ANNUAL REPORT COMPREHENSIVE RESEARCH ON RICE

January 1, 2006 - March 31, 2007

PROJECT TITLE: Cooperative Extension Rice Variety Adaptation and Cultural Practice Research

PROJECT LEADERS:
James E. Hill, Specialist in UCCE, UC Davis

PRINCIPAL UC INVESTIGATORS:
C.M. Canevari, UCCE Farm Advisor, San Joaquin

C, A. Greer, UCCE Farm Advisor, Colusa, Glenn, Yolo
R.G. Mutters, UCCE Farm Advisor, Butte, Sutter, Yuba
R.L. Wennig, Staff Research Associate, UCCE/UC Davis

LEVEL OF 2006 FUNDING: \$114,410

OBJECTIVES AND EXPERIMENTS CONDUCTED BY LOCATION TO ACCOMPLISH OBJECTIVES:

Objective I

To evaluate newly developed cultivars and existing varieties in on-farm trials under grower conditions in cooperation with the Rice Experiment Station for the purpose of new variety development and release: Cultivar trials were conducted by maturity group at different locations in the Sacramento Valley. Several experimental cultivars were evaluated at each location within these groups to compare their performance in different environments of the rice-growing region.

Very Early Maturity Group: Two uniform trials for each of the advanced and experimental lines were conducted at each of the following on-farm sites: the Lauppe Ranch (south Sutter County) and the Erdman Ranch (District 108, Yolo County). The San Joaquin site was not planted this year due to our inability to find a replacement for long-time cooperator Brumley who is no longer growing rice. In addition to the two on-farm sites, two additional tests were conducted at the Rice Experiment Station (RES) in Butte County. The Advanced test at each site included seventeen entries (seven commercial varieties and ten advanced breeding lines) in four replications. The Preliminary tests included thirty-four entries, all preliminary breeding lines in two replications (four replications at RES).

Early Maturity Group: Two uniform tests were conducted at each of the following on-farm sites: the Larrabee Ranch (Glenn County), the Dennis Ranch (Colusa County), and the Quad 4 Ranch (Yuba County). The Yuba site was planted and maintained through maturity at which time we decided that harvest data would be unusable due to a severe watergrass infestation, thus the test was abandoned. Two additional trials, Advanced and Preliminary, were conducted at the RES. The Advanced test at each site included twenty entries (ten commercial varieties and ten advanced breeding lines) in four replications. The Preliminary tests included two commercial varieties and thirty breeding lines in two replications (four replications at RES).

Intermediate and Late Maturity Group: Two uniform tests were conducted at each of the following on-farm sites: the Wiley Ranch (Glenn County) and the Tucker Ranch (Sutter Basin, Sutter County). Two additional tests were conducted at the RES. The Advanced test at each site included fourteen entries (six commercial varieties and eight advanced breeding lines) in four replications. The Preliminary tests consisted
of two commercial varieties and eighteen preliminary breeding lines in two replications (four replications at RES).

Objective II

The Rice Systems Project: To provide research on alternative crop establishment systems and more efficient cultural practices to manage weed resistance a long-term project was continued at the RES for the third year. The crop establishment systems included 1) conventional water seeded 2) conventional drill seeded 3) spring-tilled delayed stale seedbed water seeded 4) minimum tilled (no spring tillage) water seeded and 5) minimum tilled (no spring tillage). Treatments 3-5 received intermittent inigation to germinate weeds subsequently killed with glyphosate (Roundup). Following the Roundup treatment, plots were either water or drill seeded and treated with appropriate herbicides (see Project RP-1 report) to control late germinating weeds (an area was also left untreated for weeds in each plot)..

Temperature Based Degree Day Model: Rice degree day phenology models are not widely utilized for scheduling field management decisions in Califomia. Degree day models developed for Califomia are 10-15 years old and need to be updated consistent with current varieties. The purpose of this study is to collect morphologically accurate phonological data for several of the most commonly grown rice cultivars in the Sacramento Valley and determine if these data can be useful for California rice management decisions. Detailed studies on rice growth and development were expanded to three sites and two additional varieties in 2006.

Objective III

Extension-Based Equipment and Service: To maintain an Extension-based pool of research equipment for planting, fertilizing, treatment application, and harvesting of rice and to provide professional technical assistance to UC research project leaders engaged in rice research a common equipment pool is maintained by this project.

To provide professional technical assistance to other UC research project leaders we assisted in approximately 35 trials including the 14 variety tests. Equipment from the UCCE-based pool for planting, fertilizing and harvesting field experiments was used at more than 20 sites at different times during the season. The most heavily used equipment was the harvester followed by the Clampco precision fertilizer rig. We also continued with the prescribed maintenance program for the SWECO plot combine.

The new ALMACO rice combine was delivered in March of 2006, too late for field testing in 2005. Field testing of the new combine was conducted in an early maturing field at the RES prior to 2006 statewide plot harvests. Specific design flaws were discovered that required the combine to be returned to the Iowa factory for modifications. As a result the SWECO was used for all plot harvests of the 2006 season to ensure data uniformity. The ALMACO was subsequently returned in time for late season field testing and performed well. It will now be used as the primary combine in the 2007 season.

Objective IV

Extension Education: We disseminated research-based information to Califomia rice producers, dryer operators, millers and the general public through five winter grower meetings, three field demonstrations, and the Rice Production Workshop (Yuba City), personal communication, and through the distribution of a fact sheet on the characteristics of publicly developed varieties, the Rice Field Day Program and other printed material. We also maintained and updated the UCCE rice website.

SUMMARY OF 2006 RESEARCH BY OBJECTIVE

Objective I - Rice Variety Evaluation

Eight uniform advanced breeding line trials and eight preliminary breeding line trials were conducted throughout the major rice producing areas of Califomia. The rice breeders at the RES conducted six additional tests, two from each of the three maturity groups. Many of the experimental lines have been tested and screened in previous years and many lines were in advanced stages (2 or more years) of testing. The RES provided the seed for public varieties and experimental cultivars. No proprietary lines were tested.

The following analyses provide single-location yield summaries for the advanced line tests and over-location agronomic performance summaries for each entry in each maturity category. For quick reference, grain yields of selected commercially available varieties tested in very early, early and late tests across years and locations are summarized in Tables 5, 10 and 15. An Agronomy Progress Report, to be published later this year, will provide agronomic performance results for all entries in each experiment.

