ANNUAL REPORT COMPREHENSIVE RESEARCH ON RICE

PROJECT TITLE: Cooperative Extension Rice Variety Adaptation and Cultural Practice Research
PROJECT LEADERS:
James E. Hill, Specialist in UCCE, UC Davis

PRINCIPAL UC INVESTIGATORS:

L.A. Espino, UCCE Farm Advisor, Colusa, Glenn, Yolo
C.A. Greer, UCCE Farm Advisor, Sacramento, Sutter, Placer, Yuba
R.G. Mutters, UCCE Farm Advisor, Butte
R.L. Wennig, Staff Research Associate, UCCE/UC Davis

LEVEL OF 2011 FUNDING: \$126,969

OBJECTIVES AND EXPERIMENTS CONDUCTED BY LOCATION TO ACCOMPLISH OBJECTIVES:

Objective I

To evaluate newly developed cultivars and existing varieties in on-farm trials under grower conditions in cooperation with the Rice Experiment Station for the purpose of new variety development and release: Cultivar trials were conducted by maturity group at different locations in the Sacramento Valley and the Sacramento-San Joaquin Delta. Several experimental cultivars were evaluated at each location within these groups to compare their performance in different environments of the rice-growing region.

Very Early Maturity Group: Three uniform trials for each of the advanced and experimental lines were conducted at each of the following on-farm sites: the Lauppe Ranch (south Sutter County), the Erdman Ranch (District 108, Yolo County), and at the Del Rio Partners Ranch (San Joaquin Delta, San Joaquin County). In addition to the three on-farm sites, two additional tests were conducted at the Rice Experiment Station (RES) in Butte County. The Advanced test at each site included 18 entries (seven commercial varieties and eleven advanced breeding lines) in four replications. The Preliminary tests included 32 entries, 30 preliminary breeding lines and two commercial varieties as checks, in two replications.

Early Maturity Group: Three uniform tests were conducted at each of the following on-farm sites: the Larrabee Ranch (Glenn County), the Dennis Ranch (Colusa County), and the Marler Farms Ranch (District 10, Yuba County). Two additional trials, Advanced and Preliminary, were conducted at the RES. The Advanced test at each site included 17 entries (eight commercial varieties and nine advanced breeding lines) in four replications. The Preliminary tests included 38 entries, four commercial varieties and 34 preliminary breeding lines in two replications.

Intermediate and Late Maturity Group: Two uniform tests were conducted at each of the following on-farm sites: the Wiley Ranch (Glenn County) and the Tucker Ranch (Sutter Basin, Sutter County). Two additional tests were conducted at the RES. The Advanced test at each site included 9 entries (five commercial varieties and four advanced breeding lines) in four replications. The Preliminary tests consisted of three commercial varieties and 27 preliminary breeding lines in two replications.

Objective II

Cultural Practices: Rice variety tests were conducted on Twitchell Island in the western Delta as part of a larger project to evaluate rice under flooded culture as a method of preventing organic soil subsidence. Four commercial varieties with the best potential to tolerate cold temperatures (Calmochi-101, S-102, M104, and M-206) were compared in one acre plots replicated three times. A small plot test similar to the statewide variety trials was conducted with the eight commercial varieties and eight advanced cold tolerant lines. The purpose of the small plot test was to provide the RES breeders with additional information under very cold conditions. A third test was conducted again this year to compare water and drill seeding methods. M-104 was used and the methods were replicated four times.

Objective III

Extension-Based Equipment and Service: A centrally-based equipment pool is maintained by Project RM2 to provide services for planting, fertilizing, treatment application, and harvesting of rice and to provide professional technical assistance to UC research project leaders engaged in rice.

To provide professional technical assistance to other UC research project leaders, we assisted in approximately 22 trials including the 19 variety tests. Equipment from the UCCE-based pool for planting and harvesting field experiments was used at 13 sites at different times during the season. The most heavily used equipment were the combines followed by the Kincaid seed drill planter. The rice combines were maintained according to the established maintenance schedules.

The ALMACO combine was used to harvest all Statewide trials except Colusa. Due to the presence of Rice Blast, the SWECO was used to harvest the Colusa site to prevent the possible spread of the disease to other test sites.

Objective IV

Extension Education: We disseminated research-based information to California rice producers, dryer operators, millers and the general public through two winter grower meetings, field demonstrations, personal communication and through the distribution of one fact sheet (re-publication of the 2010 Characteristics of Publicly Developed Varieties), the Rice Field Day Program and other printed material. We hosted the Rice Breeders Tour. Progress was made updating the UCCE rice website.

SUMMARY OF 2011 RESEARCH BY OBJECTIVE

Objective I - Rice Variety Evaluation

Eight uniform advanced breeding line trials and eight preliminary breeding line trials were conducted throughout the major rice producing areas of California. The rice breeders at the RES conducted six additional tests, two from each of the three maturity groups. Many of the experimental lines have been tested and screened in previous years and many lines were in advanced stages (2 or more years) of testing. The RES provided the seed for public varieties and experimental cultivars. No proprietary lines were tested.

The following analyses provide single-location yield summaries for the advanced line tests and overlocation agronomic performance summaries for each entry in each maturity category. For quick reference, grain yields of selected commercially available varieties tested in very early, early and intermediate-late tests across years and locations are summarized in Tables 6, 12 and 17. An Agronomy Progress Report, to be published later this year, will provide agronomic performance results for all entries in each experiment.

Very Early Maturity Tests (< 90 days to 50\% heading at Biggs): Seven commercial varieties and eleven advanced breeding lines were compared in four very early advanced tests. Commercial varieties at each location included S-102, CH-201, CM-101, M-104, M-105, M-206 and L-206. The preliminary tests included two commercial varieties and 30 preliminary lines evaluated in separate tests at each location.

Grain yields in the advanced tests averaged 8,320 lbs/ac at Biggs-RES, 9,210 lbs/ac at Sutter, 10,080 $\mathrm{lbs} / \mathrm{ac}$ at Yolo and $8,760 \mathrm{lbs} / \mathrm{ac}$ at San Joaquin (Tables $1,2 \& 3$). The Biggs and Sutter locations were dropped from the over-all location summary due to unusually high yield cvs (Table 1). The three highest yielding entries on average for Yolo and San Joaquin were advanced long grain line 06Y575, advanced short grain line 09Y2141, and advanced medium grain 08Y3076 (10,600, 10,580, and 9,890 lbs/ac respectively). Other top yielding commercial varieties $\mathrm{M}-206, \mathrm{M}-105, \mathrm{M}-104$, and $\mathrm{CH}-201$ ranked fourth, eighth, tenth, and thirteenth, respectively. Averaged across two locations, cultivar yields in the preliminary tests ranged from 5,940 to $9,960 \mathrm{lbs} / \mathrm{ac}$ (Table 1). The average number of days to 50% heading for varieties in 2011 was one day more than in 2010. Spring rains delayed field preparation, planting, and prevented a significant percentage of the projected acreage from being planted. Moderate daytime and nighttime temperatures may have slightly increased the number of days to 50% heading. Average lodging slightly decreased while plant heights increased three inches.

Comparing the commercial standard entries over a 5-year period and across locations, M-206, L-206 and S-102 were the highest yielding varieties (Table 6).

Early Maturity Tests (90-97 days to 50\% heading at Biggs): Eight commercial varieties and nine advanced lines were compared in four early advanced tests. The preliminary tests included four commercial varieties and 34 preliminary lines evaluated in separate tests at each location. Commercial varieties at each location were CH-201, CM-101, Akita, S-102, M-105, M-202, M-205, M-206, M-208, A-201, CT202 and L-206.

Yields in the advanced line tests averaged 10,200 lbs/ac at the RES; $8,840 \mathrm{lbs} / \mathrm{ac}$ at Butte, $9,590 \mathrm{lbs} / \mathrm{ac}$ at Yuba and $9,090 \mathrm{lbs} / \mathrm{ac}$ at Colusa (Table 7). Advanced long grain 09Y1122 was the highest yielding entry ($10,400 \mathrm{lbs} / \mathrm{ac}$) when averaged over four locations in 2011 (Table 7). Other entries with yields averaging greater than $10,000 \mathrm{lbs} / \mathrm{ac}$ were short grains 09 Y 2179 and 09 Y 2141 and medium grain 08Y3269. The yield of commercial varieties M-208, M-205, L-206, M-206, M-202, and S-102 ranked sixth, seventh, eighth, tenth, thirteenth and fourteenth over all locations (Table 7). Average days to 50% heading ranged from 91 days at Biggs to 98 days at the Yuba County site. The commercial standard M-206 headed at 88 days at Biggs and 94 days at Yuba. Biggs was not included in the Preliminary over location summary due to unusually high yield cvs. Twenty preliminary lines averaged higher yields than M-105 in the Preliminary tests.

L-206 was the highest yielding commercial variety (9,534 lbs/ac) followed by M-205 (9,510 lbs/ac) and M-206 ($9445 \mathrm{lbs} / \mathrm{ac}$) when averaged over the last 5 years and across 4 locations (Table 12).

Intermediate-Late Maturity Tests (> 97 days to 50\% heading at Biggs): Five commercial varieties and four advanced lines were compared in three intermediate-late tests. The preliminary tests included three commercial varieties and 27 preliminary lines that were evaluated in separate tests at each location. Commercial varieties at each location included CH-201, Koshihikari, M-202, M-205, M-401, M-402, L206 and CT-202.

