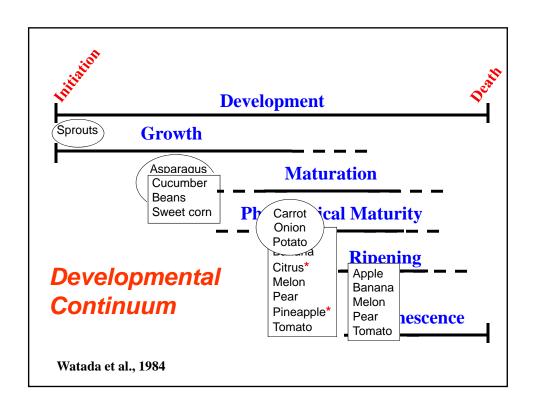

Maturation and Maturity Indices When to Harvest?


Marita Cantwell, UC Davis micantwell@ucdavis.edu http://postharvest.ucdavis.edu

Maturation and Maturity Indices

IMPORTANCE

- ✓ Maturity Indices = Harvest Indices
- ✓ Sensory and Nutritional Quality
- ✓ Use—Fresh market or Processed
- ✓ Adequate shelf-life
- ✓ Facilitate marketing—standards
- ✓ Productivity—yield at harvest and use

Terminology

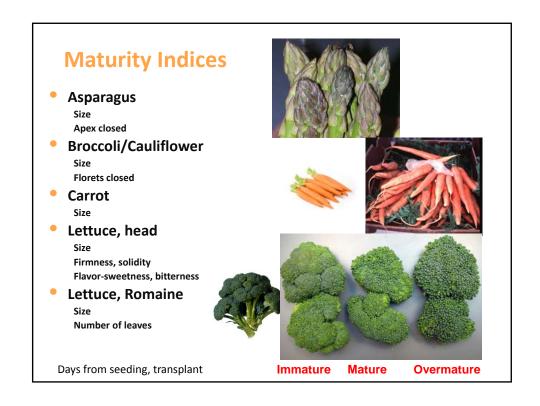
PHYSIOLOGICAL MATURITY

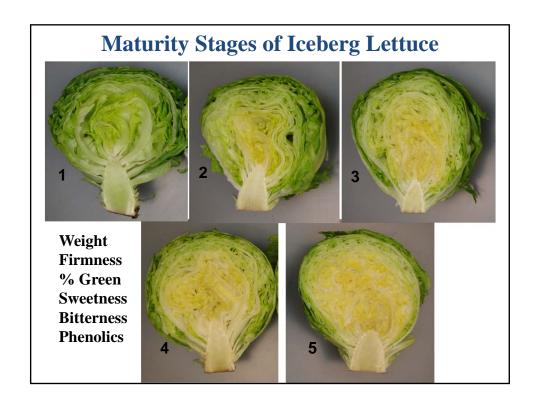
The stage of development when a plant part will continue development even if detached; mature fruits

HORTICULTURAL MATURITY

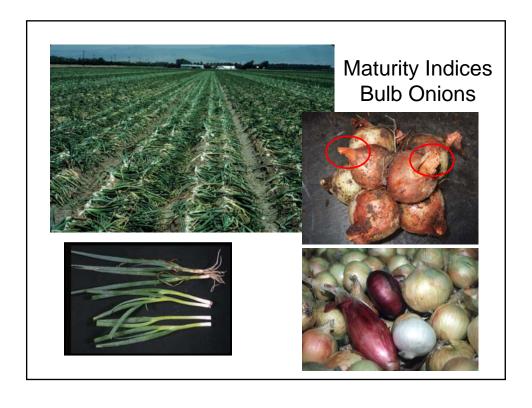
The stage of development when a plant part possesses the necessary characteristics for use by consumers

Physiological Maturity

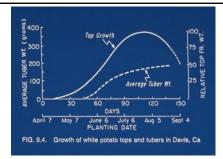

FRUITS


- Immature
- Mature
- Ripening
- Ripe
- Overripe

Horticultural Maturity


VEGETABLES

- Immature
- Mature
- Overmature



Composition of Potato Tubers

	Weight g	dry wt, %	Starch %	Sugar %
Flowering	9	16	64	4.8
Flowering ends	11	17	66	5.2
Leaves decline	28	19	72	2.9
80% leaves dead	33	21	73	0.8
100% leaves dead	51	20	72	0.7

"new potatoes"

mature potatoes

cv. Irish Cobbler; data from Burton, 1966

Maturity Indices

Onions/Garlic

Size

Drying and collapse of the "neck"