Very Early Maturity Tests (< $\mathbf{9 0}$ days to $\mathbf{5 0 \%}$ heading at Biggs): Ten commercial varieties and seven advanced breeding lines were compared in three very early advanced tests. Commercial varieties at each location included S-102, CM-101, M-104, M-202, M-206, L-205 and L-206. Thirty-four cultivars were tested in the preliminary trails at each location.

Grain yields in the advanced tests averaged $9020 \mathrm{lb} / \mathrm{ac}$ at the Biggs-RES, $8530 \mathrm{lb} / \mathrm{ac}$ at Sutter, and $8310 \mathrm{lb} / \mathrm{ac}$ at Yolo (Table 1). Over all locations, the highest yielding entry on average was $\mathbf{S}-102(9230 \mathrm{lb} / a c)$ followed by the advanced long grain 04 Y 508 ($9150 \mathrm{lb} / \mathrm{ac}$), L-206 ($9100 \mathrm{lb} / \mathrm{ac}$), and advanced long Newrex grain type $01 Y 655$ ($8980 \mathrm{lb} / \mathrm{ac}$). Other top yielding commercial varieties M-206, M-202, L-205, and M-104 ranked sixth, ninth, tenth, and fourteenth, respectively. Averaged across locations, yields in the preliminary tests ranged from 7700 to $9210 \mathrm{lb} / a c$ (Table 1). Days to 50% heading for most varieties in 2006 were 2-6 days less than in 2005. A significant percentage of the rice acreage was planted later than normal due to frequent spring rains that delayed field preparation. An unusual two weeks of temperatures in excess of $100{ }^{\circ} \mathrm{F}$ in July shortened the days to 50% heading. Average lodging scores across all three locations were similar to the 2004-05 seasons. Over a 5 -year period and across locations, $\mathbf{S}-102$ was the highest yielding variety followed by M-206 at 9456 lbs/ac and 9185 lbs/ac respectively (Table 5).

Early Maturity Tests (90-97 days to $\mathbf{5 0 \%}$ heading at Biggs): Ten commercial varieties and ten advanced lines were compared in four early tests. The preliminary tests included two commercial varieties and twenty-eight preliminary lines evaluated in separate tests at each location. Commercial varieties at each location were CH-201, CM-101, S-102, M-202, M-205, M-206, M-207, M208, CT-201, CT-202, L-205, and L-206.

Yields in the advanced line tests averaged $9370 \mathrm{lb} / \mathrm{ac}$ at the RES; $8370 \mathrm{lb} / \mathrm{ac}$ at Butte and $9390 \mathrm{lb} / \mathrm{ac}$ at Colusa, (Table 6). The advanced stem rot resistant long grain 03Y496 was the highest yielding entry (10090 $\mathrm{lb} / \mathrm{ac}$) when averaged over three locations in 2006 (Table 6). Other consistently high yielding entries were $04 Y 404,99 Y 529,03 Y 151, M-205, L-206$, and M-208, all ranking within the top ten at two of the three locations. The yield of commercial varieties M-205, L-206, M-208, S-102, M-207, M-206, and M-202, ranked fifth, sixth, seventh, tenth, eleventh, thirteenth, and fourteenth over all locations (Table 6). Average days to 50% heading ranged from 77 days at the RES to 82 days at the Colusa County site. The commercial standard M-202 headed at 81 days at the RES and 85 days at Colusa. Days to 50% heading were similar to the 2005 season. M-205 was the highest yielding commercial variety ($9551 \mathrm{lb} / a c$) followed by M-206 (9050 $\mathrm{lb} / \mathrm{ac}$) when averaged over the last five years and across locations (Table 10).

Intermediate-Late Maturity Tests (> 97 days to $\mathbf{5 0 \%}$ heading at Biggs) - Six commercial varieties and eight advanced lines were compared in three intermediate-late tests. The preliminary tests included two commercial varieties and eighteen preliminary lines evaluated in separate tests at each location. Commercial varieties at each location included CH-201, M-202, M-205, M-402, L-205, L-206, CT-201, and CT-202.

Average yields in the advanced tests were $9030 \mathrm{lb} / \mathrm{ac}$ at the RES, $6970 \mathrm{lb} / \mathrm{ac}$ at Glenn, and $8510 \mathrm{lb} / \mathrm{ac}$ at Sutter (Tables 11). The 2006 advanced over location average yield was $490 \mathrm{lb} / \mathrm{ac}$ less than the 2005 season average. L-206 was the highest yielding commercial variety ($9210 \mathrm{lb} /$ ac at RES) but ranked sixth over all. $\mathbf{L}-205$ and $\mathrm{M}-205$ were the next highest yielding commercial varieties across locations (Table 11). The stem rot resistant short grain entry 04Y641 was the highest yielding advanced entry across locations, at 8740 lb/ac. Average days to 50% heading ranged from 80 days at the Sutter County site to 82 days at the Glenn County and RES locations. The environmental conditions described earlier had a similar effect of decreasing the number of days to 50% heading an average of 4-6 days compared to 2005 . M-402 required the longest time to 50% heading among the commercial varieties at all locations, (average 102 days). The high temperatures in July could not compensate for the delayed planting dates of M-402, thus days to $\mathbf{5 0 \%}$ heading were similar to the 2005 season.

Averaged over the last five years and across locations, M-205 is the highest yielding ($9582 \mathrm{lb} / \mathrm{ac}$) commercial variety (Table 15). M-205 and M-402 produced 107% and 98%, respectively, of the yield of M202 on average over the last 5 years (Table 15).

Objective II - Cultural Practices

Rice Growth and Development Studies: Initial field studies were conducted in 2005 in commercial fields located at the southem and northern ends of the Sacramento valley. An additional site was added in Yolo County, District 108 in 2006. One short grain cultivar, CM101 and three medium grain Calrose cultivars M104, M202, and M206 were grown in replicated plots at the three sites. The Glenn site also included M401. The plots were direct seeded by hand into a continuously flooded field environment. The northem Glenn County (warmer) site was planted 9 and 14 days earlier than the cooler Sutter and Yolo County sites, respectively. Water and air temperatures were recorded at all sites from planting to grain maturity. The Counce 'Uniform, Objective, and Adaptive System for Expressing Rice Development' was used to record leaf and reproductive stage development. These results are highly detailed and are still being summarized at the writing of this report.

