. Anthocyanins
- C. Both




### Where do anthocyanins accumulate?


- A. cell wall
- B. plasma membrane
- C. cytosol
- D. nucleus
- E. mitochondria
- F. plastids
- G. vacuole














| continuing their ed from the plant  Pomegranate |
|-------------------------------------------------|
| Pomegranate                                     |
| •                                               |
| Prickly pear                                    |
| Rambutan                                        |
| Raspberry                                       |
| Strawberry                                      |
| Tamarillo                                       |
| Watermelon                                      |
|                                                 |

Dr. Cantwell's lecture 3. Conditioning for ripening

### **Group 2: Climacteric Fruits:**

Fruits that can be <u>harvested at physiological</u> <u>maturity</u> and <u>ripened off the plant</u>

Apple Mango Persimmon

Apricot Nectarine Plum

Avocado Papaya Quince

Banana Passion fruit Sapodilla

Cherimoya Peach Sapote

Guava Pear Tomato

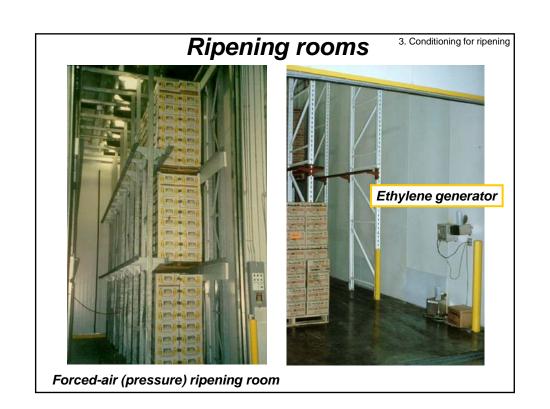
Kiwifruit Pepper (chili)

Except avocado, banana and pear, these fruits attain best flavor IF ripened on the plant

3. Conditioning for ripening

## Optimal conditions for ripening of climacteric fruits

### Ripening rooms


- Temperature: 15 to 25°C (59 to 77°F)
- Relative humidity: 85-95%
- Air circulation (more uniform temperature and ethylene\* concentration)
- Ventilation (introduction of fresh air to keep carbon dioxide below 1%)

### \*Treatment with ethylene

- 100 ppm ethylene in air for 1-3 days, depending on maturity stage at harvest



<u>Temperature</u> and <u>relative humidity</u> management is the most important factor affecting ripening rate & uniformity



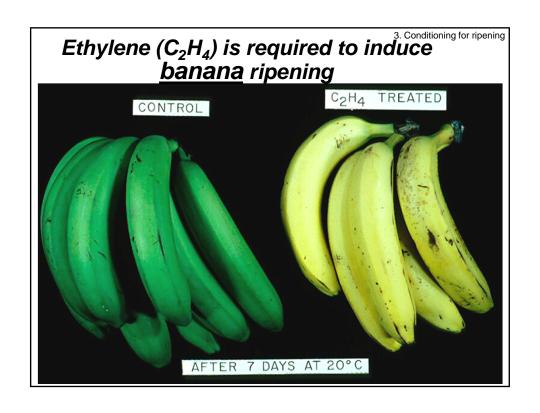
3. Conditioning for ripening

## Ripening conditions for some commonly-ripened fruit

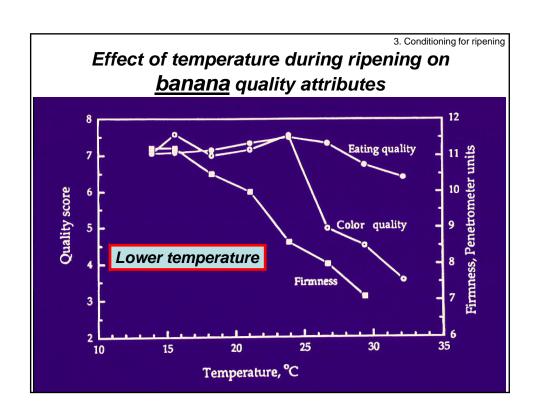
| Fruit     | Exposure time (hours) <sup>1</sup> to 100ppm ethylene | Range of ripening temperatures <sup>2</sup> |
|-----------|-------------------------------------------------------|---------------------------------------------|
| Avocado   | 8-48                                                  | 15-20°C / 59-68°F                           |
| Banana    | 24-48                                                 | 14-18°C / 58-65°F                           |
| Kiwifruit | 12-24                                                 | 12-25°C / 54-77°F                           |
| Mango     | 24-48                                                 | 20-25°C / 68-77°F                           |
| Pear      | 24-48                                                 | 20-25°C / 68-77°F                           |
| Tomato    | 24-72                                                 | 18-20°C / 65-68°F                           |

