Postharvest Disease Management

- Principles and Treatments -

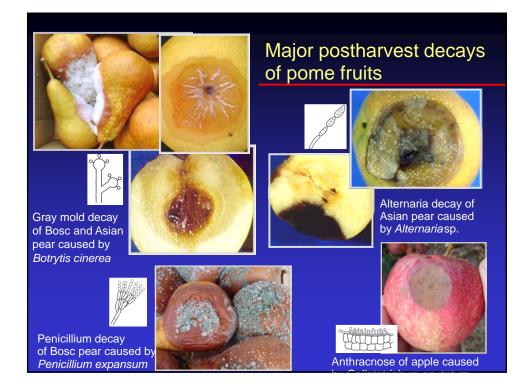
James E. Adaskaveg Professor

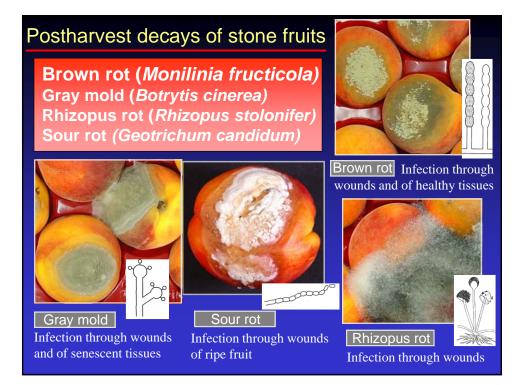
artmost of Plant Dath

Department of Plant Pathology University of California, Riverside

Postharvest decay organisms

Fungi (eukaryotes):


- Most important
- Reproduction and dissemination by abundantly produced spores
- Infection through wounds or sometimes through intact fruit surface.


Bacteria (prokaryotes):

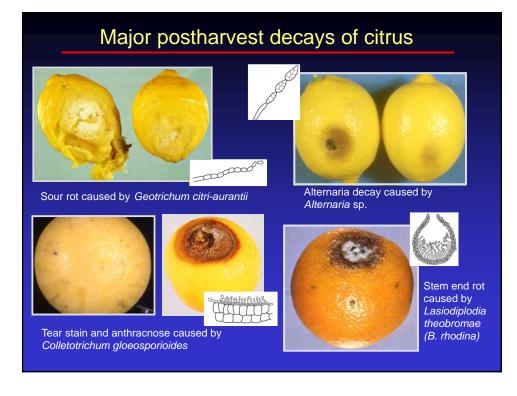
- Mostly on vegetables
- <complex-block>

FIGURE 1-2 Schematic diagram of the shapes and sizes of certain plant pathogens in relation to a plant cell. Bacteria, mollicutes, and protozoa are not found in nucleated living plant cells.

- *Pectobacterium carotovora (Erwinia carotovora)* is the most important postharvest pathogen causing a soft rot.
- Infections only through wounds.

Postharvest decays of citrus

Green mold caused by
Penicillium digitatum
(most important onBlue mold caused by
P. italicum and green
mold


Brown rot caused by *Phytophthora* spp. Infection through intact tissue.

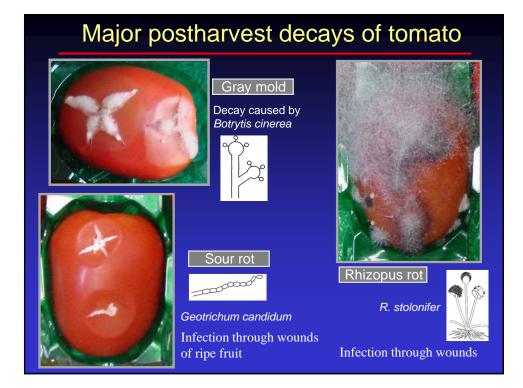
Penicillium spp. are wound pathogens

citrus)

Penicillium soilage

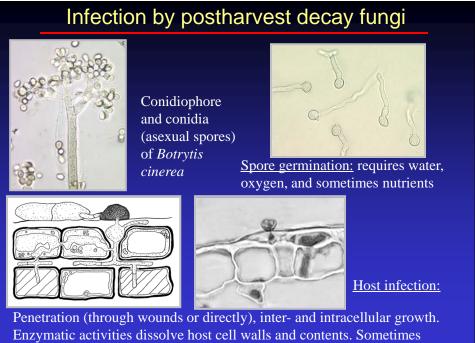
Postharvest decays of pomegranates and kiwifruit