Average yields in the advanced tests were 9,760 lbs/ac at the RES, 9,250 lbs/ac at Glenn and 9,400 lbs/ac at Sutter (Table 13). The 2011 advanced over location average yield was $320 \mathrm{lbs} / \mathrm{ac}$ greater than the 2010 average. The average yields at the Glenn and Sutter increased 870 and $270 \mathrm{lbs} / \mathrm{ac}$ respectively, while decreasing $180 \mathrm{lbs} / \mathrm{ac}$ at Biggs compared to the 2010 season. M-205 was the highest yielding commercial variety ($9,710 \mathrm{lbs} / \mathrm{ac}$), ranking third overall. L-206 and M-202 were the next highest yielding commercial
varieties across locations, ranking fifth and seventh respectively (Table 13). The long grain Newrex entry 06 Y 575 was the highest yielding advanced entry across all locations, at $10,310 \mathrm{lbs} / \mathrm{ac}$. Average days to 50% heading decreased one day compared to 2010. M-401 was the latest variety (113 days) to reach 50% heading among the commercial varieties at all locations.

Averaged over the last 5 years and across locations, M-205 is the highest yielding ($9,651 \mathrm{lb} / \mathrm{ac}$) commercial variety closely followed by L-206 at 9,519 lbs/ac. Both M-205 and L-206 produced 106% of the yield of M-202 on average over the last 5 years (Table 17).

Objective II - Cultural Practices

Twitchell Island Variety Test: Table 18 shows the results of the large plot variety test at Twitchell Island. The average yield for the test ($8800 \mathrm{lbs} / \mathrm{ac}$) increased 28% compared to 2010 . The leading variety was S102 followed by M-104, M-206 and Calmochi-101. Calmochi-101 is well-known as the most cold tolerant of commercial California varieties and has become the standard by which to measure this trait against other varieties and advanced lines. Calmochi-101 unexpectedly yielded the lowest this year but was not significantly lower in yield than the highest yielding entry S-102. Days to 50% heading ranged from 105 days for M-104 to 117 days for CM-101.

The commercial variety yields in the small plot cold tolerance test were similar in ranking to the large plot test with Calmochi-101 ranking below M-104, M-206 and S-102. CH-201 and M-202 were the lowest yielding commercial varieties in the test (Table 19). This year we selected a more uniform location for the cold tolerance test which resulted in a 56.5% average yield increase and a 5% decrease in the yield cv. There were no significant yield differences between the top four commercial varieties. However the unusually large yield CV, compared to typical small plot variety tests, was likely due to an undetermined soil condition that resulted in a 3 to 4 day increase in days to 50% heading from the bottom to the top of the field. The highest yielding entry was the long grain 'Newrex’ type 06Y575. Three advanced medium grain cultivars ranked second, third, and fourth in yield thus indicating the continued potential for medium grain Calrose types in cold environments. At Twitchell Island, the average time to 50% heading for these very early varieties was 119 days after planting, 22 days later than the average days to heading for intermediate to late maturing varieties in the Sacramento Valley tests. The large delay in maturity demonstrates one of the main challenges of growing rice in this environment.

A third trial was conducted to compare water and drill seeding methods of planting (Table 20). M104 (the field variety) was replicated four times for each of the two planting methods. Once planting was completed, the water-seeded basins were drained to encourage seedling development. All basins were periodically flushed until the seedlings were established. Following herbicide and fertilizer applications all basins were continuously flooded. There were no significant differences in crop management other than seeding method. All measured characteristics were essentially the same for both planting methods. The average yield for the test increased 28% compared to 2010.

Improved field uniformity could greatly improve the chances of obtaining reliable and statistically significant results for all of the tests. Each year field uniformity and cultural practices are improving as we learn to maximize growing conditions for rice in the coldest growing area of the Sacramento - San Joaquin Valley region.

On-farm drill seeded variety trials: The performance of California public varieties under drill seeded conditions has not been tested in replicated on-farm trials. An early and a late planted trial were proposed for the 2011 season. The early drill seeded variety trial was planted on May 3 in the field of a cooperating grower in Butte County. Varieties M104, M105, M206, and M205 were seeded at the rate of $100 \mathrm{lb} / \mathrm{a}$ with a seven inch row spacing in a randomized complete block design. Soil fertility and pest control was managed by the participating grower according his standard practices. The initial irrigation was applied on

May 5 and the permanent flood was established on May 31. The field was drained in preparation for harvest on September 5 . The second 'late' planted variety trial was not planted due to ongoing weather related challenges and the resulting need to plant as quickly as possible. The test area in the last field was inadvertently planted. The early planted trial was inadvertently harvested by the grower, therefore no yield data are available to report.

Irrigation Management: The possibility of growing rice with periodic flushes of water (aerobic rice) is frequently discussed among various agencies in the context of water savings and reduced greenhouse emissions. Whether such an irrigation method could be successfully employed and thereby constitute a rational approach to improving water use efficiency is unknown. Small scale test plots at the RES in 2009 indicated that irrigating drill seeded in this fashion resulted in a small yield loss. Heading and consequently maturation were delayed by a week.

In cooperation with a Butte County grower, a commercial sized field (42 acres) was drill seeded on May 27 at a rate of $100 \mathrm{lb} /$ a with seven inch row spacing. Field preparation, fertility management, weed control were according to the grower's standard drill seeding practices. An additional herbicide application was needed beyond the grower's standard practice to treat the ongoing emergence of weeds in the aerobic system. Also in addition to the grower's standard fertilizer practice, an additional $20 \mathrm{lb} / \mathrm{a}$ of N as ammonium sulfate was applied as ammonium sulfate at 55 days after planting.

The experimental field was divided into four basin separated by low levies similar to those used in irrigated pastures. Basins were irrigated individually. Previous UC experimentation indicated that the critical soil moisture content for Calrose varieties grown on the heavy, clay soils was 35% by volume (Mutters et al., 2009; Fischer et al., 2010). The time intervals between flood irrigation was determined based on four soil moisture sensors (Decagon, model 10HS) located along the length of the field center. The time required to deplete the soil to suboptimal moisture content decreased as the season progressed; as the plant size increases so does the water use (Figure 1). The early season water loss from the soil is dominated by evaporation, while transpiration from the leaf surface would govern changes in soil moisture after canopy closure (\sim July 25). By in large the soil moisture content remained above 30% with the exception of July 14 to 24 . To achieve this level of consistency the grower was continually applying water; complete the cycle of four basins then immediately return to basin one to repeat the irrigation sequence. The soil moisture content was consistently higher in the bottom portion of the field, due to the 2% fall in field level from top to bottom resulting in quick flow across the field with ponding at the bottom.

The yield was 65 cwt /a dry. The low yield was likely attributable to a number of factors, principally a suboptimal stand density and soil nitrogen level, as well as high weed pressure. The leaf nitrogen content of plants in the test field was marginally adequate throughout the season even with the additional top dressing. A thorough investigation of nitrogen management in an aerobic system would be required if the system is to be seriously considered. Moreover and as expected, the intermittent irrigation resulted in the ongoing emergence of new weeds until the point of canopy closure. After which time the rate of recruitment noticeably declined. However the population of established weed even with an additional herbicide application was sufficient to impair harvest operations and reduce yields.
Based on this and previous work at the RES, aerobic rice does not appear to be an economically viable alternative production practice by which water use and greenhouse gas emissions may be reduced. The delayed maturation along with the added cost of irrigation, chemical inputs, and yield loss makes the utility of such a system highly questionable under California conditions.

Objective III - Assistance to Other Projects

We continued the maintenance program for the UC SWECO plot combine. Following a major overhaul in 2001, an annual maintenance was established to ensure combine durability and performance. All items listed in the maintenance schedule were inspected and replaced as needed.

The rice equipment pool, including a precision Clampco fertilizer applicator, SWECO 324 plot combine, ALMACO SP40 plot combine, moisture meters, remote temperature stations, and other equipment were used along with personnel who provided technical assistance for numerous field experiments in 2011. The SWECO 324 plot combine was used to harvest 2 statewide variety tests. The ALMACO was used to harvest 16 variety tests, a rice quality test at the RES, two cold temperature variety tests and a planting methods test at Twitchell Island. Over 1,100 experimental plots were harvested in 2011. In addition to equipment assistance to other projects, labor from this project was used to plant, collect samples, and monitor growth in several field experiments. Assistance was also provided to the annual RES Rice Field Day and the annual rice breeders' field tour.

Objective IV - Publication and Distribution of Rice Research Information

The following extension education materials were designed, formatted and printed with support from this project:

1. Rice Field Day Program 2011, for the California Cooperative Rice Research Foundation, RES, 42 pp.
2. The UCCE website was updated.
3. UCCE winter grower meetings were held at Colusa and Yuba City.
4. Two activities were held in conjunction with the RES -- the annual California Rice Field day, and the Rice Breeders’ field tour.

Publications and Reports:

MD Ruark, BA Linquist, J Six, C van Kessel, CA Greer, RG Mutters, and JE Hill. Seasonal losses of dissolved organic carbon and total dissolved solids from rice production systems in northern California. J. Env Qual 38:304-313, 2010

Linquist BA, K Koffler, JE Hill and C van Kessel. The impact of rice field drainage on nitrogen management. Cal Agic 63:80-84, 2011.

Hill, JE, Espino, LA, Greer, C.A., Mutters, RG, and Wennig, RL 2010. University of California Cooperative Extension (UCCE) rice variety adaptation and cultural practices research. In Annual Report Comprehensive Rice Research 2010. University of California and USDA. (available in eversion only).

Williams, Jack, ed. RG Mutters and CA Greer, tech ed. WR Horwath, SG Pettygrove, RE Plant, C van Kessel, AT O’Geen, JE Hill, C Bruice, B Linquist and C Hartley, Contributing. Rice nutrient management in California. Oakland: University of California Agriculture and Natural Resources Publication 3516, 2010.

Hill, J, R Mutters, C Greer, L Espino. R Stogsdill, B Linquist and H Sharifi. Predicting rice crop growth and development. 2011 Rice Field Day Program. 1 pp.