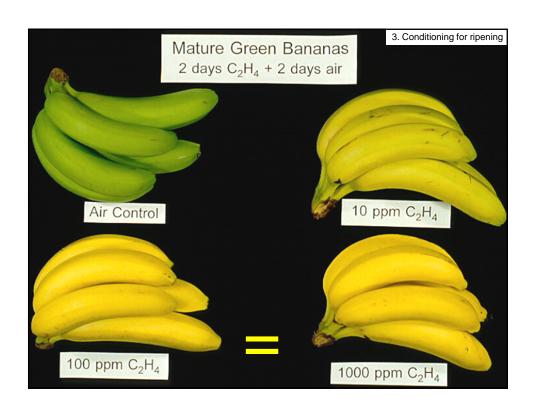
<sup>&</sup>lt;sup>1</sup> Shorter duration for more mature fruit

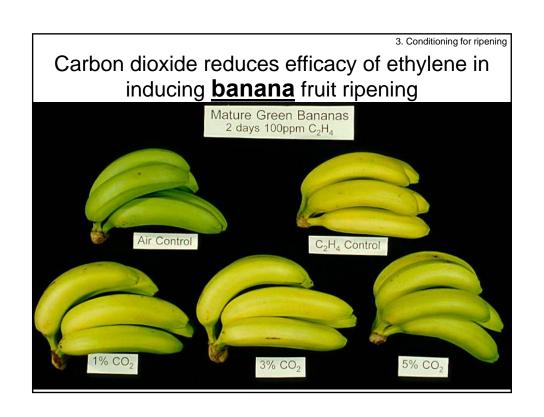


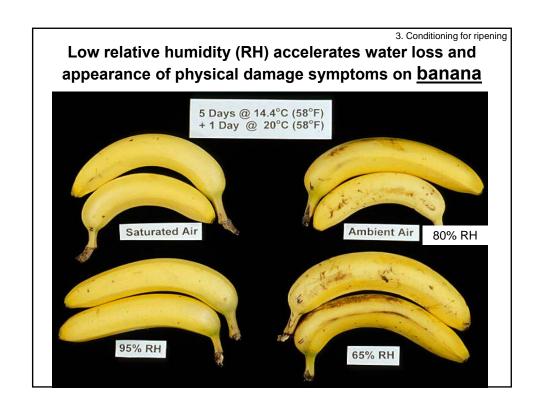

3. Conditioning for ripening

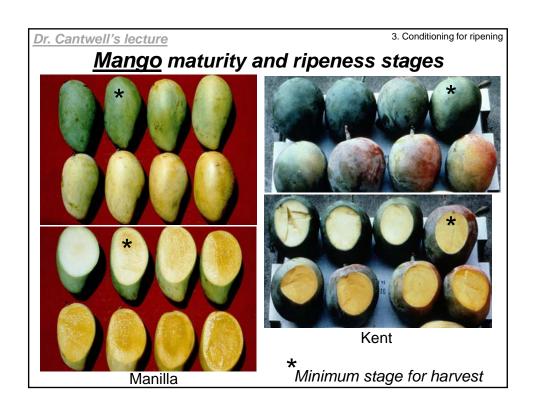
# Current recommendations for <u>avocado</u> ripening


| Temperature:            | 15.5-20°C (60-68°F)                                |
|-------------------------|----------------------------------------------------|
| Relative humidity:      | 90-95%                                             |
| Ethylene concentration: | 10-100ppm                                          |
| Duration:               | 8-48 hr, depending on maturity stage               |
| Carbon dioxide level:   | Adequate air flow to keep CO <sub>2</sub> below 1% |