Gray mold caused by *Botrytis cinerea*

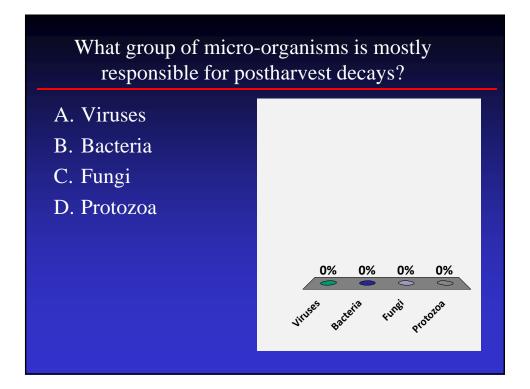


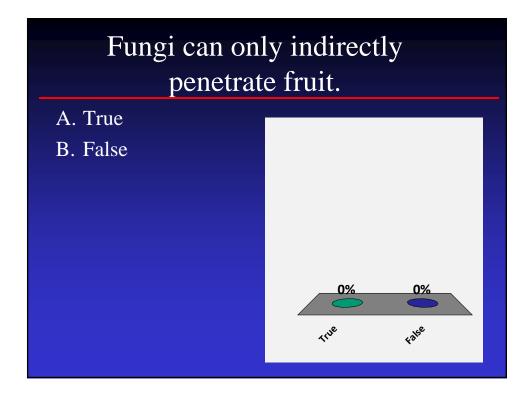
Infection through flower parts

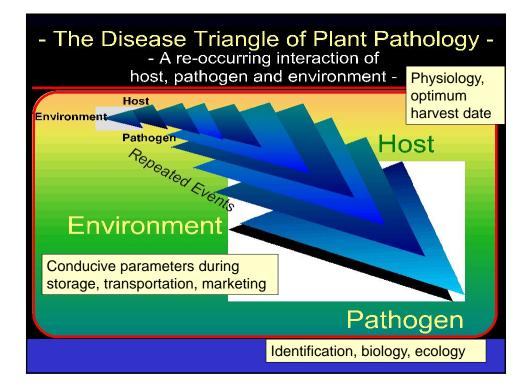
Infection through cut stem ends at harvest

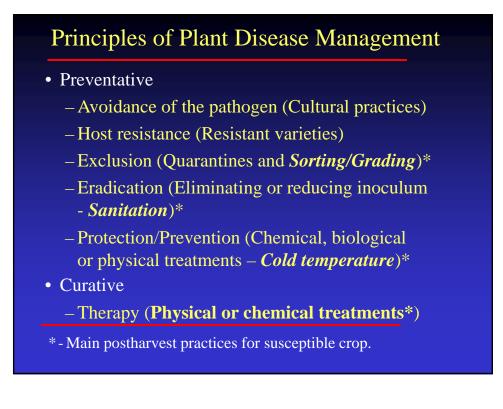

Postharvest decay organisms

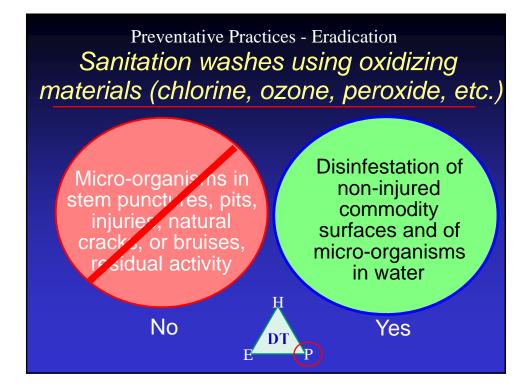
Penetration through wounds - Wound pathogens:

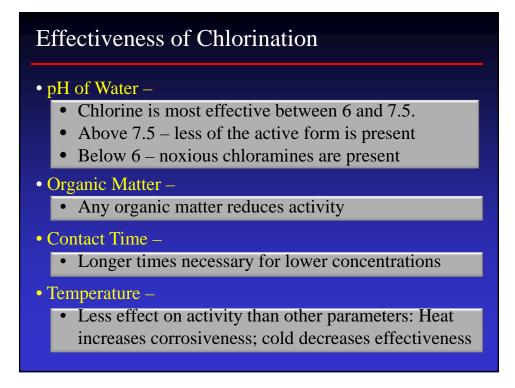

- Most common
- Only minor wounds required (micro-wounds).
- Wounds commonly occur before harvest (insect injuries, wind damage, etc.) or more frequently during and after harvest during handling, transport, packaging.
- Goal in postharvest handling: Minimize fruit injuries.