Stand Establishment Trials: In 2004 we established a rice systems project at the RES to investigate different planting methods on rice seedling establishment and weed resistance management. The five treatments are 1) conventional water seeded, 2) conventional drill seeded, 3) spring tilled delayed stale seedbed water seeding, 4) minimum till (no spring till) water seeding, and 5) minimum till (no spring till) drill seeding. Treatments 3, 4 and 5 are pre-flush inigated and treated with Roundup to kill the initial flush of weeds. Weeds are treated as necessary in the main plot areas but one area remains untreated to evaluate weed germination and recruitment (reported under RP-1). Different approaches are used for \mathbf{N} management. In the conventional water seeded (treatment 1) and the delayed spring-tilled stale seedbed (treatment 3) where the soil is spring tilled we incorporated \mathbf{N} preplant as is normally recommended for water seeded rice. In the drill seeded treatment (2) \mathbf{N} was applied in splits. In the no-spring till drill and water seeded treatments (4 and 5) where soil disturbance would defeat the purpose of non tillage with respect to weed recruitment, \mathbf{N} was also applied in splits. Phosphorus was applied to the entire block and incorporated where spring tillage occurred. We will use fall P applications in the future and incorporate P with fall tillage across the whole block. Table 16 shows comparative yields for these five treatments in each year and over the three years of the experiment. Yields were determined in the main plots, small fertility plots and by hand harvested plots. The data in table 16 are the best comparative estimates we have for all three years. In the
first two years we use main plot combine harvested data but because of errors in fertilization in some of the 2006 main plots, we use yield data from the \mathbf{N} fertility plots-still combine harvested. For each year the data is comparable across treatments and there were no significant differences in yields between any of the treatments-but there were definite trends. The far right column compares these treatments when combined for statistical power over three years. This data shows that treatment 3 is significantly lower than treatments 1,2 and 5 when all are compared at $150 \mathrm{lb} \mathrm{N} / \mathrm{ac}$. We attribute the lower yields in treatment 3 to the fact that water was lowered after preplant \mathbf{N} was applied and thus the 10-14 days of drainage to encourage weed growth and treat with Roundup allowed adequate time for significant N losses. When 200 lb N/ac were used in treatment 3 , yields were increased to the level of the other treatments. This data clearly shows the impact of draining fields with respect to N losses. More importantly, the data show that different systems for growing rice are feasible for Califomia rice production.

Objective III - Assistance to Other Projects

We continued the maintenance program for the UC SWECO plot combine. Following a major overhaul in 2001, an annual maintenance was established to ensure combine durability and performance. All items listed in the fifth year maintenance schedule were inspected and replaced as needed.

The rice equipment pool, including a precision Clampco fertilizer applicator, SWECO 324 plot combine, moisture meters, backpack CO_{2} sprayers, and other equipment were used along with personnel who provided technical assistance for numerous field experiments in 2006. The Clampco precision fertilizer applicator was used for the Rice Systems Project at the RES. The SWECO 324 plot combine was used to harvest twelve variety trials, the Rice System Project, one rice fungicide experiment, and a blast strip trial. Over 1200 experimental plots were harvested in 2006. In addition to equipment assistance to other projects, labor from this project was used to plant, collect samples, and monitor growth in several field experiments. Assistance was also provided to the annual RES Rice Field Day and the annual rice breeder's field tour.

Objective IV - Publication and Distribution of Rice Research Information

The following extension education materials were designed, formatted and printed with support from this project:

1. Rice Field Day Program, 2006 for the California Cooperative Rice Research Foundation, RES, 40 pp.
2. The UCCE website was updated.
3. One UCCE Rice Production Workshop was given in Yuba City.
4. Five UCCE winter grower meetings were held in the Sacramento and San Joaquin valleys.
5. A quick reference guide entitled "Herbicide Resistance Stewardship in Rice" was updated and distributed to all rice growers.
6. Three field days were held, two at the RES on the Systems Project, Rice Breeeder's Tour..

Publications and Reports:
Hill, J.E., Fischer, A.J., Greer, C.A., and Mutters, R.G. 2006. Herbicide Resistance Stewardship in Rice. University of Califomia CooperativeExtension. 2 pp.

Fischer, A.J., Eckert, J.W., Hill, J.E., Boddy, L., Marchesi, C., Ruiz, M.O., Lang, J., and Johnson, S. 2006. Rice Weed Control: Herbicide Performance, Combinations, New Chemicals, and Weed

Management. Rice Field Day, 30 August, Califomia Cooperative Rice Research Foundation, Inc. USDA-Univ of California, P.O. Box 306, Biggs, CA 95917-0306. pp. 32-33.

Hill, J.E., Fischer, A.J., Greer, C.A., and Mutters, R.G. 2006.Herbicide Resistance Stewardship in Rice. Rice Field Day, 30 August, California Cooperative Rice Research Foundation, Inc. USDAUniv of Califomia, P.O. Box 306, Biggs, CA 95917-0306. p. 16.

Hill, JE, WM Canevari, CA Greer, RG Mutters and RL Wennig. 2006. University of Califomia Cooperative Extension (UCCE) rice variety adaptation and cultural practices research. In Annual Report Comprehensive Rice Research 2005. University of Califomia and USDA. 11 pp (available in e-version only).

Linquist, BA, SM Brouder and JE Hill. 2006. Winter straw and water management effects on soil nitrogen dynamics in California rice systems. Agron J. 98: 1050-1059

Hill, JE, JF Williams, RG Mutters and CA Greer. 2006. The Califoria rice cropping system: agronomic and natural resource issues for long-term sustainability. PWE 4:1. 13-19
McKenzie, KS, CW Johnson, F Jodari, JJ Oster, JE Hill, RG Mutters, CA Greer, WM Canevari and K Takami. 2006. Registration of 'Calamylow-201’ Rice. Crop Sci; 46:2321-2322

CONCISE GENERAL SUMMARY OF CURRENT YEAR'S RESULTS:

Fourteen on-farm rice variety evaluation trials were conducted throughout the rice growing region of Califomia, with standard varieties compared to preliminary and advanced lines across a range of environments, cultural practices and disease levels. Six similar tests were conducted at the RES in Biggs, CA. Average yields across varieties and locations in the advanced line tests ranged from $8,620 \mathrm{lb} /$ acre in the very early trials to $\mathbf{9 , 0 4 0} \mathrm{lb} /$ acre in the early tests. In the intermediate to late tests the advanced lines average yield was $8,170 \mathrm{lb} /$ acre. Similar to the exceptionally wet 2003 planting season, the 2006 season resulted in reduced acres planted and lowered average yields. A two week period of $100{ }^{0} \mathrm{~F}+$ temperatures helped shorten the days to harvest but may have had a negative effect on yield. Several advanced lines in 2006 produced high yields as well as representing important breeding goals aside from yield (disease resistance, grain quality, specialty types, etc.). Testing advanced and preliminary lines under a variety of conditions remains a critical aspect of releasing varieties adapted to changing cultural practices, markets and pests.