CONCISE GENERAL SUMMARY OF CURRENT YEAR'S RESULTS:

Seventeen on-farm rice variety evaluation trials were conducted throughout the rice growing region of California, with standard varieties compared to preliminary and advanced lines across a range of environments, cultural practices and disease levels. Six similar tests were conducted at the RES in Biggs, CA. Average yields across varieties and locations in the advanced line tests ranged from 9,420 lbs/acre in the very early trials to $9,430 \mathrm{lbs} /$ acre in the early tests. In the intermediate to late tests the advanced lines average yield was $9,470 \mathrm{lbs} /$ acre. Frequent spring rains delayed field preparation and planting by 7 to 10 days. Several advanced lines in 2011 produced high yields as well as representing important breeding goals aside from yield (disease resistance, grain quality, specialty types, etc.). Testing advanced and preliminary lines under a variety of conditions remains a critical aspect of releasing varieties adapted to changing cultural practices, markets, and pests.

The overall purpose of evaluating rice production in the western San Joaquin Delta is to find a flood tolerant crop to prevent subsidence of the organic soils from oxidation due to cultivation of upland crops. The special variety tests on Twitchell Island were conducted to determine the feasibility of commercial rice production in an extremely cold environment for rice. The results showed that varieties with good cold tolerance such as Calmochi-101 will produce reasonable yields. Clearly blanking and delayed plant development due to cold temperatures was a negative factor in achieving high yields.

Project RM-2 was involved in the planting, sampling and harvesting of more than 14 trial sites throughout the rice growing areas. This project also was also involved in several educational activities including the winter rice grower meetings, update of UCCE rice website, rice field days, and promoting work through fact sheets and publications.

Figures and Tables

Figure 1. Volumetric soil moisture content over time for aerobically grown rice.

Table 1. 2011 Very Early Rice Variety Tests - Two Location Summary

Variety	Grain Type	Over All Ave Grain Yield at 14\% Moisture lbs/acre	Single Location Yields		Grain		$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { Heading } \end{gathered}$	Lodging$(1-99)$	Plant Height (in)
					Moisture	Seedling			
			Yolo	San Joaquin	(\%)	(1-5)			
06Y575	L	10600 (1)	11360 (2)	9830 (1)	19.0 (8)	4.9 (12)	102 (17)	1 (1)	40 (18)
$09 Y 2141$	S	10580 (2)	11580 (1)	9580 (2)	20.5 (4)	5.0 (1)	99 (12)	1 (1)	40 (17)
$08 Y 3076$	M	9890 (3)	10460 (4)	9330 (4)	20.7 (3)	5.0 (8)	100 (15)	2 (16)	37 (13)
M206	M	9780 (4)	10230 (9)	9330 (3)	20.7 (2)	5.0 (1)	96 (10)	1 (1)	38 (14)
$09 Y 2036$	S	9670 (5)	10380 (6)	8970 (7)	19.0 (9)	4.9 (14)	97 (11)	1 (1)	38 (16)
08 Y 2049	S	9650 (6)	10500 (3)	8800 (10)	19.8 (7)	4.9 (14)	96 (8)	1 (1)	35 (3)
07 Y 43	M	9610 (7)	10250 (8)	8960 (8)	21.6 (1)	5.0 (10)	94 (5)	1 (1)	37 (11)
M105	M	9500 (8)	10290 (7)	8720 (11)	19.9 (6)	4.9 (11)	93 (4)	1 (1)	37 (12)
08 Y 3016	M	9490 (9)	9840 (13)	9150 (5)	18.9 (10)	4.8 (17)	92 (2)	1 (1)	35 (5)
M104	M	9410 (10)	10020 (11)	8800 (9)	18.6 (12)	5.0 (1)	91 (1)	1 (1)	36 (7)
08 Y 3080	M	9370 (11)	9630 (14)	9100 (6)	18.6 (13)	5.0 (1)	94 (5)	1 (1)	38 (15)
09 Y 1079	L	9310 (12)	10060 (10)	8560 (12)	18.7 (11)	5.0 (1)	103 (18)	1 (1)	35 (4)
CH201	S	9130 (13)	9910 (12)	8360 (14)	16.0 (16)	5.0 (8)	99 (14)	26 (18)	35 (2)
04 Y 177	S	9080 (14)	10440 (5)	7720 (18)	18.2 (14)	4.3 (18)	99 (13)	25 (17)	36 (8)
$09 Y 3024$	M	9060 (15)	9570 (15)	8550 (13)	19.9 (5)	4.9 (12)	96 (8)	1 (1)	36 (6)
L206	L	8920 (16)	9490 (16)	8340 (15)	16.2 (15)	5.0 (1)	100 (15)	1 (1)	33 (1)
S102	S	8410 (17)	9050 (17)	7760 (17)	15.3 (18)	5.0 (1)	93 (3)	1 (1)	36 (9)
CM101	S	8090 (18)	8320 (18)	7850 (16)	15.6 (17)	4.8 (16)	95 (7)	1 (1)	36 (10)
MEAN		9420	10080	8760	18.7	4.9	96	4	37
CV		4.6	4.5	4.6	5.3	4.6	2.2	233.8	3.5
LSD (.05)		430	650	580	1	0.2	2	9	1
Preliminary Lines and Varieties									
10Y2043	S	9960 (1)	11660 (1)	8260 (26)	17.6 (23)	4.7 (28)	100 (26)	1 (1)	36 (4)
$10 Y 3282$	M	9920 (2)	10450 (5)	9390 (4)	17.6 (24)	5.0 (1)	91 (3)	3 (28)	36 (8)
$10 Y 3286$	M	9840 (3)	10700 (3)	8980 (10)	18.9 (11)	4.7 (28)	96 (17)	1 (1)	37 (11)
$09 Y 3059$	M	9830 (4)	10260 (8)	9390 (2)	18.4 (13)	5.0 (1)	96 (16)	1 (1)	37 (10)
$09 Y 3078$	M	9810 (5)	10240 (10)	9390 (3)	17.8 (21)	4.8 (24)	92 (5)	1 (1)	39 (24)
$09 Y 2063$	SWX	9800 (6)	10050 (16)	9540 (1)	18.0 (18)	4.9 (14)	97 (22)	1 (1)	38 (21)
09 Y 3225	M	9770 (7)	10820 (2)	8730 (16)	19.0 (10)	5.0 (1)	97 (21)	1 (1)	39 (30)
10 Y 3290	M	9750 (8)	10560 (4)	8940 (13)	18.6 (12)	4.9 (14)	98 (23)	1 (1)	38 (18)
10 Y 2158	SWX	9730 (9)	10140 (14)	9320 (6)	20.6 (2)	4.8 (24)	103 (30)	1 (1)	38 (16)
$09 Y 3268$	M	9630 (10)	10280 (6)	8990 (9)	18.3 (14)	4.9 (14)	96 (18)	1 (1)	38 (17)
$09 Y 3272$	M	9630 (11)	10000 (17)	9250 (7)	18.3 (15)	5.0 (1)	94 (12)	1 (1)	38 (20)
$09 Y 3277$	M	9620 (12)	9890 (19)	9340 (5)	19.4 (7)	5.0 (1)	94 (11)	1 (1)	36 (6)
$09 Y 3176$	M	9580 (13)	10190 (11)	8970 (11)	18.2 (16)	4.9 (20)	93 (9)	1 (1)	36 (5)
$09 Y 3538$	M	9560 (14)	10160 (12)	8960 (12)	19.1 (9)	5.0 (13)	95 (13)	1 (1)	37 (9)
10Y2049	SPQ	9430 (15)	10260 (9)	8610 (20)	17.8 (20)	4.8 (24)	95 (15)	1 (1)	35 (3)
$10 Y 3261$	M	9430 (16)	10270 (7)	8580 (21)	19.6 (4)	4.9 (14)	97 (20)	1 (1)	39 (27)
$09 Y 3043$	M	9410 (17)	9980 (18)	8840 (14)	17.2 (26)	4.9 (20)	93 (6)	1 (1)	39 (25)
M202	M	9340 (18)	9590 (25)	9090 (8)	19.5 (6)	5.0 (1)	99 (24)	1 (1)	40 (31)
10 Y 1008	LSR	9280 (19)	9890 (20)	8670 (17)	17.9 (19)	4.9 (14)	102 (29)	1 (1)	38 (19)
10 Y 1178	L	9270 (20)	9740 (24)	8800 (15)	20.2 (3)	4.3 (31)	109 (32)	1 (1)	39 (26)
$09 Y 3270$	M	9210 (21)	9800 (23)	8620 (18)	17.5 (25)	5.0 (1)	91 (3)	1 (1)	38 (22)
$09 Y 3273$	M	9200 (22)	9870 (21)	8530 (23)	17.7 (22)	5.0 (1)	93 (6)	1 (1)	39 (28)
10Y2123	MPQ	9190 (23)	10070 (15)	8320 (25)	21.5 (1)	4.4 (30)	102 (28)	33 (31)	39 (29)
10Y2031	SLA	9100 (24)	10140 (13)	8060 (30)	14.4 (32)	5.0 (1)	93 (8)	5 (29)	35 (2)
$10 Y 3227$	M	9080 (25)	9540 (26)	8610 (19)	19.5 (5)	5.0 (1)	94 (10)	1 (1)	38 (15)
10 Y 2115	SLA	9000 (26)	9520 (27)	8480 (24)	15.0 (31)	4.9 (20)	95 (13)	5 (29)	37 (12)
$09 Y 3048$	M	8970 (27)	9810 (22)	8130 (29)	17.2 (27)	5.0 (1)	90 (2)	1 (1)	37 (14)
$09 Y 3256$	M	8760 (28)	9300 (28)	8230 (27)	19.1 (8)	4.8 (24)	96 (19)	1 (1)	38 (23)
06 Y 513	L	8730 (29)	8930 (29)	8530 (22)	16.3 (29)	4.9 (20)	105 (31)	1 (1)	36 (7)
$10 Y 3305$	M	8430 (30)	8840 (30)	8030 (31)	17.1 (28)	5.0 (1)	89 (1)	1 (1)	34 (1)
$09 Y 2060$	SWX	8290 (31)	8440 (31)	8150 (28)	15.5 (30)	4.9 (14)	100 (25)	1 (1)	37 (13)
AKITA	SPQ	5940 (32)	7050 (32)	4820 (32)	18.1 (17)	3.7 (32)	100 (27)	48 (32)	40 (32)
MEAN		9270	9890	8640	18.2	4.8	96	4	38
CV		4	3.5	4.5	5.2	4.9	1.9	125.6	3.1
LSD (.05)		520	710	800	1.3	0.3	3	7	2

$\mathrm{S}=$ short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{WX}=$ waxy; $\mathrm{R}=\mathrm{Newrex;} \mathrm{SR}=$ stem rot resistant; $\mathrm{LA}=$ Low Amalose.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

* Biggs and Sutter locations excluded from overall summary due to excessively high cvs.