Penetration of intact fruit:

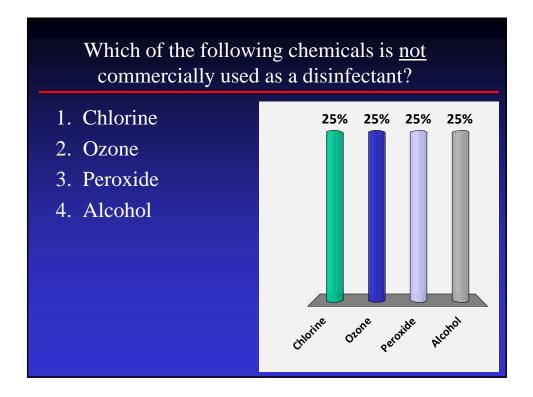

- Through intact surface of mature fruit.
- Immature fruit: Quiescent infections are established by some pathogens that remain inactive until fruit mature.
- Colonization of flower parts, invasion of maturing fruit

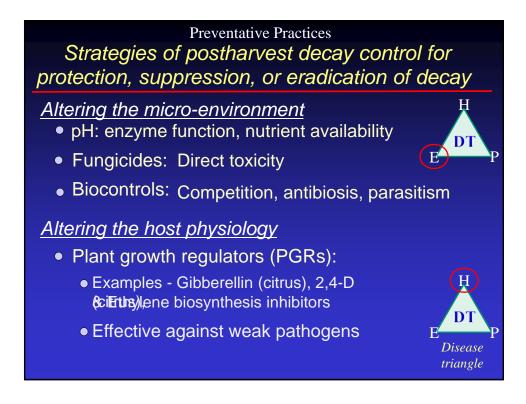



production of toxins that kill host cells.



Com	Comparison between postharvest sanitation and fungicide treatments						
Treatment	Delivery System	Sources	Activity	Advantages	Dis- advantages		
Chlorine	Water	Gas or liquid (Cl ₂ or NaOCl)	Fruit surface/In solution	Inexpensive, effective at low rates	Sensitive to pH and organic load; corrosive; reactive, disposal issues		
Chlorine dioxide	Water	On-site generation	Fruit surface/In solution	Less sensitive to organic load	Initial cost of equipment; corrosive; training		
Ozone	Water (low solubility)/ Air	On-site generation	In solution, but poor solubility; Air: anti- sporulation	Non-chlorine based, no disposal issues	Poor water solubility, initial cost of equipment; corrosive; training		
Acidified hydrogen peroxide	Water	Liquid (H ₂ O ₂)	Fruit surface/In solution; some wound activity	Less sensitive to organic load and pH, no disposal issues	Conc. limits, cost, some sensitivity to Cl, pH, and organic load		
Postharvest fungicide (e.g., Scholar)	Water	Dry or liquid formulation	Wound protection	Highly effective	Residues; safety concerns; export tolerances (MRLs)		


Chlorination in a hydrocooler (re-circulating)


Organic load – turbidity and COD

• Temperature

Critical factors Concentration PH Contact time pH

Chlorination on a brush bed (non-re-circulating)

Altering the micro-environment

Treatments with indirect effects on the pathogen:

 Change in pH Accumulation of alkali in potential infection sites on fruit surface

triangle

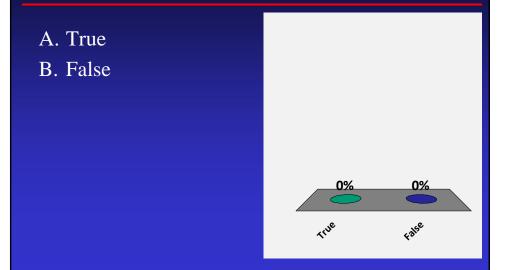
Examples:

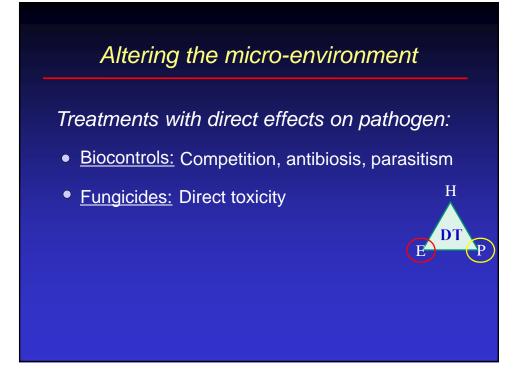
- Alkaline solutions of borax, sodium carbonate (soda ash), and sodium bicarbonate (baking soda) used on citrus
- Accumulation of acid in potential infection sites, (e.g. SO₂ used in storage of grapes)