The long-term rice cropping systems experiment on rice stand establishment was continued at the RES. Five different methods of stand establishment were evaluated with respect to \mathbf{N} fertility management and for their impact on weed management (reported under RP-1). Three years of data on rice yield indicate that four of the five treatments including conventional water and drill seeded rice as well as non spring tilled rice either water or drill seeded were not significantly different in yield. One treatment, delayed stale seedbed water seeded rice was lower in yield than the other treatments. This was attributed to high \mathbf{N} losses where \mathbf{N} was applied preplant and the soil was drained to allow weeds to germinate and for treatment with Roundup. Yields were restored in this treatment with an additional $50 \mathrm{lb} \mathrm{N} / \mathrm{ac}$. Even though we flushed and drained the no-spring till treatments, \mathbf{N} loss was not an issue because it was applied post plant in splits timed for maximum uptake by the rice plant. This work demonstrates the feasibility of different stand establishment practices that may reduce both resistant weeds and lower costs in California rice production.

Project RM-2 was involved in the planting, sampling and harvesting of more than 40 trial sites throughout the rice growing areas. This project also was also involved in several educational activities including the winter rice grower meetings, the rice production workshop, the UCCE rice website, rice field day, newsletters, fact sheets and other publications.

PROJECT NO. RM-2

Table 1. 2006 Very Early Rice Variety Tests - Three Location Summary
AdvancedLines and Varieties