Table 2. 2011 Very Early Rice Variety Trial - Biggs

Variety	Grain Type	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{aligned} & \text { Days to } \\ & 50 \% \\ & \text { Heading } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Lodging } \\ (1-99) \\ \hline \end{gathered}$	Plant Height (in)
08Y3076	M	9440 (1)	19.0 (3)	4.7 (9)	90 (15)	1 (1)	36 (9)
$08 Y 3016$	M	9160 (2)	18.6 (6)	4.7 (9)	85 (4)	1 (1)	38 (13)
M105	M	9020 (3)	18.7 (5)	4.8 (4)	84 (2)	1 (1)	38 (12)
$09 Y 2141$	SWX	8850 (4)	17.7 (9)	4.7 (17)	89 (13)	1 (1)	40 (17)
S102	S	8780 (5)	15.9 (18)	4.7 (9)	84 (3)	1 (1)	36 (5)
M206	M	8660 (6)	19.1 (1)	4.8 (6)	87 (9)	1 (1)	39 (15)
07 Y 843	M	8620 (7)	19.0 (2)	4.8 (7)	85 (4)	1 (1)	36 (7)
M104	M	8570 (8)	17.8 (7)	4.9 (2)	83 (1)	1 (1)	36 (8)
$09 Y 2036$	S	8530 (9)	16.8 (12)	4.7 (12)	88 (11)	1 (1)	39 (16)
L206	L	8290 (10)	16.7 (13)	4.7 (12)	88 (11)	1 (1)	35 (4)
09 Y 3024	M	8070 (11)	19.0 (4)	4.7 (14)	86 (8)	1 (1)	38 (13)
09 Y 1079	L	8060 (12)	17.1 (11)	4.9 (2)	91 (16)	1 (1)	36 (6)
CM101	SWX	7990 (13)	16.6 (17)	4.8 (7)	87 (10)	1 (1)	37 (10)
08Y2049	SSR	7860 (14)	16.7 (14)	4.6 (18)	85 (6)	1 (1)	33 (1)
06 Y 575	LR	7790 (15)	17.7 (10)	4.8 (4)	94 (18)	1 (1)	42 (18)
$04 Y 177$	SPQ	7430 (16)	16.6 (15)	4.7 (14)	89 (13)	1 (1)	35 (3)
08Y3080	M	7420 (17)	17.8 (8)	4.7 (14)	85 (6)	1 (1)	38 (11)
CH201	SPQ	7190 (18)	16.6 (16)	4.9 (1)	92 (17)	1 (1)	34 (2)
MEAN		8320	17.6	4.7	87	1	37
CV		9.2	2.6	1.6	1.3		4.4
LSD (.05)		1090	0.7	0.1	2		2
Preliminary Lines and Varieties							
$10 Y 3286$	M	8360 (1)	18.7 (3)	4.8 (12)	83 (5)	1 (1)	38 (27)
10 Y 3282	M	7770 (2)	18.7 (5)	4.9 (4)	84 (8)	1 (1)	37 (17)
$09 Y 3059$	M	7660 (3)	18.8 (2)	4.8 (12)	84 (8)	1 (1)	38 (27)
$10 Y 2049$	SPQ	7630 (4)	16.6 (29)	4.8 (12)	84 (13)	1 (1)	33 (2)
10Y3261	M	7490 (5)	18.8 (1)	5.0 (1)	85 (16)	1 (1)	39 (30)
$09 Y 3272$	M	7490 (6)	17.1 (23)	4.8 (12)	84 (8)	1 (1)	35 (8)
09 Y 3225	M	7490 (7)	18.4 (7)	4.7 (28)	87 (21)	1 (1)	37 (21)
10 Y 3227	M	7480 (8)	17.4 (20)	4.9 (2)	83 (4)	1 (1)	37 (21)
09 Y 3268	M	7340 (9)	17.8 (16)	4.8 (12)	84 (8)	1 (1)	37 (21)
$09 Y 3078$	M	7320 (10)	18.7 (3)	4.8 (24)	83 (5)	1 (1)	38 (29)
10 Y 1008	LSR	7310 (11)	16.6 (31)	4.9 (4)	90 (30)	1 (1)	37 (24)
10 Y 2158	SWX	7310 (12)	17.4 (22)	4.8 (24)	90 (29)	1 (1)	36 (14)
10 Y 2043	S	7300 (13)	16.8 (27)	4.7 (28)	89 (27)	1 (1)	35 (4)
10 Y 3290	M	7210 (14)	18.1 (11)	4.9 (4)	85 (16)	1 (1)	36 (10)
$09 Y 3277$	M	7040 (15)	18.0 (12)	4.8 (12)	84 (8)	1 (1)	35 (8)
10 Y 2115	SLA	7020 (16)	17.1 (24)	4.7 (28)	86 (20)	1 (1)	35 (6)
$09 Y 3048$	M	7010 (17)	18.6 (6)	4.8 (12)	81 (2)	1 (1)	37 (18)
$09 Y 3176$	M	6990 (18)	17.6 (17)	4.8 (12)	84 (13)	1 (1)	35 (4)
10 Y 2123	MPQ	6930 (19)	18.4 (8)	4.8 (12)	85 (16)	1 (1)	36 (11)
$09 Y 3270$	M	6820 (20)	17.4 (21)	4.9 (4)	82 (3)	1 (1)	36 (16)
06 Y 513	L	6820 (21)	16.7 (28)	4.9 (4)	93 (31)	1 (1)	37 (24)
10 Y 1178	L	6730 (22)	17.5 (18)	4.8 (23)	96 (32)	1 (1)	36 (13)
$09 Y 3538$	M	6670 (23)	17.9 (15)	4.9 (4)	85 (16)	1 (1)	37 (18)
09 Y 3043	M	6660 (24)	18.2 (10)	4.9 (4)	83 (5)	1 (1)	39 (31)
09 Y 3273	M	6500 (25)	17.5 (19)	4.8 (12)	84 (13)	1 (1)	36 (12)
09 Y 2060	SWX	6500 (26)	15.8 (32)	4.9 (4)	88 (22)	1 (1)	36 (14)
09 Y 2063	SWX	6460 (27)	16.6 (30)	4.8 (24)	88 (22)	1 (1)	35 (6)
$10 Y 3305$	M	6400 (28)	16.9 (25)	4.9 (2)	80 (1)	1 (1)	34 (3)
10Y2031	SLA	6330 (29)	16.9 (26)	4.6 (31)	88 (24)	1 (1)	32 (1)
M202	M	6300 (30)	17.9 (14)	4.8 (12)	88 (24)	1 (1)	37 (26)
$09 Y 3256$	M	5850 (31)	18.3 (9)	4.8 (24)	89 (28)	1 (1)	37 (18)
AKITA	SPQ	5310 (32)	18.0 (13)	4.2 (32)	88 (24)	1 (1)	40 (32)
MEAN		6980	17.7	4.8	86	1	36
CV		10.2	2.6	1.5	1.1		5
LSD (.05)			0.9	0.1	2		

$\mathrm{S}=$ short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{WX}=$ waxy; $\mathrm{R}=$ Newrex; $\mathrm{SR}=$ stem rot resistant; LA = Low Amalose.
Subjective rating of $1-5$ where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 3. 2011 Very Early Rice Variety Trial - Sutter