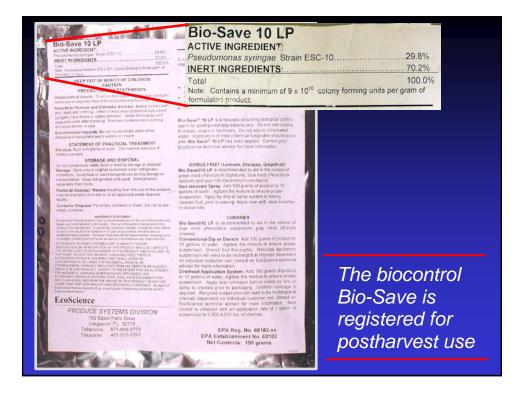
Borax, sodium carbonate (soda ash), and sodium bicarbonate

- Germination of pathogen spores is inhibited (fungistatic action)
 - Heated solutions are more toxic

• Disadvantages


- Change in pH is gradually reversed by acid fruit juice
- Fruit staining
- Fruit dehydration
- No residual activity




Sodium bicarbonate is commonly used in citrus packinghouses to protect wounds by shifting the pH to acidic conditions.

Biocontrols: Competition, antibiosis, parasitism

- Development is driven by safety concerns
- Activity from laboratory experiments is difficult to transfer to a commercial scale
- No activity against existing infections (infections that occur at harvest)
- Efficacy is generally inconsistent and never complete
- Previously, 2 products registered:
 - Aspire (no longer manufactured), see NEXY (Candida oleophila)
 - Bio-Save (Pseudomonas syringae), still in use

Spectrum of Activity of Biocontrols for Postharvest Decay Control					
Biocontrol	Organism	Crops	Decays		
Bacteria	Pseudomonas syringae	Apples, pears, citrus	Penicillium Decays		
		Sweet cherry	Gray mold, Penicillium decays		
Yeast	Candida oleophila	Pome fruit	Penicillium Decays		
		Citrus	Penicillium Decays		

Biocontrol products registered in other countries

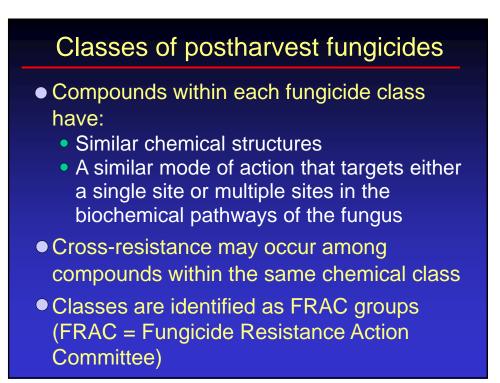
- YieldPlus (*Cryptococcus albidus*) developed in South Africa for pome fruit
- Avogreen (*Bacillus subtilis*) South Africa for avocado
- Shemer (*Metschnikowia fructicola*) Israel for apricot, peach, citrus, grapes, pepper, strawberry, sweet potato
- Several other products such as Candifruit (*Candida* sake), NEXY (*Candida oleophila*), and Boni-Protect (*Aureobasidium pullulans*) are in development.

Postharvest treatments approved for organic produce and their limitations

Sodium bicarbonate	- Short-lived
 Calcium chloride and other chlorine products (with rates defined by OMRI) 	 Only water and surface- disinfestation
 Diluted ethanol (not in the US) 	- Highly regulated by government
Heat	- Cost, damaging to some crops
UV irradiation	- Cost, damaging to some crops
Biocontrol agents	- Inconsistent in efficacy

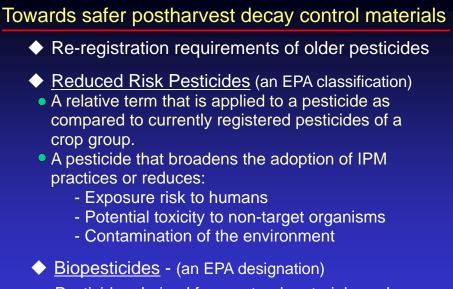
Prevention, suppression, and eradiction of postharvest decays

Fungicides vs. biological controls


Fungicides	Biological controls
Single synthetic active ingredient	Mixtures of active and inactive ingredients. Active ingredient often unknown.
Well characterized chemically and toxicologically	Chemically and toxicologically often poorly characterized, but considered natural.
Efficacy generally high	Efficacy variable