		Average Yield				Grain				
		at 14\%	Yield			Moisture	Seedling	Daysto		Plant
	Grain	Moisture				at Harvest	Vigor	50% Heading	Lodging	Height
Variety	Type	lbs/acre	Biggs	Sutter	Yolo	(\%)	(1-5)		(1-99)	(in)
S102	S	9230'(1)	9170 ' 8)	9780 (1)	8730 (4)	16.1(11)	4.9 '(14)	74' ${ }^{\text {(}}$)	59 (14)	37'(11)
04Y508	L	9150'(2)	9800 (2)	8520 (8)	9130 (2)	15.9 (12)	4.9 '(13)	81 (14)	$6{ }^{\prime \prime}$ (1)	37' ${ }^{\text {(8) }}$
L206	L	9100'(3)	9990 (1)	9030 (2)	8290 (11)	14.7 ${ }^{(17)}$	4.9 '(11)	76 ' 7)	32'(9)	34* 3)
01 Y655	REX	8980'(4)	9490 ' (4)	8270 (14)	9180 (1)	17.1'(5)	4.9 '(9)	90 (17)	8'(2)	38 '(12)
04Y501	REX	8850'(5)	9510 ' (3)	8490 " 9)	8540 (8)	14.9'(16)	5.0'(6)	78 '(12)	14'(5)	38 '(14)
M206	M	8810 ' 6)	9280 (6)	8780 (5)	8360 (10)	18.3'(3)	5.0'(1)	75' ${ }^{\text {(5) }}$	56 '(12)	37' 9)
03Y254	M	8770'(7)	9070 " 9)	8870 (3)	8370 (9)	18.0'(4)	5.0 (2)	77 '(10)	36 "(10)	39'(15)
02Y516	L	8770'(8)	9000 "(10)	8440 (12)	8860 (3)	15.8'(13)	4.9 (7)	76 ' 7)	10 (4)	39 '(16)
M202	M	8750'(9)	8960 "(11)	8580 (7)	8700 (5)	18.9 ${ }^{\prime}$ (1)	5.0 (2)	83 '(15)	24 (8)	37 (10)
L205	REX	8630'(10)	9350 " 5)	7970 (16)	8570 (6)	15.6'(15)	4.9 (7)	83 (16)	15'(6)	36'(5)
$04 Y 177$	SPQ	8520'(11)	9210 (7)	8160 (15)	8190 (12)	17.1'(6)	4.9 '(14)	75 ' 6)	59 '(13)	35'(4)
$04 Y 227$	M	8460'(12)	8000 '(16)	8820 (4)	8560 '(7)	16.7'(8)	4.9 '(12)	72'(2)	70 (17)	39 '(17)
CM101	WX	8250'(13)	8490 "(15)	8640 (6)	7610 (14)	16.8 ${ }^{\prime}$ (7)	5.0'(4)	76 '(9)	63 "(15)	38'(13)
M104	M	8160 (14)	7970 "(17)	8480 (10)	8020 (13)	16.5' 9)	5.0'(4)	70'(1)	68 '(16)	36'(7)
$05 Y 176$	SPQ	8150'(15)	8620 "(13)	8450 '(11)	7380 (16)	15.8'(14)	4.8 '(17)	74 (4)	42 (11)	33'(1)
$03 Y 164$	SPQ	8140'(16)	8510 "(14)	8300 (13)	7600 (15)	16.5 (10)	4.9 ' 9)	80 (13)	19"(7)	36"(6)
03 Y 166	SPQ	7800'(17)	8930 "(12)	7380 '(17)	7100 (17)	18.3 ${ }^{\prime}$ (2)	$4.8{ }^{\prime}(16)$	77 '(11)	$8{ }^{\prime \prime}$ (3)	34'(2)
MEAN		8620	9020	8530	8310	16.6	4.9	77	35	37
CV		6	8.2	4.4	4	5.4	1.5	1.9	39.8	3
LSD (.05)		420	1050	540	470	0.7	0.1	1	11	1
PreliminaryLines and Varieties										
05Y379	M	9210'(1)	9080'(8)	9690' (1)	8850'(6)	17.2 ${ }^{(16)}$	5.0'(1)	75 (7)	61 (31)	37 (23)
05Y724	M	8990'(2)	9340'(4)	9270'(2)	8370'(17)	17.3 ${ }^{(13)}$	$5.0{ }^{\prime}$ (1)	74"(4)	48 '(24)	37 '(25)
05Y552	JAS	8900' (3)	9510'(1)	8750'(10)	8440'(16)	14.2 ${ }^{(34)}$	4.9 (16)	75'(6)	$9{ }^{\text {(2) } 6)}$	35 '(5)
04Y523	L	8850' 4)	8650'(23)	8840* 7)	9040'(2)	14.9'(33)	5.0'(1)	78 '(22)	15 (10)	37 "(24)
05Y490	L	8820 ' 5)	9390'(3)	8040'(27)	9040' 3)	15.0'(30)	4.9 '(29)	81 (30)	13 (8)	35 ' (3)
05Y869	M	8820' ${ }^{\prime}$)	8710'(21)	8870'(6)	8880' 5)	17.3 ${ }^{\text {(13) }}$	$4.9{ }^{\prime}(21)$	76'(9)	57 '(27)	39 '(33)
05 Y 282	M	8800 ' 7)	8560'(26)	9040'(4)	8800' 7)	17.0'(19)	4.9 (12)	76 '(12)	51 (26)	37 '(21)
05Y196	SPQ	8770'(8)	8790'(17)	8300'(17)	9220' 1)	$17.6^{\prime}(11)$	4.9 (12)	78 '(24)	88 '(34)	36 "(12)
99Y529	L	8760'(9)	8940'(12)	9070* 3)	8280'(21)	15.0'(31)	4.9 (21)	79 '(25)	3'(3)	38 '(31)
05Y528	LBL	8710'(10)	9420'(2)	8110'(24)	8600'(11)	15.3 ${ }^{\prime}(27)$	4.9 (26)	76 (14)	20 (14)	$38{ }^{\prime}(26)$
04Y332	MPQ	8670'(11)	9020"(9)	8500'(13)	8480'(15)	17.9'(6)	4.9 (24)	79 (28)	20 (13)	38 '(27)
05Y330	MPQ	8660'(12)	8950'(11)	8410'(15)	8620'(10)	18.7 ${ }^{\prime}$ (3)	4.9 '(30)	79 (26)	27 '(18)	37 '(18)
05Y547	L	8660 (13)	8800'(16)	8190'(21)	8980'(4)	15.3'(28)	4.9 '(21)	79 '(29)	13 (9)	38 '(30)
05Y830	M	8650'(14)	$\begin{aligned} & 8830^{\prime \prime}(15) \\ & 8740^{\prime \prime}(20) \end{aligned}$	8760'(9)	8350'(18)	17.7 ${ }^{(10)}$	4.9 '(18)	76 '(10)	$\begin{aligned} & 36 "(19) \\ & 62 "(32) \end{aligned}$	37 '(17)
05Y299	MPQ	8620'(15)		8460'(14)	8670' 8)	17.9'(8)	$5.0{ }^{\prime}(7)$	76 '(13)		$38 \prime(28)$ 39 124$)$
05Y471	M	8610'(16)	8780'(18)	8720'(11)	8340'(19)	17.7 ${ }^{\prime}$ (9)	5.0'(8)	73 '(1)	$\begin{aligned} & 62^{\prime \prime}(32) \\ & 44^{\prime \prime}(22) \end{aligned}$	
$05 Y 536$	L	8540'(17)	8750'(19)	8280 ${ }^{\text {8220 }}$ (20)	$\begin{aligned} & 8600(12) \\ & \hline 7950 \prime(28) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.9^{\prime}(32) \\ & 16.6^{\prime}(23) \end{aligned}$	$\begin{aligned} & 4.9^{\prime}(19) \\ & 4.8^{\prime}(32) \end{aligned}$	81 (31)	3 " 4)	
05Y519	REX	8470'(18)	$\begin{aligned} & 9260^{\prime \prime}(6) \\ & 9110^{\prime \prime}(7) \end{aligned}$					82 "(32)	$2{ }^{\prime}$ (1)	35'(9)
04 Y 218	SWX	8450'(19)		8360'(16)	7870'(29)	19.6 ${ }^{\prime}$ (1)	$4.8{ }^{\prime}(31)$	76 '(10)	21 (15)	36 (13)
05Y455	M	8430'(20)	8140'(30)	8920'(5)	8230'(23)	17.0'(21)	4.9 '(12)	73' 3)	48 '(25)	38'(32)
05Y262	M	8410'(21)	$8490{ }^{\prime}(28)$	8680'(12)	8050'(26)	18.4 ${ }^{\prime}$ (4)	$4.9{ }^{\prime}(26)$	79 '(26)	24 (17)	37'(15)
05Y468	M	8400 (22)	7790 (34)	8780'(8)	8640'(9)	16.6 (22)	$4.9{ }^{\prime}(24)$	76 '(15)	45 '(23)	37 '(20)
$03 Y 151$	REX	8400 (23)	8850 (13)	8020'(28)	8320'(20)	16.5 ${ }^{\prime}$ (24)	4.9 '(26)	85 '(33)	$2{ }^{\prime \prime}$ (2)	35'(6)
05Y802	M	8310'(24)	$9320{ }^{\prime}(5)$	$7100{ }^{\prime}(32)$	8510'(14)	19.1'(2)	4.9 '(9)	87 '(34)	19 (12)	36'(14)
04Y492	L	8300 (25)	$8680{ }^{\prime}(22)$	8090'(26)	8110'(25)	15.1 (29)	5.0'(5)	77 '(18)	$6{ }^{\prime \prime}$ (5)	38 '(29)
05Y426	M	8140'(26)	$8580{ }^{\prime}(24)$	7720'(29)	8110'(24)	17.2'(15)	5.0'(6)	75 (5)	60 (30)	36 '(10)
$05 Y 178$	SPQ	8130'(27)	8040'(32)	8110'(25)	8250'(22)	17.9 ${ }^{\prime}$ (7)	4.9 '(12)	$78{ }^{\prime}(21)$	57 '(28)	35'(8)
05Y850	M	8070'(28)	8830'(14)	7370'(31)	8000'(27)	17.1 (18)	5.0 (1)	77 '(16)	59 (29)	36 '(11)
05Y804	M	8020'(29)	8070'(31)	8270'(19)	7700'(32)	17.0'(20)	4.9 '(16)	75 ' 8)	23 (16)	37 (19)
05Y1072	M	8010'(30)	8030 (33)	$8150{ }^{\prime}(23)$	7860'(30)	16.2'(25)	4.9 '(9)	73'(2)	44 '(21)	37'(16)
$05 Y 194$	SPQ	7980 (31)	8570'(25)	7630'(30)	7750'(31)	17.4'(12)	4.9 '(19)	77 '(20)	16 '(11)	35'(4)
05Y175	SPQ	7960'(32)	$8290{ }^{\prime}(29)$	7080'(33)	8520'(13)	16.1 ${ }^{(26)}$	4.9 ' 9)	77 '(16)	87 '(33)	35'(7)
$03 Y 167$	SPQ	7750'(33)	8980'(10)	7070'(34)	7210'(33)	17.9 ${ }^{\prime}$ (5)	$4.7{ }^{\text {² }}$ (33)	78 '(22)	$9{ }^{\prime \prime}$ (7)	35'(2)
$03 Y 170$	SPQ	7700'(34)	8540'(27)	$8160{ }^{\prime}(22)$	6420'(34)	17.1 (17)	$4.7{ }^{\prime}(34)$	77 '(19)	43 (20)	34* 1)
MEAN		8540	8760	8320	8330	16.6	4.9	76	38	37
CV		6.9	8.1	3.4	4.3	5.6	2.6	2.2	43.4	3.5
LSD (.05)		580		580	720	0.9	0.1	2	16	1