Variety	$\begin{aligned} & \text { Grain } \\ & \text { Type } \\ & \hline \end{aligned}$	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{aligned} & \text { Days to } \\ & 50 \% \\ & \text { Heading } \\ & \hline \end{aligned}$	Lodging $(1-99)$	Plant Height (in)
$06 Y 575$	LR	10560 (1)	18.5 (12)	5.0 (1)	94 (16)	1 (1)	38 (13)
09 Y 1079	L	10300 (2)	18.0 (13)	5.0 (1)	95 (17)	1 (1)	34 (2)
M104	M	10300 (3)	19.9 (9)	5.0 (1)	84 (3)	74 (17)	37 (10)
$08 Y 3080$	M	10260 (4)	18.9 (11)	5.0 (1)	89 (11)	45 (11)	40 (18)
07 Y 843	M	10120 (5)	22.1 (2)	5.0 (1)	88 (9)	3 (6)	37 (8)
CH201	SPQ	9750 (6)	17.0 (17)	5.0 (1)	96 (18)	48 (12)	37 (10)
08 Y 3016	M	9610 (7)	20.7 (5)	5.0 (1)	85 (4)	81 (18)	37 (7)
L206	L	9520 (8)	17.3 (16)	5.0 (1)	91 (14)	1 (1)	32 (1)
M206	M	9350 (9)	18.9 (10)	5.0 (1)	90 (13)	1 (1)	38 (14)
08 Y 3076	M	9110 (10)	23.2 (1)	5.0 (1)	94 (15)	60 (14)	39 (16)
08 Y 2049	SSR	9040 (11)	20.4 (6)	5.0 (1)	89 (12)	6 (8)	35 (4)
09 Y 2141	SWX	9030 (12)	19.9 (8)	5.0 (1)	88 (7)	1 (1)	39 (17)
04 Y 177	SPQ	8760 (13)	17.5 (15)	5.0 (1)	88 (9)	53 (13)	35 (3)
$09 Y 2036$	S	8500 (14)	20.3 (7)	5.0 (1)	87 (6)	63 (15)	38 (12)
S102	S	8440 (15)	16.3 (18)	5.0 (1)	84 (1)	28 (10)	36 (5)
M105	M	8030 (16)	22.1 (2)	5.0 (1)	87 (5)	4 (7)	38 (15)
$09 Y 3024$	M	7780 (17)	20.7 (4)	5.0 (1)	88 (8)	17 (9)	37 (8)
CM101	SWX	7410 (18)	17.6 (14)	5.0 (1)	84 (1)	71 (16)	37 (6)
MEAN		9210	19.4	5.0	89	31	37
CV		10.6	9.1		0.6	68.6	3.3
LSD (.05)		1390	2.5		1	30	2
Preliminary Lines and Varieties							
10 Y 1178	L	10870 (1)	20.6 (15)	5.0 (1)	98 (32)	1 (1)	36 (4)
$09 Y 3043$	M	10790 (2)	19.8 (25)	5.0 (1)	86 (8)	1 (1)	41 (31)
10 Y 3290	M	10690 (3)	19.8 (24)	5.0 (1)	91 (25)	26 (18)	37 (6)
10 Y 2043	S	10490 (4)	19.7 (27)	5.0 (1)	88 (15)	38 (23)	36 (2)
10 Y 2158	SWX	10400 (5)	21.5 (9)	5.0 (1)	92 (27)	8 (15)	38 (18)
10Y2049	SPQ	10330 (6)	20.5 (20)	5.0 (1)	88 (20)	46 (25)	36 (3)
M202	M	10330 (7)	21.3 (10)	5.0 (1)	94 (30)	1 (1)	37 (6)
$09 Y 3538$	M	10000 (8)	21.1 (11)	5.0 (1)	88 (15)	65 (27)	38 (13)
09 Y 2063	SWX	9970 (9)	20.8 (13)	5.0 (1)	90 (22)	13 (16)	39 (28)
09 Y 3059	M	9910 (10)	19.8 (25)	5.0 (1)	88 (15)	6 (12)	39 (22)
$09 Y 3225$	M	9780 (11)	22.6 (3)	5.0 (1)	91 (23)	40 (24)	38 (13)
10 Y 3286	M	9660 (12)	20.7 (14)	5.0 (1)	86 (8)	6 (12)	37 (6)
10 Y 3227	M	9560 (13)	22.3 (5)	5.0 (1)	85 (5)	85 (29)	38 (13)
10 Y 3282	M	9510 (14)	22.1 (6)	5.0 (1)	85 (6)	85 (29)	39 (21)
10 Y 3305	M	9460 (15)	20.5 (19)	5.0 (1)	84 (3)	1 (1)	37 (9)
10 Y 1008	LSR	9430 (16)	19.4 (28)	5.0 (1)	92 (27)	48 (26)	38 (16)
$09 Y 3273$	M	9370 (17)	20.5 (16)	5.0 (1)	87 (13)	31 (20)	38 (20)
$09 Y 3176$	M	9280 (18)	20.1 (23)	5.0 (1)	87 (13)	21 (17)	38 (16)
10 Y 2123	MPQ	9260 (19)	21.6 (7)	5.0 (1)	91 (23)	26 (18)	41 (30)
$09 Y 3270$	M	9250 (20)	23.5 (2)	5.0 (1)	84 (3)	33 (21)	39 (27)
$09 Y 3272$	M	9250 (21)	20.5 (16)	5.0 (1)	85 (6)	3 (11)	41 (31)
10 Y 3261	M	9200 (22)	20.5 (16)	5.0 (1)	88 (15)	1 (1)	40 (29)
09 Y 3048	M	9180 (23)	20.4 (21)	5.0 (1)	82 (1)	65 (27)	37 (5)
09 Y 3268	M	8920 (24)	20.2 (22)	5.0 (1)	87 (11)	1 (1)	37 (10)
$09 Y 3277$	M	8830 (25)	23.6 (1)	5.0 (1)	88 (15)	85 (29)	38 (18)
10 Y 2031	SLA	8710 (26)	17.9 (31)	5.0 (1)	88 (20)	1 (1)	37 (10)
$09 Y 3256$	M	8510 (27)	21.5 (8)	5.0 (1)	92 (27)	1 (1)	39 (22)
06 Y 513	L	8440 (28)	18.5 (30)	5.0 (1)	95 (31)	1 (1)	36 (1)
10 Y 2115	SLA	8380 (29)	18.7 (29)	5.0 (1)	91 (25)	1 (1)	39 (25)
$09 Y 2060$	SWX	7910 (30)	17.5 (32)	5.0 (1)	87 (11)	6 (12)	39 (22)
$09 Y 3078$	M	7850 (31)	21.1 (11)	5.0 (1)	84 (2)	36 (22)	39 (25)
AKITA	SPQ	4570 (32)	22.5 (4)	4.5 (32)	86 (8)	93 (32)	38 (12)
MEAN		9310	20.7	5	88	27	38
CV		8.7	4.8		1.1	89.2	2.9
LSD (.05)		1650	2		2	49	2
$\mathrm{S}=$ short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{WX}=$ waxy; $\mathrm{R}=\mathrm{Newrex} ; \mathrm{SR}$ = stem rot resis Subjective rating of $1-5$ where $1=$ poor and $5=$ excellent seedling emergence. Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged. Numbers in parentheses indicate relative rank in column.							

Table 4. 2011 Very Early Rice Variety Trial - Yolo
Advanced Lines and Varieties

Variety	Grain Type	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { Heading } \\ \hline \end{gathered}$	Lodging (1-99)	Plant Height (in)
09Y2141	SWX	11580 (1)	21.2 (5)	5.0 (1)	91 (14)	1 (1)	44 (18)
06 Y 575	LR	11360 (2)	18.5 (12)	4.8 (13)	94 (17)	1 (1)	44 (17)
08Y2049	SSR	10500 (3)	19.9 (7)	4.8 (15)	90 (11)	1 (1)	40 (8)
$08 Y 3076$	M	10460 (4)	20.9 (6)	5.0 (9)	92 (15)	2 (16)	40 (13)
04 Y 177	SPQ	10440 (5)	18.1 (13)	4.7 (17)	88 (10)	50 (17)	40 (8)
$09 Y 2036$	S	10380 (6)	19.8 (8)	4.8 (15)	90 (13)	1 (1)	41 (16)
M105	M	10290 (7)	21.8 (3)	4.9 (12)	87 (6)	1 (1)	41 (14)
07 Y 843	M	10250 (8)	22.4 (1)	4.9 (11)	87 (7)	1 (1)	41 (14)
M206	M	10230 (9)	21.9 (2)	5.0 (1)	87 (8)	1 (1)	40 (11)
$09 Y 1079$	L	10060 (10)	17.8 (14)	5.0 (1)	96 (18)	1 (1)	38 (2)
M104	M	10020 (11)	18.8 (10)	5.0 (1)	84 (2)	1 (1)	39 (5)
CH201	SPQ	9910 (12)	16.5 (16)	5.0 (9)	90 (12)	50 (18)	39 (6)
08 Y 3016	M	9840 (13)	18.6 (11)	4.5 (18)	84 (2)	1 (1)	38 (3)
08 Y 3080	M	9630 (14)	19.0 (9)	5.0 (1)	84 (2)	1 (1)	40 (12)
$09 Y 3024$	M	9570 (15)	21.3 (4)	4.8 (13)	88 (9)	1 (1)	39 (4)
L206	L	9490 (16)	16.9 (15)	5.0 (1)	93 (16)	1 (1)	36 (1)
S102	S	9050 (17)	15.1 (18)	5.0 (1)	84 (1)	1 (1)	39 (7)
CM101	SWX	8320 (18)	15.8 (17)	5.0 (1)	86 (5)	1 (1)	40 (10)
MEAN		10080	19.1	4.9	88	6	40
CV		4.5	3.5	6.1	1.5	190.8	3.8
LSD (.05)		650	1		2	18	2
Preliminary Lines and Varieties							
10Y2043	S	11660 (1)	17.8 (23)	4.9 (14)	94 (28)	1 (1)	40 (12)
$09 Y 3225$	M	10820 (2)	18.6 (14)	5.0 (1)	87 (16)	1 (1)	43 (28)
$10 Y 3286$	M	10700 (3)	19.3 (9)	4.4 (29)	87 (16)	1 (1)	39 (7)
$10 Y 3290$	M	10560 (4)	19.2 (10)	4.9 (16)	91 (24)	1 (1)	40 (13)
10Y3282	M	10450 (5)	18.7 (13)	5.0 (1)	83 (3)	5 (28)	40 (13)
$09 Y 3268$	M	10280 (6)	19.7 (7)	4.9 (16)	90 (22)	1 (1)	43 (28)
$10 Y 3261$	M	10270 (7)	20.5 (3)	4.9 (16)	89 (20)	1 (1)	42 (23)
09Y3059	M	10260 (8)	19.5 (8)	5.0 (1)	89 (20)	1 (1)	39 (4)
10Y2049	SPQ	10260 (9)	17.6 (25)	5.0 (1)	84 (5)	1 (1)	37 (2)
$09 Y 3078$	M	10240 (10)	18.9 (12)	4.5 (26)	85 (13)	1 (1)	43 (30)
$09 Y 3176$	M	10190 (11)	18.0 (22)	4.8 (22)	85 (8)	1 (1)	39 (7)
$09 Y 3538$	M	10160 (12)	19.1 (11)	4.9 (14)	87 (15)	1 (1)	39 (7)
10Y2031	SLA	10140 (13)	14.4 (32)	5.0 (1)	83 (3)	8 (29)	38 (3)
$10 Y 2158$	SWX	10140 (14)	20.6 (2)	4.5 (26)	94 (30)	1 (1)	40 (13)
$10 Y 2123$	MPQ	10070 (15)	20.5 (4)	4.3 (31)	92 (26)	65 (31)	42 (26)
$09 Y 2063$	SWX	10050 (16)	18.4 (17)	4.9 (16)	89 (19)	1 (1)	41 (19)
$09 Y 3272$	M	10000 (17)	18.3 (20)	5.0 (1)	85 (8)	1 (1)	39 (7)
$09 Y 3043$	M	9980 (18)	17.8 (23)	4.8 (22)	85 (8)	1 (1)	41 (16)
$09 Y 3277$	M	9890 (19)	18.5 (15)	5.0 (1)	84 (6)	1 (1)	39 (4)
10 Y 1008	LSR	9890 (20)	17.5 (26)	4.9 (16)	94 (28)	1 (1)	41 (16)
$09 Y 3273$	M	9870 (21)	18.5 (15)	5.0 (1)	85 (8)	1 (1)	42 (23)
$09 Y 3048$	M	9810 (22)	18.2 (21)	5.0 (1)	81 (2)	1 (1)	41 (19)
$09 Y 3270$	M	9800 (23)	18.4 (19)	5.0 (1)	84 (6)	1 (1)	41 (16)
10 Y 1178	L	9740 (24)	20.0 (6)	3.5 (32)	101 (32)	1 (1)	42 (26)
M202	M	9590 (25)	20.2 (5)	5.0 (1)	90 (22)	1 (1)	43 (30)
$10 Y 3227$	M	9540 (26)	18.4 (17)	5.0 (1)	85 (13)	1 (1)	41 (19)
10 Y 2115	SLA	9520 (27)	15.1 (31)	4.8 (22)	85 (8)	8 (29)	39 (4)
$09 Y 3256$	M	9300 (28)	20.9 (1)	4.5 (26)	88 (18)	1 (1)	42 (23)
06 Y 513	L	8930 (29)	16.2 (30)	4.8 (22)	97 (31)	1 (1)	39 (7)
$10 Y 3305$	M	8840 (30)	17.1 (28)	5.0 (1)	80 (1)	1 (1)	36 (1)
$09 Y 2060$	SWX	8440 (31)	16.5 (29)	4.9 (16)	92 (26)	1 (1)	41 (19)
AKITA	SPQ	7050 (32)	17.1 (27)	4.4 (30)	91 (25)	95 (32)	44 (32)
MEAN		9890	18.4	4.8	88	7	40
CV		3.5	3.8	6	2.2	102.5	2.7
LSD (.05)		710	1.4	0.6	4	14	2