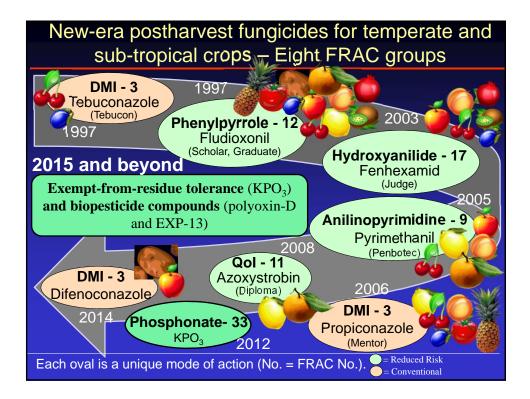
Development of Fungicides for <u>Management of Plant Diseases</u>

Initially, developed as simple elements or organic compounds that are non-systemic in plant tissue, and have a low-resistance potential to target organisms.....


but over time, they have been developed as more complex organic compounds, that may be systemic in plant tissue, and have a high-resistance potential to target organisms.

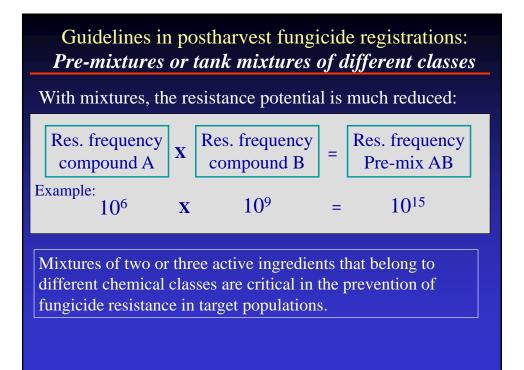
Fungicides have a specific spectrum of activity and, in most cases, are suitable for a limited number of crops

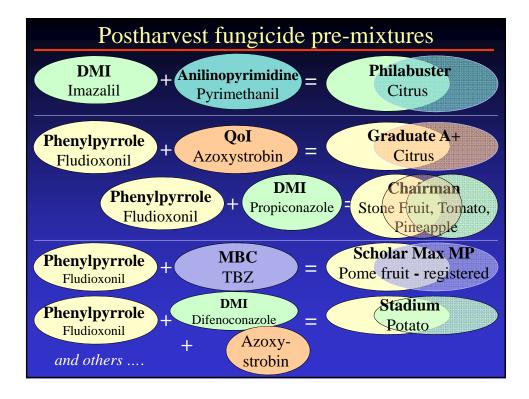
Important older postharvest fungicides for citrus and pome fruits that are still being used today


Residual Fungicide	Class/Grouping	Crops	Decays
SOPP	Phenol	Citrus	Penicillium decay, sour rot
Thiabendazole	Benzimidazole	Citrus, pome fruit	Penicillium decay, gray mold
Imazalil	SBI-Imidazole	Citrus	Penicillium Decays

Pesticides derived from natural materials such as animals, plants, bacteria, fungi, and certain minerals.