Drying of leaf scales

Potatoes

Death of the plant

Size of tubers

Starch content; specific gravity

Periderm development

Maturity Indices

Beans

Size

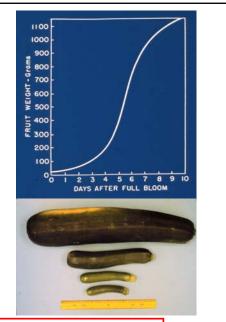
Seed development

Cucumber

Size

External color

Okra


Size

External color

Summer Squash

Size

External color

Immature fruit vegetables: very rapidly developing and changing

Maturity Indices for fruit vegetables

Peppers

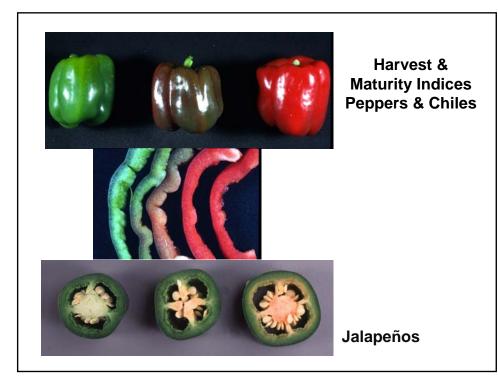
Size

Color

Firmness

Seed and locule development

Tomato


External and Internal color

Development of locules (jelly)

Firmness

Size

Development of cuticle

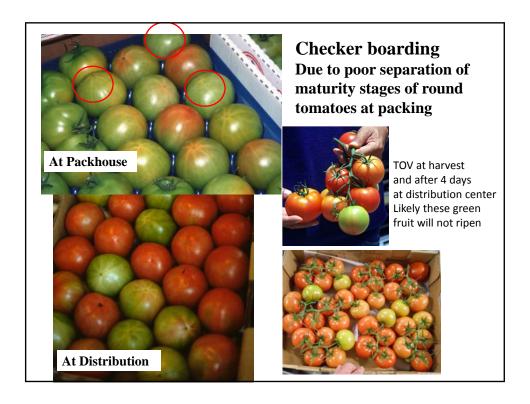
European Color Chart 12 colors

Tomato Maturity & Ripening Stages

GREEN The tomato surface is completely green. The shade of green may vary from light to dark.

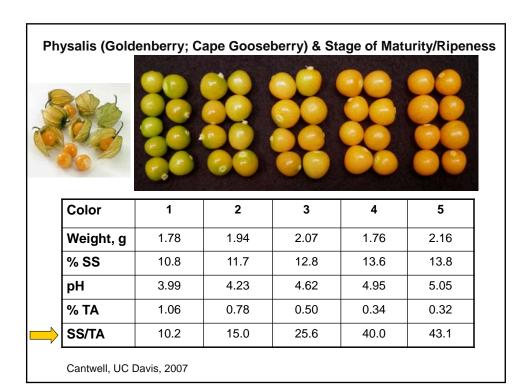
BREAKERS There is a definite break of color from green to bruised fruit tannish-yellow, pink or red or 10% or less of the tomato surface.

TURNING Tannish-yellow, pink or red color shows on over 10% but not more than 30% of the tomato surface.


PINK Pink or red color shows on over 30% but not more than 90% of the tomato surface.

LIGHT RED Pinkish-red or red color shows on over 60% but red color covers not more than 90% of the tomato surface

RED Red means that more than 90% of the tomato surface, in aggregate, is red


Composition of Ripe Grape Tomato Harvested at 3 Stages of Maturity

Initial Maturity Stage	Weight fruit, g	Red color, hue	Firmness, N force	Soluble solids, %	Sugars mg/mL	Titratable acidity,	Vitamin C mg/100mL
3	4.9	36.8	11.5	5.9	27	0.59	96
4	5.7	36.3	13.6	6.7	30	0.68	97
5	5.9	37.7	13.7	7.5	33	0.67	99
LSD.05	0.6	ns	1.5	0.8	3	0.09	ns

Minimum harvest stage should be Stage 4 (pink-orange)

Cantwell, UC Davis, 2003

Group 1* Non climacteric Fruits

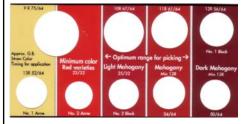
Fruits that are not capable of continuing ripening process (physiological changes) once removed from the plant.

*No increase in sugar content; decrease in respiration after harvest. Changes in firmness, external color, and aroma may occur

Blackberry	Loquat	Pomegranate
Cherry	Litchi	Prickly Pear
Grape	Mandarin	Rambutan
Grapefruit	Muskmelons	Raspberry
Lemon	Orange	Strawberry
Lime	Pepper (Bell)	Tamarillo
Longan	Pineapple	Watermelon

Composition of Ripe Strawberry

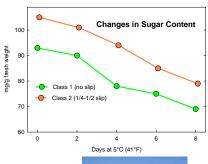
Harvested at different stages.


Held at 70°F (21°C) to complete color change.