$\mathrm{S}=$ short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{WX}=$ waxy; $\mathrm{R}=$ Newrex; $\mathrm{SR}=$ stem rot resistant; LA = Low Amalose.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 5. 2011 Very Early Rice Variety Trial - San Joaquin

Variety	Grain Type	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{aligned} & \text { Days to } \\ & 50 \% \\ & \text { Heading } \end{aligned}$	Lodging $(1-99)$	Plant Height (in)
06 Y 575	LR	9830 (1)	19.4 (6)	5.0 (1)	109 (16)	1 (1)	37 (18)
$09 Y 2141$	SWX	9580 (2)	19.8 (3)	5.0 (1)	107 (14)	1 (1)	36 (17)
M206	M	9330 (3)	19.4 (7)	5.0 (1)	105 (10)	1 (1)	35 (15)
08 Y 3076	M	9330 (4)	20.4 (2)	5.0 (1)	107 (13)	1 (1)	35 (13)
08 Y 3016	M	9150 (5)	19.2 (8)	5.0 (1)	100 (2)	1 (1)	32 (6)
08 Y 3080	M	9100 (6)	18.1 (12)	5.0 (1)	104 (8)	1 (1)	36 (16)
$09 Y 2036$	S	8970 (7)	18.1 (13)	5.0 (1)	104 (8)	1 (1)	35 (14)
07 Y 843	M	8960 (8)	20.8 (1)	5.0 (1)	101 (4)	1 (1)	33 (9)
M104	M	8800 (9)	18.4 (10)	5.0 (1)	98 (1)	1 (1)	33 (7)
$08 Y 2049$	SSR	8800 (10)	19.7 (4)	5.0 (1)	101 (5)	1 (1)	31 (1)
M105	M	8720 (11)	18.0 (14)	5.0 (1)	100 (2)	1 (1)	34 (12)
$09 Y 1079$	L	8560 (12)	19.6 (5)	5.0 (1)	110 (17)	1 (1)	32 (4)
$09 Y 3024$	M	8550 (13)	18.5 (9)	5.0 (1)	103 (7)	1 (1)	33 (9)
CH201	SPQ	8360 (14)	15.4 (17)	5.0 (1)	109 (15)	1 (1)	31 (3)
L206	L	8340 (15)	15.6 (15)	5.0 (1)	107 (12)	1 (1)	31 (2)
CM101	SWX	7850 (16)	15.5 (16)	4.6 (17)	105 (10)	1 (1)	33 (8)
S102	S	7760 (17)	15.4 (18)	5.0 (1)	102 (6)	1 (1)	33 (9)
04 Y 177	SPQ	7720 (18)	18.3 (11)	3.8 (18)	110 (18)	1 (1)	32 (5)
MEAN		8760	18.3	4.9	105	1	33
CV		4.6	6.7	2.3	2.6		3.2
$\underline{\text { LSD (.05) }}$		580	1.7	0.2	4		1
Preliminary Lines and Varieties							
$09 Y 2063$	SWX	9540 (1)	17.5 (17)	5.0 (1)	106 (21)	1 (1)	35 (17)
$09 Y 3059$	M	9390 (2)	17.3 (19)	5.0 (1)	102 (8)	1 (1)	35 (16)
$09 Y 3078$	M	9390 (3)	16.7 (24)	5.0 (1)	99 (3)	1 (1)	34 (12)
10Y3282	M	9390 (4)	16.5 (27)	5.0 (1)	99 (3)	1 (1)	33 (4)
$09 Y 3277$	M	9340 (5)	20.2 (5)	5.0 (1)	104 (14)	1 (1)	33 (8)
10 Y 2158	SWX	9320 (6)	20.6 (2)	5.0 (1)	112 (30)	1 (1)	36 (22)
$09 Y 3272$	M	9250 (7)	18.3 (14)	5.0 (1)	104 (14)	1 (1)	37 (32)
M202	M	9090 (8)	18.8 (9)	5.0 (1)	109 (26)	1 (1)	36 (25)
$09 Y 3268$	M	8990 (9)	16.9 (23)	5.0 (1)	102 (8)	1 (1)	33 (6)
10 Y 3286	M	8980 (10)	18.6 (11)	5.0 (1)	105 (17)	1 (1)	34 (14)
$09 Y 3176$	M	8970 (11)	18.4 (12)	5.0 (1)	102 (8)	1 (1)	33 (4)
$09 Y 3538$	M	8960 (12)	19.1 (8)	5.0 (1)	103 (12)	1 (1)	34 (13)
10 Y 3290	M	8940 (13)	18.0 (16)	5.0 (1)	106 (20)	1 (1)	36 (23)
$09 Y 3043$	M	8840 (14)	16.6 (26)	5.0 (1)	101 (6)	1 (1)	37 (30)
10 Y 1178	L	8800 (15)	20.5 (4)	5.0 (1)	118 (32)	1 (1)	35 (19)
$09 Y 3225$	M	8730 (16)	19.5 (6)	5.0 (1)	107 (23)	1 (1)	36 (26)
10Y1008	LSR	8670 (17)	18.4 (13)	5.0 (1)	110 (28)	1 (1)	35 (19)
$09 Y 3270$	M	8620 (18)	16.7 (25)	5.0 (1)	98 (1)	1 (1)	36 (23)
10 Y 3227	M	8610 (19)	20.6 (3)	5.0 (1)	102 (8)	1 (1)	34 (14)
10Y2049	SPQ	8610 (20)	18.1 (15)	4.5 (29)	106 (21)	1 (1)	33 (6)
10Y3261	M	8580 (21)	18.7 (10)	5.0 (1)	104 (14)	1 (1)	36 (28)
06 Y 513	L	8530 (22)	16.4 (28)	5.0 (1)	112 (31)	1 (1)	33 (8)
$09 Y 3273$	M	8530 (23)	17.0 (22)	5.0 (1)	101 (6)	1 (1)	37 (30)
10 Y 2115	SLA	8480 (24)	14.9 (30)	5.0 (1)	105 (17)	1 (1)	35 (17)
10Y2123	MPQ	8320 (25)	22.6 (1)	4.5 (29)	111 (29)	1 (1)	36 (26)
10 Y 2043	S	8260 (26)	17.5 (18)	4.5 (29)	107 (23)	1 (1)	32 (3)
$09 Y 3256$	M	8230 (27)	17.3 (19)	5.0 (1)	105 (17)	1 (1)	35 (19)
$09 Y 2060$	SWX	8150 (28)	14.6 (31)	5.0 (1)	108 (25)	1 (1)	34 (10)
$09 Y 3048$	M	8130 (29)	16.1 (29)	5.0 (1)	99 (2)	1 (1)	34 (10)
10Y2031	SLA	8060 (30)	14.4 (32)	5.0 (1)	103 (13)	1 (1)	31 (1)
$10 Y 3305$	M	8030 (31)	17.1 (21)	5.0 (1)	99 (3)	1 (1)	32 (2)
AKITA	SPQ	4820 (32)	19.1 (7)	3.0 (32)	110 (27)	1 (1)	36 (28)
MEAN		8640	17.9	4.9	105	1	35
CV		4.5	6.3	3.6	1.8		3.6
LSD (.05)		800	2.3	0.4	4		3