Benefits of postharvest reduced-risk fungicides to prevent decay

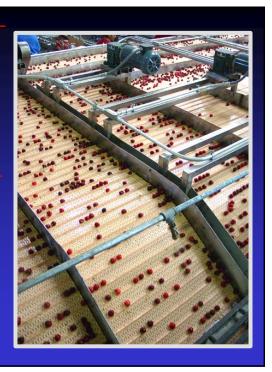


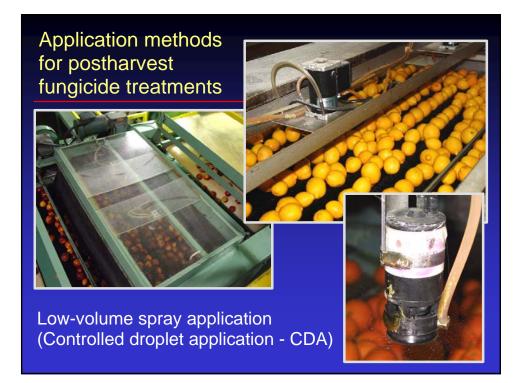

	Spectrum of Activity of Registered and New Postharvest Fungicides on Selected Agricultural Crops in the US					
Fungicide	Class	Crops	Decays			
Tebuconazole	SBI-Triazole	Sweet cherry	Brown rot, Rhizopus, and Mucor decays			
Fludioxonil	Phenylpyrrole	Stone fruit*, pome fruit* Pomegran.*, kiwifruit* citrus*, Pineapple, tuber crops	Brown rot, gray mold, Rhizopus Rot, Penicillium decays			
Azoxystrobin	Qol	Citrus*, potato	Penicillium decays			
Fenhexamid Hydroxyanilide Stone fruit, pome fruit, pome fruit, pomegranate, kiwifruit Brown rot, gray mold						
Pyrimethanil	Anilinopyrimidine	Stone fruit, pome fruit, citrus*	Penicillium decays, brown rot, gray mold			
Difenoconazole SBI-Triazole Pome fruit, tuber crops Penicillium decays, Bull's eye rot Rhizopus rot						
Propiconazole	Propiconazole SBI-Triazole Stone fruit, citrus, tomato, pepper Penicillium decays, brown rot, gray mold, sour rot					
	Fungicide is already registered; * - FAT approved in Japan. <i>new registrations or proposals are in bold italics</i>					

Controversy on the use of fungicides as postharvest treatments to fruit crops

- In many countries, fungicides are commonly applied before harvest in the field to prevent postharvest fruit decays – applications are done as late as 1 day before harvest.
- In contrast, postharvest use of fungicides to food crops is not widely accepted in all countries.
- Considerations:
 - The same or similar fungicides may be used pre- and postharvest.
 - Residue levels on the crop are similar for both application methods and are subject to the same residue limits.
 - Postharvest applications are generally more effective because they are more targeted. They also have a lower impact on the environment (smaller carbon footprint).

Preventing fungicide resistance in the postharvest environment


Application of postharvest fungicide treatments Less common: - Drenches - Dips - High volume - Flooders sprayers - Foamers - Low volume - Brushes sprayers (CDA) - Fumigators - Dusters - Paper wraps - Box liners


Application of postharvest fungicide treatments

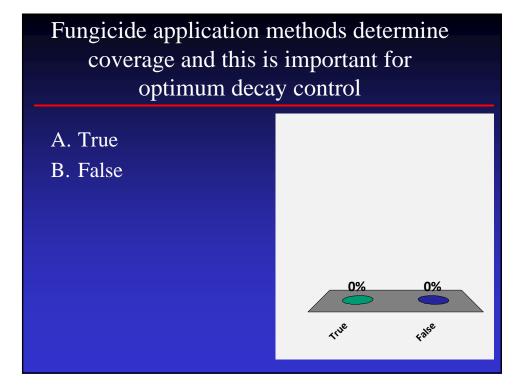
- High volume applications: 100-200 gal/ton of fruit
- Low volume applications: 8-30 gal/ton of fruit

Low volume application and recycling drench application systems have become more popular because of very little run-off and disposal problems. Recycling drench applications are superior in efficacy. Application methods for postharvest fungicide treatments

High-volume spray application ('T-Jet')

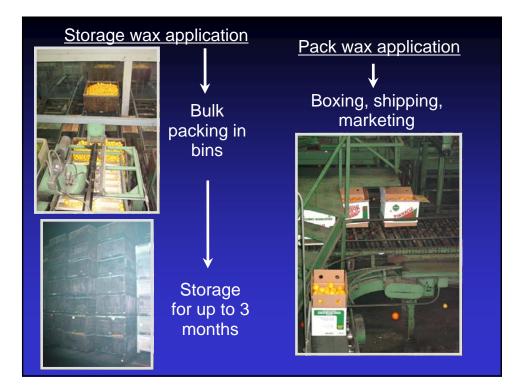
Application methods for postharvest fungicide treatments

Dip application

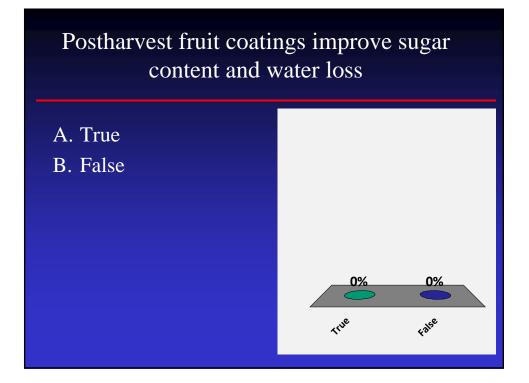

Application methods for postharvest fungicide treatments

Flooder application


- Aqueous applications
- Application in wax-oil emulsions
 - Not all fruit coatings are considered food-grade in different international markets
 - Prevention of water loss while still permitting gas exchange
 - Increased shine of fruit


Common fru	Common fruit coatings used in postharvest treatments							
Type of wax	Prevention of water loss	Characteristi Gas exchange	<u>cs</u> Shine of fruit*	<u>L</u> Citrus	lse on sp Nectar./ Peach/ cherry	ecific cr	ops Pome	
Mineral oil non-emulsified	+++	+	+++		+	+		
Mineral oil emulsified	++	++	+++		+	+		
Polyethylene	+++	+++	+++	+				
Vegetable oils	++	++	++		+	+		
Carnauba	+++	+++	++	+	+	+	+	
Shellac	+	+/-	+++	+			+	
Wood rosin blends	+	+/-	+++	+				

- Shine of fruit is not important for peaches and plums.