S = short; M = medium;L = long; PQ = premiumquality; $\mathrm{WX}=\mathrm{waxy} ;$ REX = Newrex; JAS = Jasmine.
Subjective rating of $1-5$ where $1=$ poor and $5=$ excellentseedlingemergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completelylodged.
Numbers in parenthesesindicate relative rank in column.

Table 2. 2006 Very Early Rice Variety Test - Biggs (RES)

S = short; M = medium;L = long; PQ = premiumquality; WX = waxy; REX = Newrex; JAS = Jasmine.
Subjective rating of $1-5$ where $1=$ poor and $5=$ excellentseedlingemergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completelylodged.
Numbers in parenthesesindicate relative rank in column.

Table 3. 2006 Very Early Rice Variety Test - Sutter County

S = short; M = medium; L = long; PQ = premium quality; WX = waxy; REX = Newrex;
Subjective rating of 1-5 where $1=$ poor and $5=$ excellentseedling emergence.
Subjective rating of 1-99 where $1=$ none and 99 = completelylodged.
Numbers in parenthesesindicate relative rank in column.

Table 4. 2006 Very Early Rice Variety Test - Yolo County

S = short; M = medium; L = long; PQ = premium quality; WX = waxy; REX = Newrex;
Subjective rating of $1-5$ where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 5. Grain Yield (lb/acre @14\% moisture) Summary of Very Early Rice Varieties by Location and Year (2002-2006)

Table 6. 2006 Early Rice Variety Tests - Three Location Summary

S = short; M = medium; L = long; PQ = premium quality; BAS = Basmati; WX = waxy; REX = Newrex; 'SR = stem rot resistant.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where 1 = none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 7. 2006 Early Rice Variety Test - Biggs (RES)

[^0]Table 8. 2006 Early Rice Variety Test - Butte County

[^1]Table 9. 2006 Early Rice Variety Test - Colusa County

[^2]Table 10. Grain Yield (Ib/acre @14\% moisture) Summary of Early Rice Varieties by Location and Year (2002-2006)

		Calhikari					Calmati	
Location	Year	201	M-202	M-204	M-205	M-206	201	L-205
Biggs (RES)	2002	8910	10620	10180	11230	10210	9040	10890
	2003	8310	8530	9280	9860	8320	7910	9290
	2004	8120	9500	9590	10270	9650	8500	9810
	2005	7740	7350	7560	7980	7890	6900	8760
	2006	8650	9000	-	9250	9560	7480	9280
Location Mean		8346	9000	9153	9718	9126	7966	9606
Butte	2002	8677	9333	9683	9913	9858	8086	9191
	2003	6828	8294	8907	9257	8808	6379	8283
	2004	8200	8990	8800	9490	8800	7380	8060
	2005	-	-	-	-	-	-	-
Glenn	2006	6930	7970	-	8820	8080	7230	8090
Location Mean		7659	8647	9130	9370	8887	7269	8406
Colusa	2002	8452	9247	9362	10136	9592	8065	9697
	2003	7762	9205	9383	10010	8389	7981	8713
	2004	9570	10330	10830	10750	10200	8440	10450
	2005	7580	8030	8840	9330	8160	7330	8570
	2006	8530	9970	-	10720	9300	7590	8660
Location Mean		8379	9356	9604	10189	9128	7881	9218
Yuba	2002	8609	9456	7866	8598	9948	7103	8431
	2003	8389	8305	8190	9027	8504	7186	7897
	2004	8240	9850	9050	9120	9960	6720	8510
	2005	7470	7100	7950	8150	7670	7110	7490
	2006*	-	-	-	-	-	-	-
Location Mean		8177	8678	8264	8724	9020	7030	8082
Loc/Years Mean		8165	8949	9031	9551	9050	7579	8893
Yield \% M-202		91.2	100	100.9	106.7	101.1	84.7	99.4
Number of Tests		18	18	15	18	18	18	18
* Yuba site not harvested due to heavy watergrass infestation.								

Table 11. 2006 Intermediate/Late Rice Variety Tests - Three Location Summary

S = short; M = medium; L = long; PQ = premium quality; BAS = Basmati; WX = waxy; REX = Newrex; SR = stem rot resistant; JAS= Jasmine. Subjective rating of $1-5$ where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 12. 2006 Intermediate/Late Rice Variety Test - Biggs (RES)
Advanced Lines and Varieties