Maturity	% SS	% Acid	Ratio
25% color	4.28	0.80	5.35
50% color	4.56	0.79	5.77
75% color	4.98	0.68	7.32
100% color	5.48	0.59	9.28

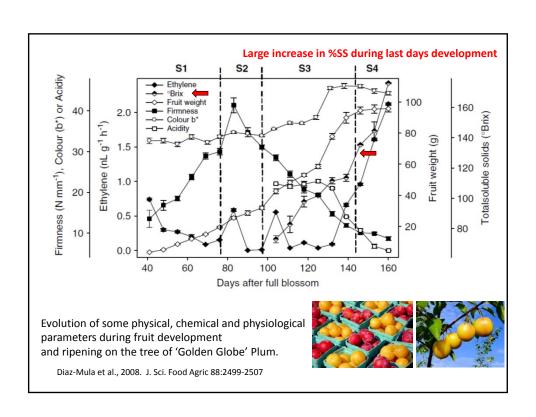
Maturity and Ripeness Stages of Cherries

Harvest too early
Small size
Poor color
Poor flavor
Harvest too late
Soft fruit
Increased decay susceptibility
More shrivel, stem browning and pitting



Cantaloupe Maturity/Ripeness

- Fruit begins to separate from the stem
 - Abscission zone; "slip"
 - External color between net
 - Net well developed with wax
 - Subtending leaf dries up
 - Internal color, firmness, soluble


Composition of fig cultivars separated by stage of maturity (ripeness). All the <u>fruit were in boxes of 'Commercial Maturity</u>" (Cantwell & Crisosto, 2010)

Cultivar	Maturity stage	Weight, g	Firmness,	Soluble solids, %	Titratable acidity, %
	Under-ripe	29.9	12.1	14.3	0.38
	Commercial maturity	32.2	7.2	17.5	0.19
600000	Tree ripe	34.5	4.0	21.0	0.22
Black Mission					
000000	Under-ripe	45.1	11.0	15.2	0.36
	Commercial maturity	56.3	4.4	15.9	0.34
	Tree ripe	57.6	2.4	17.9	0.28
Kadota					
	LSD.05	3.7	1.3	1.9	0.05

Lack of sufficient uniformity of maturity/ripeness within a box leads to repacking or marketing losses

Fu	o all green	Slight color break	Less than 'a gold	à to la gold	To to % gold	A to full gold	d Full gold to 's reddish brown		
Days from Anthesis	Shell		Dry wt.	Soluble solids %	aci	atable dity	Total sugar	Vit C mg/100g	Sensory score*
115-120	Greei	n 0.77	12.97	7.9	0.	.66	6.49	13.7	3.0
135-140	1/8	0.76	15.26	12.6	0.	.74	8.87	13.9	4.6
141-145	1/4	0.63	16.09	18.2	0.	.77	11.25	14.4	5.4
146-150	1/2	0.53	17.65	18.9	0.	.77	11.99	14.9	6.8
151-155	2/3	0.21	17.76	18.0	0.	.83	12.44	15.3	6.7
156-160	Full	0.14	19.89	16.3	0.	.96	12.74	14.5	6.4
LSD.05		0.01	0.17	0.87	0	.07	0.08	0.5	0.2

Deka et al. 2005. Standardization of maturity indices of 'Kew' pineapple. Acta Hort. 682: 2215.

Relationship between sugar/acid ratio and sensory panelist's Response to the question about **Willingness to Buy** navel oranges

		Number of	responses
Sampling week	% samples <u>below</u> sugar/acid Ratio of 8.1*	YES	NO
Nov 14-18	39	42	58
Nov 28-Dec 2	27	53	47
Dec 12-16	13	63	37

*from California A grade standard

Source: Ivans and Feree, 1987

California Navel Maturity Standards

The California Standard is easily converted to a table format, similar to the SSC/TA tables currently in use

It is a slight modification of the BrimA calculation proposed by Jordan et al

Steps involved in determining the California Standard

- Juice sample using Boswell Press
- Determine Brix using standard protocols
- Determine Titratable Acidity using standard protocols
- Use Table or formula to determine California Standard

M.L. Arpaia, UC

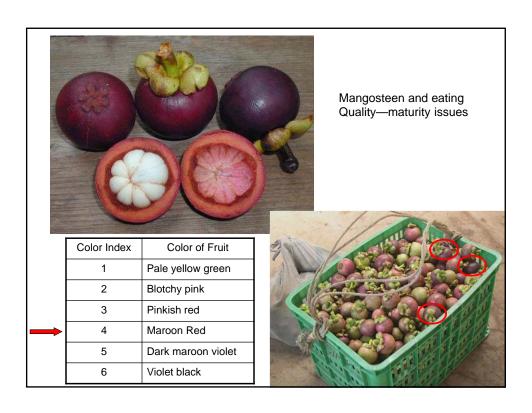
Formula for California Standard:

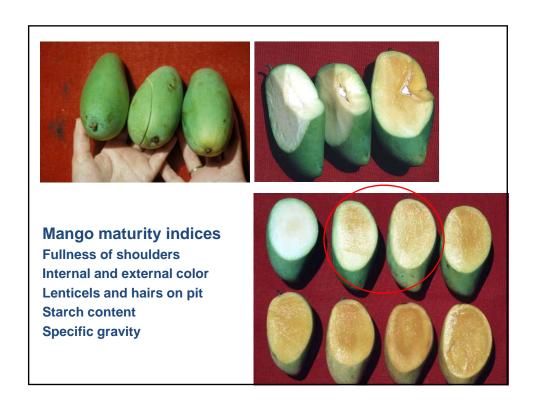
California Standard = (Brix - (TA * 4)) * 16.5

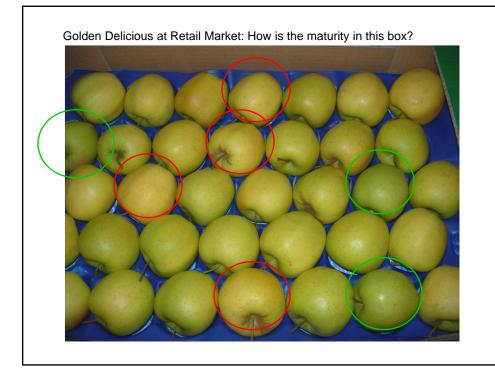
D. Obenland, USDA

http://www.cdfa.ca.gov/is/i_%26_c/citrus.html

Group 2* Climacteric Fruits


Fruits that can be harvested and ripened off the plant. Fruits undergo significant physiological changes.

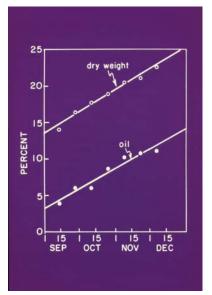

‡ have large increases in sugar during ripening because they have starch


Apple‡	Mango ‡	Pepper (chili)
Apricot	Mangosteen	Persimmon ‡
Avocado	Nectarine	Plum
Banana ‡	Papaya	Quince ‡
Cherimoya ‡	Passion fruit	Sapodilla ‡ (chico)
Guava ‡	Peach	Sapotes ‡
Kiwifruit ‡	Pear ‡	Tomato

^{*}Except for avocado, banana, mango and pear, best flavor if ripened on the plant

Indicators of Harvest Maturity: APPLES

- Days from full bloom
- Time/temp (heat units) from anthesis
- Days from harvest to onset of ethylene production
- Ground color
- Soluble solids content (SSC)
- Flesh firmness and SSC
- Starch disappearance pattern
- Internal ethylene concentration
- Changes in firmness or starch content


Streif Index considers starch, sugar, firmness

For many products it is necessary to use several indices to accurately determine maturity

% Dry Weight and Maturity

- Vegetables
 - Potato
 - Onion
 - Garlic
- Fruits
 - Avocado
 - Apples
 - Mango
 - Kiwi

Oil content avocado linearly correlated with % dry weight

Maturity Indices Requirements for establishing

- Simple, easy to carry out
- Objective vs subjective indicators
- Related to quality
- Related to storage life
- Represents a progressive change with maturity
- Permits prediction of maturity from year to year
- Inexpensive

Use of Maturity Indices **Limitations**

- Soil conditions, nutrition, irrigation
- Season, climate
- Position on the plant
- Pruning, other cultural practices
- Varieties

Predicting Maturity

- Days from planting to harvest
- Progressive changes in size, composition
- Difficult to predict; need new tools and methods
 - Nondestructive firmness measurement, fruits
 - Chlorophyll fluorescence, broccoli; green tissues
 - NIR spectroscopy, sugar concentration in melon
 - MR imaging constituents, internal defects
 - Gene expression rapid assessment

Maturity and Shelf-life

....Quality is maximized when the product is harvested more mature or ripe, whereas shelf-and storage life are extended if the product is harvested less mature or unripe....

Toivonen, P. 2007. Fruit maturation and ripening and their relationship to quality. Stewart Postharvest Review 2:7.

Lower maturity

Never ripens Shrivels Poor flavor No repeat buys Long shelf-life

Higher maturity

More decay Better flavor Too soft Bruises easily Poor shelf-life

Maturity Indices Exercise

Possible Maturity Indices	Currently Used Maturity Indices	Current indices adequate or Not	What practical indicators could add?
	Maturity	Maturity Maturity	Maturity adequate

Maturity and Product Quality

- Know the consequences of harvesting at different stages of maturity/ripeness on final eating quality.
- Make sure workers involved in harvest and selection are well trained to ID correct maturity/ripeness.
- Most indices are a compromise between eating quality and shelf-life
- As consumers, take back fruit with poor eating quality