- Carnauba coatings are made from leaves of the Brazilian life tree. Shellac coatings are made from insect exudates. Wood rosins (ester derivatives) are extracted from pine trees.

- Mixtures of polyethylene, carnauba, shellac, and wood rosins are also used on citrus. -Mixtures of carnauba and shellac are also used on pome fruits.

Use limits of pesticides

<u>Residue tolerance:</u> Maximum residue limit or MRL of a chemical that is allowed on a specific commodity.

Risk assessment based on:

- Toxicological characteristics of chemical
- Amount of human consumption of a specific commodity.

Note - Actual chemical residues are fractions of the tolerances or MRLs

US CODEX1010101010101010101077107Japan FAT10101010Korea55101Australia10101010Taiwan755-Following CODEX:Hong KongHong KongHong KongIndiaIndiaIndiaIndiaNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesSingaporeSingaporeSingapore		Lemon	Orange	Grapefruit	Tangerine
EU77107Japan FAT10101010Korea55101Australia10101010Taiwan755-Following CODEX:Hong KongHong KongHong KongHong KongIndiaIndiaIndiaIndiaNew ZealandNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesPhilippines	US	10	10	10	10
Japan FAT101010Japan FAT101010Korea55101Australia10101010Taiwan755-Following CODEX:Hong KongHong KongHong KongHong KongIndiaIndiaIndiaIndiaNew ZealandNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesPhilippines	CODEX	10	10	10	10
Korea55101Australia10101010Taiwan755-Following CODEX:Hong KongHong KongHong KongHong KongIndiaIndiaIndiaIndiaMalaysiaMalaysiaMalaysiaMalaysiaNew ZealandNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesPhilippines	EU	7	7	10	7
Australia101010Taiwan755Following CODEX:Hong KongHong KongHong KongIndiaIndiaIndiaIndiaMalaysiaMalaysiaMalaysiaMalaysiaNew ZealandNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesPhilippines	Japan FAT	10	10	10	10
Taiwan755Following CODEX:Hong KongHong KongHong KongIndiaIndiaIndiaIndiaMalaysiaMalaysiaMalaysiaMalaysiaNew ZealandNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesPhilippines	Korea	5	5	10	1
Following CODEX: Hong Kong Hong Kong Hong Kong Hong Kong India India India India India Malaysia Malaysia Malaysia Malaysia Malaysia New Zealand New Zealand New Zealand New Zealand New Zealand Philippines Philippines Philippines Philippines Philippines	Australia	10	10	10	10
CODEX: India India India India Malaysia Malaysia Malaysia Malaysia New Zealand New Zealand New Zealand New Zealand Philippines Philippines Philippines Philippines	Taiwan	7	5	5	_
IndiaIndiaIndiaIndiaMalaysiaMalaysiaMalaysiaMalaysiaNew ZealandNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesPhilippines	•	Hong Kong	Hong Kong	Hong Kong	Hong Kong
New ZealandNew ZealandNew ZealandNew ZealandPhilippinesPhilippinesPhilippinesPhilippines	CODEX.	India	India	India	India
Philippines Philippines Philippines Philippines		Malaysia	Malaysia	Malaysia	Malaysia
		New Zealand	New Zealand	New Zealand	New Zealand
Singapore Singapore Singapore Singapore		Philippines	Philippines	Philippines	Philippines
		Singapore	Singapore	Singapore	Singapore

Calculations and verification for proper delivery of fungicide to fruit

- Fruit weight
 - Bin count per time
 - Fruit weight per treatment bed per time
- Fungicide weight per volume (Delivery rate)
 - Concentration and flow rate
 - * Tank mix
 - * In-line injection
- Sampling and residue measurements of the fungicide on the commodity are routinely done and *monitored* by regulatory agencies.

Stewardship of postharvest fungicide treatments

Proper use to ensure food and environmental safety, as well as high-quality nutritious fruits and vegetables.