		Grain Yield	Grain				
		at 14\%	Moisture	Seedling	Days to		Plant
	Grain	Moisture	at Harvest	Vigor	50\%	Lodging	Height
Variety	Type	lbs/acre	(\%)	(1-5)	Heading	(1-99)	(in)
03Y576	SSR	10130 (1)	18.4 (2)	4.2 (14)	76 (2)	8 (3)	32 (1)
04 Y 641	SSR	9980 (2)	17.0 (3)	4.9 (5)	$83^{\prime \prime}$ 7)	24 (5)	39 (9)
05 Y 657	SSR	9940 (3)	16.8 (5)	4.5 (13)	84 (12)	39 (8)	41 (14)
$03 Y 151$	REX	9640 (4)	15.5 (9)	4.8 (8)	84 (11)	8 (2)	38 (3)
$04 Y 706$	L	9500 (5)	15.6 (8)	4.8 (7)	82 (6)	18 (4)	40 (11)
$04 Y 656$	M	9360 (6)	16.8 (6)	4.8 (8)	84 (9)	65 (11)	38 (5)
$99 Y 529$	L	9310 (7)	14.5 (12)	$4.7{ }^{\prime}(10)$	79^{*} (3)	25 (6)	40 (12)
L206	L	9210 (8)	15.0 (11)	4.7 (10)	73 (1)	80 (12)	38 (3)
L205	REX	8920 (9)	14.1 (14)	$4.8{ }^{\prime \prime}$ (6)	82 (5)	25 (6)	38' 6)
M205	M	8830 (10)	17.0 (4)	4.7 (12)	87 (13)	53 (9)	38 (7)
M202	M	8620 (11)	16.8 (6)	4.9 (3)	83 (8)	84 (13)	40 (12)
05 Y 663	SPQ	8540 (12)	15.0 (10)	4.9 ${ }^{\text {(}} 3$)	84 (9)	59 (10)	37 (2)
CH201	SPQ	8420 (13)	14.4 (13)	5.0 (1)	80 (4)	90 (14)	39 (8)
M402	MPQ	8280 (14)	23.1 (1)	5.0 (2)	103 (14)	3 (1)	40 (10)
MEAN		9190	16.4	4.8	83	42	38
CV		6.8	5.6	3.3	9.1	42.1	10.7
LSD (.05)		890	1.3	0.2	11	25	
Preliminary Lines and Varieties							
05Y343	SWX	10110 (1)	17.8 (2)	4.8 (15)	85 (17)	76 (16)	41 (16)
01 Y 501	LSR	9730 (2)	16.1 (13)	4.9 (8)	77 (4)	3 (1)	40 (9)
$99 Y 494$	LW	9450 (3)	14.8 (18)	5.0 (1)	91 (19)	4 (2)	38 (5)
05 Y 386	M	9250 (4)	17.1 (6)	4.8 (11)	81 (10)	68 (12)	40 (10)
$05 Y 387$	M	9120 (5)	17.3 (4)	4.7 (16)	82 (11)	78 (17)	40 (6)
$05 Y 758$	LBL	9090 (6)	15.7 (16)	4.7 (19)	84 (14)	5 (3)	38 (2)
$05 Y 441$	M	9000 (7)	16.5 '(11)	4.9 (8)	82 '(12)	40 (4)	41 (14)
$05 Y 714$	M	8900 (8)	16.4 (12)	4.9 (4)	79 (6)	74 (14)	41 (11)
$05 Y 450$	M	8850 (9)	16.7 (10)	4.8 (12)	84 (14)	51 (9)	37 (1)
05 Y 1274	L	8720 (10)	14.0 (20)	$4.8{ }^{\text {' }} 12$)	77 (5)	41 (5)	38 (2)
$05 Y 301$	MPQ	8590 (11)	18.0 (1)	4.8 '(12)	85 (16)	81 (18)	38 (4)
05 Y 913	M	8580 (12)	15.7 (15)	5.0 (1)	71 (1)	91 (20)	41 (17)
05 Y 949	M	8480 (13)	16.8 (7)	4.9 (8)	$80{ }^{\prime \prime}$	70 (13)	42 (19)
05 Y 979	M	8270 (14)	16.8 ${ }^{\text {(7) }}$	5.0 (3)	74 (3)	74 (14)	42 (20)
04 Y 625	MPQ	8170 (15)	17.6 (3)	4.7 '(18)	88 '(18)	56 (11)	41 (14)
$05 Y 1000$	M	8000 (16)	16.1 (14)	4.9 (4)	$80{ }^{(18)}$	49 (8)	40 (8)
$05 Y 226$	M	7790 (17)	16.7 (9)	4.7 (16)	73 (2)	48 (7)	41 (13)
$05 Y 744$	JAS	7640 (18)	17.1 (5)	4.2 (20)	93 (20)	45 (6)	41 (12)
CT201	BAS	7140 (19)	15.4 (17)	4.9 (4)	83 (13)	53 (10)	41 (18)
CT202	BAS	6480 (20)	14.5 (19)	4.9 (4)	$80{ }^{\circ}$ (7)	85 (19)	40 (7)
MEAN		8570	16.3	4.8	81	55	40
CV		6.5	5.7	3.2	4.2	31	3.8
LSD (.05)		790	1.3	0.2	5	24	2

S = short; M = medium; L = long; PQ = premium quality; BAS = Basmati; WX = waxy; REX = Newrex;
SR = stem rot resistant.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of $1-99$ where $1=$ none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 13. 2006 Intermediate/Late Rice Variety Test - Glenn County

Advanced Lines and Varieties

S = short; M = medium; L = long; PQ = premium quality; BAS = Basmati; WX = waxy; REX = Newrex;
SR = stem rot resistant; JAS= Jasmine.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of $1-99$ where $1=$ none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 14. 2006 Intermediate/Late Rice Variety Test - Sutter County
Advanced Lines and Varieties