$\frac{1}{\mathrm{~S}}=\mathrm{short} ; \mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{WX}=$ waxy; $\mathrm{R}=$ Newrex; $\mathrm{SR}=$ stem rot resistant; LA = Low Amalose.
Subjective rating of $1-5$ where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 6. Grain Yield (lb/acre @14\% moisture) Summary of Very Early Rice Varieties by Location and Year (2007-2011)

Location	Year	Calmochi						
		M-104	M-202	M-206	101	S-102	L-205	L-206
Biggs (RES)	2007	8930	10250	11030	6740	10730	9550	10360
	2008	10000	10170	10900	9960	10240	10010	11180
	2009	7180	8080	8940	7640	8230	9430	9710
	2010	-	10470	11290	9470	9380	10140	10200
	2011*	-	-	-	-	-	-	-
Location Mean		8703	9743	10540	8453	9645	9783	10363
Sutter	2007	10680	10740	11250	11140	11100	10000	10440
	2008	10100	9540	9800	10010	10190	9490	9840
	2009	10040	9070	9390	7870	8480	9070	10160
	2010	8270	6520	7890	9500	9360	7450	8050
	2011*	-	-	-	-	-	-	-
Location Mean		9773	8968	9583	9630	9783	9003	9623
Yolo	2007	7510	7220	7350	7500	7140	7010	7520
	2008	9930	10140	10480	9830	10340	9590	10210
	2009	11770	11400	12570	10760	11930	11220	10880
	2010	8050	7890	8210	7190	7520	7390	8230
	2011	10020	9590	10230	9320	9050	-	9490
Location Mean		9456	9248	9768	8920	9196	8803	9266
San Joaquin	2007	9050	6130	9380	9650	10340	7430	9850
	2008	9780	7770	9360	9470	10000	7580	8160
	2009	8530	8720	8440	7650	7480	6970	8120
	2010	8360	7760	7560	8070	7950	5970	8170
	2011	8800	9090	9330	7850	7760	-	8340
Location Mean		8904	7894	8814	8538	8706	6988	8528
Loc/Years Mean		9235	8919	9633	8868	9290	8644	9384
Yield \% M-104		100.0	96.6	104.3	96.0	100.6	93.6	101.6
Number of Tests		17	18	18	18	18	16	18

* Test locations not included in 2011 due to very high yield cvs.

Table 7. 2011 Early Rice Variety Tests - Four Location Advanced and Three Location Preliminary Summary

Advanced Lines and Varieties

Variety	Grain Type	Ave Grain Yield at 14\% Moisture Ibs/acre	Single Location Yields				Ave Grain				
							Moisture	Seedling	Days to		Plant
			Biggs	Butte	Colusa	Yuba	at Harvest (\%)	Vigor (1-5)	50% Heading	Lodging (1-99)	Height (in)
09 Y 1122	L	10400 (1)	10610 (5)	10300 (1)	9930 (7)	10770 (2)	17.7 (14)	4.9 (13)	95 (11)	1 (1)	39 (4)
$09 Y 2179$	S	10360 (2)	10960 (2)	8980 (7)	10700 (1)	10800 (1)	19.1 (9)	4.9 (9)	93 (9)	1 (4)	42 (15)
08 Y 3269	M	10210 (3)	10870 (3)	9520 (3)	10210 (5)	10260 (5)	20.7 (5)	5.0 (7)	96 (12)	1 (1)	41 (12)
09 Y 2141	SWX	10110 (4)	11430 (1)	10280 (2)	8000 (13)	10740 (3)	20.7 (4)	4.9 (10)	91 (6)	29 (13)	43 (17)
$06 Y 575$	LR	9940 (5)	10100 (10)	8760 (9)	10560 (2)	10320 (4)	18.4 (10)	4.9 (8)	99 (16)	2 (7)	43 (16)
M208	M	9820 (6)	10240 (8)	9350 (4)	10240 (4)	9450 (10)	20.4 (7)	5.0 (2)	94 (10)	1 (4)	42 (13)
M205	M	9810 (7)	10610 (4)	8860 (8)	9760 (8)	10000 (8)	21.3 (1)	4.9 (11)	98 (15)	1 (4)	40 (8)
L206	L	9790 (8)	10020 (12)	9330 (5)	9660 (10)	10160 (7)	17.0 (17)	4.9 (12)	91 (5)	11 (9)	38 (1)
08 Y 3126	M	9760 (9)	10470 (6)	9230 (6)	9730 (9)	9630 (9)	20.5 (6)	5.0 (6)	90 (4)	10 (8)	42 (14)
M206	M	9680 (10)	10050 (11)	8520 (10)	9960 (6)	10190 (6)	21.0 (2)	5.0 (2)	90 (3)	20 (11)	41 (11)
10 Y 1025	L	9480 (11)	9880 (13)	8480 (12)	10370 (3)	9190 (13)	18.2 (12)	4.9 (15)	97 (14)	1 (1)	39 (5)
$09 Y 2159$	SLA	9160 (12)	10310 (7)	8490 (11)	9060 (12)	8800 (14)	18.4 (11)	4.8 (17)	99 (17)	19 (10)	40 (7)
M202	M	9120 (13)	9660 (15)	8180 (14)	9350 (11)	9300 (12)	20.9 (3)	5.0 (5)	92 (8)	27 (12)	40 (9)
S102	S	8670 (14)	10230 (9)	8280 (13)	7420 (14)	8740 (15)	17.0 (16)	5.0 (1)	87 (1)	45 (14)	41 (10)
04 Y 177	SPQ	8540 (15)	9840 (14)	7960 (16)	6950 (15)	9420 (11)	19.6 (8)	4.8 (16)	92 (7)	49 (16)	38 (3)
CH201	SPQ	7780 (16)	9210 (16)	8060 (15)	6040 (17)	7800 (16)	17.7 (15)	5.0 (4)	97 (13)	49 (15)	38 (2)
CM101	SWX	7630 (17)	8980 (17)	7680 (17)	6510 (16)	7370 (17)	18.2 (13)	4.9 (14)	90 (2)	49 (16)	40 (6)
MEAN		9430	10200	8840	9090	9590	19.2	4.9	94	19	40
CV		6.5	3.4	6.6	9.3	6.0	5	2.7	1.5	77.7	3.8
LSD (.05)		430	490	830	1200	820	0.7	0.1	1	10	1

Preliminary Lines and Varieties (three location summary)