Prevention of resistance in pathogen populations to fungicides

- Rotate between fungicide classes
- Use labeled rates
- Limit the total number of applications
- Education of spectrum of activity
- Sanitation is essential in an integrated management program

Regulation of pesticide usage

- Product being used has to be registered.
- Pest control advisor must make a written recommendation.
- Usage of a pesticide has to be reported to the county Agricultural Commissioner's office and state regulators.
- Residues are periodically monitored in fruit lots by:
 - Packinghouse personnel
 - Importers
 - Buyers
- Fruit lots that exceed the MRL of any pesticide must be destroyed.

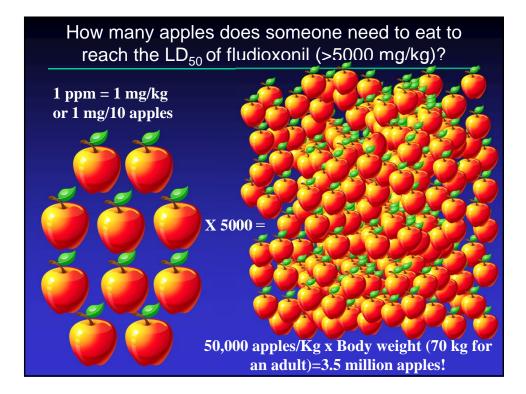
Use limits of pesticides

- Residue tolerances must be established for all postharvest chemical treatments except for those that are:
 - EPA *Exempt* designation or

- FDA – *GRAS* (Generally Regarded as Safe) designation Examples : chlorine, potassium sorbate, sulfur

Residue tolerances - Maximum residue limits (MRLs)

- = The highest amount of a chemical that is allowed to remain on the fruit – determined by EPA.
 - Set below the amount that could pose a health concern.
 - Different for different countries based on consumer habits and risk analysis


Food Additive Tolerances (FATs) – Classification as an ingredient for food use (country-specific, e.g., Japan)

Examples of maximum residue limits (MRLs) - US

Fungicide	MRL	LD ₅₀ rat	
Fludioxonil	Stone fruit: 5 mg/kg	>5000 mg/kg	
Fenhexamid	Stone fruit: 10 mg/kg	>2000 mg/kg	
Pyrimethanil	Citrus: 7 mg/kg	>5000 mg/kg	

mg/kg = ppm

Remember that these are maximum levels and actual residue levels are just fractions of values needed to obtain desired control.

If you are still concerned....

• Wash your fruit! (Most fungicides are not systemic and can be removed with a household rinse)

Fungicides for postharvest decay control are selected based on their safety and efficacy. They are used to ensure that wholesome and nutritious fruit are delivered to worldwide markets.

A. True

B. False

0% 0% 11¹⁰ 19⁸⁰

Useful Publications - Books:

Postharvest Technology of Horticultural Crops 3rd Edition ANR Publication No. 3311. 2002 Edited by A. A. Kader

Postharvest Pathology

1st Edition Springer, New York, 2010 Edited by D. Prusky and M. L. Gullino

Postharvest: An Introduction to the Physiology

and Handling of Fruit and Vegetables Wills et al., AVI Publishing Co., 1981

A Colour Atlas of Post-harvest Diseases & Disorders of Fruits and Vegetables

A. L. Snowdon, Wolfe Scientific, 1990

Useful Websites (for fungicides):

Labels and MSDS information:

http://www.cdms.net/manuf/manuf.asp http://www.agrian.com/labelcenter/results.cfm

Maximum Residue Limit (MRL) or Tolerance

information:

<u>http://www.mrldatabase.com/</u> http://ec.europa.eu/sanco_pesticides/public/index.cfm

EPA Fact sheets on new active ingredients:

http://www.epa.gov/opprd001/factsheets/ http://www.epa.gov/oppfead1/trac/safero.htm

Research:

http://californiaagriculture.ucanr.org/Landingpage .cfm?article=ca.v059n02p109&fulltext=yes

Useful Websites (Postharvest Companies):

Service companies -Decco: http://www.deccous.com/

JBT (formerly FMC): http://www.jbtfoodtech.com/solutions/equipment/fresh-producetechnologies/post-harvest-products-and-services.aspx

Pace International: <u>http://www.paceint.com/</u>

Fungicide companies -

Syngenta Postharvest University:

http://www.farmassist.com/postharvest/index.asp?nav=contact

Janssen PMP:

http://www.janssenpmp.com/