		Grain Yield	Grain				
		at 14\%	Moisture	Seedling	Days to		Plant
	Grain	Moisture	at Harvest	Vigor	50\%	Lodging	Height
Variety	Type	lbs/acre	(\%)	(1-5)	Heading	(1-99)	(in)
03Y151	REX	9770 (1)	14.5 (11)	5.0 (7)	83 (8)	4 (5)	38 (6)
$04 Y 706$	L	9680 (2)	14.8 (10)	5.0 (1)	83 (5)	1 (1)	40 (11)
$99 Y 529$	L	9180 (3)	13.1 (14)	4.8 (13)	80 (3)	9 (7)	40 (14)
04 Y641	SSR	8900 (4)	17.6 (7)	5.0 (1)	83 (5)	1 (1)	40 (13)
L206	L	8810 (5)	13.2 (13)	5.0 (1)	79 (2)	59 (12)	36 (2)
L205	REX	8730 (6)	14.1 (12)	4.9 (9)	83 (8)	20 (8)	38 (5)
05 Y 663	SPQ	8610 (7)	16.9 (9)	5.0 (1)	84 (11)	41 (10)	38 (4)
M205	M	8490 (8)	18.4 (5)	4.8 (12)	83 (5)	39 (9)	36 (1)
05 Y 657	SSR	8300 (9)	17.3 (8)	4.9 (11)	85 (12)	1 (1)	40 (10)
03Y576	SSR	8290 (10)	22.5 (2)	4.9 (10)	92 (13)	1 (1)	40 (11)
04Y656	M	8080 (11)	18.9 (4)	4.2 (14)	83 (10)	58 (11)	37 (3)
M202	M	7760 (12)	18.9 (3)	5.0 (7)	81 (4)	64 (13)	39 (7)
M402	MPQ	7290 (13)	26.6 (1)	5.0 (1)	105 (14)	6 (6)	40 (9)
CH201	SPQ	7240 (14)	18.3 (6)	5.0 (1)	76 (1)	95 (14)	39 (8)
MEAN		8510	17.5	4.9	84	28	39
CV		7	6.5	2.8	1.4	62.5	3.7
LSD (.05)		850	1.6	0.2	2	25	2
Preliminary Lines and Varieties							
99Y494	LWX	9000 (1)	13.1 (20)	5.0 (1)	84 (18)	1 (1)	36 (4)
01 Y501	LSR	8940 (2)	14.0 (18)	5.0 (1)	79 (8)	1 (1)	36 (5)
04 Y 625	MPQ	8720 (3)	17.7 (4)	4.8 (15)	85 (20)	25 (7)	38 (16)
$05 Y 758$	LBL	8320 (4)	13.7 (19)	5.0 (1)	83 (16)	1 (1)	35 (1)
$05 Y 343$	SWX	8290 (5)	20.1 (1)	4.8 (17)	82 (15)	55 (15)	39 (17)
05 Y 301	MPQ	8120 (6)	18.6 (2)	5.0 (1)	83 (16)	80 (18)	37 (9)
05 Y 913	M	8070 (7)	17.2 (7)	5.0 (1)	75 (1)	85 '(20)	37 (12)
05Y1274	L	7990 (8)	14.4 (17)	5.0 (1)	78 (7)	35 (9)	39 (18)
05Y441	M	7950 (9)	15.6 (14)	4.9 (14)	79 (8)	1 (1)	37 (9)
05Y450	M	7810 (10)	16.4 (11)	5.0 (1)	81 (13)	6 (5)	37 (9)
$05 Y 744$	JAS	7750 (11)	15.3 (15)	4.6 (20)	84 (19)	50 (14)	38 (14)
05Y1000	M	7550 (12)	16.5 (10)	5.0 (1)	77 (4)	18 (6)	36 (5)
$05 Y 714$	M	7450 (13)	17.0 (9)	5.0 (1)	77 (4)	45 (11)	38 (14)
05 Y 949	M	7440 (14)	16.4 (13)	4.9 (13)	79 (10)	43 (10)	37 (7)
05 Y 387	M	7250 (15)	17.1 (8)	4.6 (19)	79 (10)	48 '(13)	37 (7)
05 Y 386	M	7110 (16)	17.6 (5)	5.0 (12)	79 (10)	65 (17)	36 (3)
05 Y 979	M	7060 (17)	16.4 (12)	4.8 '(15)	77 (4)	60 (16)	38 (13)
05 Y 226	M	7000 (18)	17.6 (6)	4.8 (17)	75 (1)	45 (11)	36 (2)
CT201	BAS	6700 (19)	15.0 (16)	5.0 (1)	82 (14)	31 (8)	39 (18)
CT202	BAS	6250 (20)	18.2 (3)	5.0 (1)	76 (3)	80 (18)	39 (18)
MEAN		7740	16.4	4.9	80	39	37
CV		5.8	6.7	2.4	1.6	60	3.1
LSD (.05)		940	2.3	0.3	3	48	2

S = short; M = medium; L = long; PQ = premium quality; BAS = Basmati; WX = waxy; REX = Newrex;
SR = stem rot resistant; JAS= Jasmine.
Subjective rating of $1-5$ where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of $1-99$ where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Late Rice Varieties by Location and Year (2002-2006)						
Location	Year	M-205	M-402	M-202	L-205	
Biggs (RES)	2002	11600	10800	9970	11330	
	2003	10180	8130	8650	10580	
	2004	10180	9310	9480	10150	
	2005	9110	8570	8610	9110	
	2006	8830	8280	8620	8920	
Location Mean		9980	9018	9066	10018	
Glenn	2002	9247	9257	8368	7782	
	2003	8483	7887	6862	7500	
	2004	10210	9860	9040	9140	
	2005	8190	9040	8430	7510	
	2006	7050	7990	6820	6780	
Location Mean		8636	8807	7904	7742	
Sutter	2002	10115	8692	10743	8933	
	2003	11151	9613	10356	9310	
	2004	10850	9430	11140	10970	
	2005	10040	7530	9500	9560	
	2006	8490	7290	7760	8730	
Location Mean		10129	8511	9900	9501	
Loc/Years Mean		9582	8779	8957	9087	
Yield \% M-202		107.0	98.0	100	101.5	
Number of Tests		15	15	15	15	

Table 16. Rice yields as affected by different establishment practices. All treatments received $150 \mathrm{lb} \mathbf{N} / \mathrm{ac}$.

- Highest yields were recorded in $2004(9215 \mathrm{lb} / \mathrm{ac})$ and were lowest in $2005(7212 \mathrm{lb} / \mathrm{ac})$. These are in line with county wide yield trends.
- No significant difference between treatments when years are analyzed separately.
- Analyzed across years the WS-stale seedbed system produced significantly lower yields. This treatment record the lowest or second to yields in each year of the study. With applications of an additional $50 \mathrm{lb} \mathbf{N} / \mathrm{ac}$, yields in this system were comparable to the others. The flush for the stale seedbed combined with tillage, likely resulted in denitirfication losses of native soil \mathbf{N} when the system was flooded for planting.

[^0]: S = short; M = medium; L = Iong; PQ = premiumquality; BAS = Basmati; WX = waxy; REX = Newrex;
 SR = stem rot resistant.
 Subjective rating of 1-5 where 1 = poor and 5 = excellentseedlingemergence.
 Subjective rating of 1-99 where $1=$ none and 99 = completelylodged.
 Numbers in parenthesesindicate relative rank in column.

[^1]: S = short; M = medium; L = Iong; PQ = premiumquality; BAS = Basmati; WX = waxy; REX = Newrex;
 SR = stem rot resistant.
 Subjective rating of 1-5 where $1=$ poor and 5 = excellentseedling emergence.
 Subjective rating of 1-99 where $1=$ none and 99 = completelylodged.
 Numbers in parenthesesindicate relative rank in column.

[^2]: S = short; M = medium; L = Iong; PQ = premiumquality; BAS = Basmati; WX = waxy; REX = Newrex;
 SR = stem rot resistant.
 Subjective rating of 1-5 where $1=$ poor and 5 = excellentseedling emergence.
 Subjective rating of 1-99 where $1=$ none and 99 = completelylodged.
 Numbers in parenthesesindicate relative rank in column.