<sup>&</sup>lt;sup>2</sup> Faster ripening rate at higher temperatures


|                                      | t date (maturity) on the for <u>'Hass' avocado</u> |
|--------------------------------------|----------------------------------------------------|
| Harvest date  and Ethylene treatment | Days to ripen at 20°C<br>(68°F)                    |
| Harvest da                           | te Control Treated*                                |
| Dec. 8                               | 13.9 10.8                                          |
| Feb. 6                               | 12.8 8.8                                           |
| April 10                             | 10.1 7.1                                           |
| June 5                               | 8.2 5.1                                            |





| Ripening conditions for banana    |                                                                           |  |  |
|-----------------------------------|---------------------------------------------------------------------------|--|--|
| Fruit temperature:                | 14-18°C (58-65°F)                                                         |  |  |
| Relative humidity:                | 90-95%                                                                    |  |  |
| Ethylene concentration:           | 100 ppm                                                                   |  |  |
| Duration of exposure to ethylene: | 24-48 hours, depending on maturity stage                                  |  |  |
| Carbon dioxide:                   | Adequate air exchange to prevent accumulation of CO <sub>2</sub> above 1% |  |  |











3. Conditioning for ripening

## Ripening conditions for mango

| Fruit temperature:                | 20 to 22°C (68-72°F)                                            |
|-----------------------------------|-----------------------------------------------------------------|
| Relative humidity:                | 90-95%                                                          |
| Ethylene concentration:           | 100 ppm                                                         |
| Duration of exposure to ethylene: | 24-48 hours,<br>depending on maturity<br>stage (flesh firmness) |
| Carbon dioxide:                   | <1%                                                             |

3. Conditioning for ripening

## Mango ripeness vs. flesh firmness

| Ripeness stage | Flesh firmness (lb-<br>force with 8mm-tip<br>penetrometer) | Notes                               |
|----------------|------------------------------------------------------------|-------------------------------------|
| Mature-green   | >14                                                        | Treat with ethylene for 48 hours    |
| Partially-ripe | 10-14                                                      | Treat with ethylene for 24 hours    |
| Firm-ripe      | 6-10                                                       | Best stage to send to retail stores |
| Soft-ripe      | 2-6                                                        | Best stage for eating               |
| Over-ripe      | <2                                                         | Good for juice                      |

## Let's see what we have learned

### Importance of color



VS.



# Timing of harvest Postharvest treatment

### Importance of color

- Q1. We can estimate the degree of ripeness based on the color of fruits.
  - A. True
  - B. False

### Importance of color

- Q2. **Green** fruits usually do not accumulate any orange pigments as long as they are green.
  - A. True
  - B. False

#### Red fruits

Q3. The main pigment of **red** tomato is:



- A. a carotenoid and is water soluble.
- B. an anthocyanin and is water soluble.
- C. a carotenoid and accumulates in chromoplasts.

#### Red fruits

Q4. The main **red** pigment of red delicious apple is:



- A. a carotenoid and is water soluble.
- B. an anthocyanin and is water soluble.
- C. a carotenoid and accumulates in chromoplasts.

### Timing of harvest









unripe Q5. Choose the most appropriate description.

- A. We can harvest unripe cherries and store them in a ripening room to ripen them.
- B. We should always harvest ripe mangos if we want to sell ripe mangos.
- C. We usually harvest unripe strawberries and use ethylene to ripen them.
- D. All A-C are correct.
- E. All A-C are incorrect.

### Timing of harvest

Q6. In a ripening room, usually:

- A. CO<sub>2</sub> level should be kept between 2.5-5%.
- B. humidity should be kept around 40-60%.
- C. temperature should be kept around 15-25°C (59 to 77°F).

Q7. Which one of the postharvest treatments would most likely cause bruising of bananas?

- A. High humidity (100%).
- B. CO<sub>2</sub>.
- C. Low temperature (15 °C).
- D. Low humidity (65%).



good bruised





Fruit ripening Biology and Technology





Kentaro Inoue University of California, Davis kinoue@ucdavis.edu June 17<sup>th</sup>, 2014