Variety	Grain Type	Ave Grain Yield at 14\% Moisture Ibs/acre	Butte	Colusa	Yuba	Ave Grain Moisture at Harvest (\%)	$\begin{gathered} \text { Seedling } \\ \text { Vigor } \\ (1-5) \\ \hline \end{gathered}$	$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { Heading } \\ \hline \end{gathered}$	Lodging $(1-99)$	Plant Height (in)
09Y3805	M	9710 (1)	8700 (13)	10410 (3)	10010 (10)	22.3 (5)	5.0 (1)	95 (17)	3 (25)	42 (32)
08Y3239	M	9700 (2)	8570 (17)	10530 (1)	10000 (11)	19.5 (25)	5.0 (1)	93 (9)	1 (1)	38 (6)
$09 Y 3517$	M	9640 (3)	9140 (5)	9600 (10)	10170 (5)	20.5 (19)	5.0 (1)	92 (5)	2 (23)	42 (33)
$09 Y 3912$	M	9580 (4)	9210 (3)	9640 (9)	9880 (13)	20.9 (14)	5.0 (1)	99 (30)	1 (1)	41 (29)
$09 Y 3708$	M	9550 (5)	9060 (6)	9900 (6)	9700 (15)	23.0 (2)	5.0 (1)	102 (35)	1 (1)	39 (13)
10 Y 1059	LJ	9480 (6)	8590 (16)	9640 (8)	10200 (4)	18.4 (28)	5.0 (1)	95 (15)	1 (1)	40 (21)
09 Y 1067	LIM	9440 (7)	8320 (23)	10520 (2)	9480 (18)	17.5 (35)	5.0 (1)	95 (14)	1 (1)	42 (34)
09Y3665	M	9420 (8)	9010 (7)	8610 (20)	10640 (1)	21.3 (11)	5.0 (1)	97 (23)	2 (23)	39 (11)
$10 Y 2094$	MPQ	9410 (9)	9160 (4)	8950 (16)	10130 (6)	20.8 (16)	5.0 (1)	94 (10)	30 (30)	41 (25)
$09 Y 3605$	M	9380 (10)	8860 (9)	9180 (13)	10110 (7)	21.5 (10)	5.0 (1)	102 (37)	1 (1)	39 (16)
$09 Y 3523$	M	9380 (11)	8510 (20)	9180 (14)	10440 (3)	20.9 (13)	5.0 (1)	88 (1)	10 (27)	39 (15)
$09 Y 3580$	M	9350 (12)	8330 (21)	10040 (4)	9700 (16)	22.3 (4)	4.9 (31)	95 (19)	3 (25)	40 (19)
$09 Y 3671$	M	9330 (13)	8750 (11)	9160 (15)	10060 (9)	21.7 (8)	5.0 (1)	99 (30)	1 (1)	39 (17)
10 Y 1067	LJ	9270 (14)	8560 (18)	9320 (12)	9940 (12)	16.7 (37)	5.0 (1)	92 (6)	1 (1)	37 (2)
$09 Y 3600$	M	9260 (15)	8660 (14)	8660 (18)	10470 (2)	19.8 (21)	5.0 (1)	99 (28)	1 (1)	40 (20)
09 Y 1079	L	9250 (16)	8770 (10)	9950 (5)	9040 (22)	19.6 (23)	5.0 (1)	99 (29)	1 (1)	39 (12)
$09 Y 2184$	S	9090 (17)	8330 (22)	8860 (17)	10100 (8)	21.9 (6)	5.0 (1)	102 (34)	1 (1)	39 (14)
10 Y 1162	L	9000 (18)	8520 (19)	9410 (11)	9070 (21)	18.0 (31)	5.0 (1)	96 (22)	1 (1)	38 (6)
10Y1038	L	8970 (19)	8610 (15)	9700 (7)	8590 (25)	17.7 (32)	5.0 (1)	96 (20)	1 (1)	41 (30)
$09 Y 3886$	M	8960 (20)	9920 (1)	7460 (31)	9500 (17)	20.8 (18)	5.0 (1)	98 (25)	1 (1)	41 (26)
M105	M	8880 (21)	9270 (2)	7580 (30)	9800 (14)	21.3 (12)	5.0 (1)	89 (2)	38 (31)	41 (28)
$10 Y 2086$	MPQ	8470 (22)	8010 (26)	8250 (24)	9150 (20)	20.8 (15)	4.9 (31)	95 (13)	42 (32)	41 (24)
$09 Y 3005$	M	8450 (23)	8040 (24)	8290 (23)	9020 (23)	20.8 (17)	5.0 (1)	90 (4)	25 (29)	41 (27)
$09 Y 2171$	M	8280 (24)	7720 (31)	8650 (19)	8470 (26)	21.8 (7)	5.0 (29)	94 (12)	66 (35)	40 (22)
10 Y 2046	SPQ	8240 (25)	6760 (35)	8560 (21)	9400 (19)	19.1 (26)	5.0 (1)	97 (24)	43 (33)	39 (17)
10Y2082	MPQ	8110 (26)	8950 (8)	6710 (33)	8650 (24)	21.6 (9)	5.0 (1)	92 (8)	72 (37)	41 (23)
$10 Y 2126$	MPQ	7960 (27)	7590 (32)	8420 (22)	7870 (27)	23.1 (1)	5.0 (1)	95 (15)	50 (34)	43 (37)
A201	LA	7910 (28)	7860 (29)	8180 (25)	7680 (29)	19.0 (27)	4.7 (37)	104 (38)	1 (1)	41 (31)
10 Y 1149	LA	7860 (29)	7940 (27)	8110 (26)	7520 (31)	18.4 (29)	5.0 (1)	96 (21)	1 (1)	38 (8)
10 Y 150	LJ	7850 (30)	7730 (30)	8040 (27)	7770 (28)	17.6 (33)	5.0 (1)	94 (10)	1 (1)	38 (10)
10 Y 2093	MPQ	7340 (31)	7490 (33)	6940 (32)	7600 (30)	22.4 (3)	5.0 (1)	92 (7)	66 (35)	42 (35)
08 Y 1115	LA	7330 (32)	7900 (28)	7800 (28)	6300 (34)	18.0 (30)	4.8 (36)	100 (33)	1 (1)	36 (1)
10 Y 151	LB	7320 (33)	7400 (34)	7630 (29)	6910 (33)	19.7 (22)	5.0 (30)	100 (32)	1 (1)	38 (4)
10P1433	LB	6870 (34)	8740 (12)	5830 (34)	6040 (35)	19.5 (24)	4.9 (31)	98 (25)	11 (28)	44 (38)
CT202	LB	6420 (35)	8020 (25)	5210 (35)	6030 (36)	17.6 (34)	4.9 (31)	102 (36)	1 (1)	37 (3)
AKITA	SPQ	5990 (36)	6410 (36)	4580 (37)	6970 (32)	20.5 (20)	4.6 (38)	89 (3)	93 (38)	43 (36)
10P1597	LB	5360 (37)	6250 (37)	4520 (38)	5290 (37)	17.0 (36)	5.0 (1)	98 (27)	1 (1)	38 (5)
10 Y 153	LB	4920 (38)	5090 (38)	4770 (36)	4910 (38)	15.9 (38)	4.9 (35)	95 (17)	1 (1)	38 (9)
MEAN		8440	8230	8340	8750	20.0	5.0	96	15	40
CV		6.8	6.9	8.2	5	6.4	2.5	1.4	97.3	3.5
LSD (.05)		650	1150	1380	890	1.5	0.1	2	17	2

$\mathrm{S}=$ short; $\mathrm{M}=$ medium; L = Iong; PQ = premium quality; LA=low amalose; J=Jasmine; $\mathrm{A}=$ aromatic; B=Basmati; $\mathrm{WX}=$ waxy; $\mathrm{R}=\mathrm{Newrex}, \mathrm{SR=stem} \mathrm{rot} \mathrm{resistant;}$
$I M=I M M I$ herbicide resistant.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where 1 = none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

* The Biggs preliminary summary was excluded from the overall summary due to an exceedingly high yield cv.

Table 8. 2011 Early Rice Variety Trial - Biggs

Variety	$\begin{aligned} & \text { Grain } \\ & \text { Type } \\ & \hline \end{aligned}$	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	Days to 50% Heading	Lodging $(1-99)$	Plant Height (in)
09 Y 2141	SWX	11430 (1)	16.1 (10)	4.7 (13)	91 (10)	1 (1)	44 (17)
$09 Y 2179$	S	10960 (2)	15.9 (14)	4.7 (14)	87 (2)	1 (1)	41 (14)
$08 Y 3269$	M	10870 (3)	17.2 (4)	4.8 (8)	93 (11)	1 (1)	40 (9)
M205	M	10610 (4)	17.2 (6)	4.7 (15)	93 (13)	1 (1)	40 (6)
09 Y 1122	L	10610 (5)	16.3 (9)	4.8 (11)	93 (11)	1 (1)	38 (3)
$08 Y 3126$	M	10470 (6)	17.2 (5)	4.8 (6)	88 (5)	1 (1)	42 (15)
$09 Y 2159$	SLA	10310 (7)	15.7 (16)	4.8 (7)	95 (15)	1 (1)	40 (8)
M208	M	10240 (8)	17.0 (7)	4.9 (2)	89 (7)	1 (1)	42 (16)
S102	S	10230 (9)	14.9 (17)	5.0 (1)	84 (1)	1 (1)	40 (10)
$06 Y 575$	LR	10100 (10)	17.0 (8)	4.8 (11)	98 (17)	1 (1)	41 (13)
M206	M	10050 (11)	17.6 (1)	4.9 (2)	88 (3)	1 (1)	41 (12)
L206	L	10020 (12)	16.0 (12)	4.6 (17)	88 (5)	1 (1)	39 (4)
10 Y 1025	L	9880 (13)	17.5 (2)	4.7 (15)	96 (16)	1 (1)	40 (7)
04 Y 177	SPQ	9840 (14)	15.9 (13)	4.8 (10)	90 (8)	1 (1)	37 (1)
M202	M	9660 (15)	17.5 (3)	4.9 (5)	90 (8)	1 (1)	41 (11)
CH2O1	SPQ	9210 (16)	16.0 (11)	4.9 (4)	94 (14)	1 (1)	38 (2)
CM101	SWX	8980 (17)	15.9 (15)	4.8 (8)	88 (3)	1 (1)	40 (5)
MEAN		10200	16.5	4.8	91	1	40
CV		3.4	4.3	2.2	1.2		4.2
LSD (.05)		490	1	0.2	2		2
Preliminary Lines and Varieties							
09Y2184	S	10140 (1)	16.5 (18)	4.7 (27)	94 (28)	1 (1)	35 (3)
$09 Y 3805$	M	10100 (2)	17.1 (8)	4.9 (8)	90 (10)	1 (1)	42 (32)
$09 Y 3665$	M	9850 (3)	17.9 (1)	4.7 (22)	92 (19)	1 (1)	37 (7)
10 Y 2046	SPQ	9630 (4)	15.8 (24)	4.7 (22)	93 (24)	1 (1)	39 (14)
09 Y 3517	M	9600 (5)	17.9 (2)	3.7 (37)	90 (13)	1 (1)	43 (33)
M105	M	9490 (6)	16.7 (17)	4.8 (17)	86 (1)	1 (1)	39 (18)
$09 Y 1067$	LIM	9350 (7)	16.1 (23)	4.8 (15)	93 (25)	1 (1)	41 (29)
09 Y 3600	M	9340 (8)	17.7 (3)	4.7 (22)	94 (32)	1 (1)	38 (12)
$09 Y 3671$	M	8410 (9)	16.9 (13)	4.8 (17)	92 (20)	1 (1)	40 (21)
$09 Y 2171$	M	8320 (10)	17.1 (9)	4.8 (13)	88 (5)	1 (1)	41 (30)
08 Y 3239	M	8280 (11)	16.1 (22)	4.8 (17)	86 (1)	1 (1)	37 (7)
09 Y 3912	M	8070 (12)	16.4 (19)	4.9 (8)	92 (20)	1 (1)	39 (14)
10 Y 1067	LJ	7840 (13)	15.2 (29)	4.6 (30)	88 (4)	1 (1)	34 (1)
$09 Y 3708$	M	7800 (14)	17.0 (10)	4.7 (22)	95 (34)	1 (1)	39 (14)
10 Y 2094	MPQ	7780 (15)	16.9 (12)	4.8 (17)	90 (13)	1 (1)	44 (36)
$09 Y 3580$	M	7780 (16)	17.7 (3)	4.9 (5)	91 (17)	1 (1)	41 (26)
10 Y 2126	MPQ	7700 (17)	16.7 (16)	5.0 (1)	90 (13)	1 (1)	44 (37)
$09 Y 3886$	M	7670 (18)	16.4 (20)	4.9 (5)	90 (13)	1 (1)	41 (23)
10 Y 2086	MPQ	7600 (19)	16.7 (15)	5.0 (1)	90 (10)	1 (1)	43 (34)
$09 Y 3605$	M	7550 (20)	17.2 (6)	4.8 (13)	95 (34)	1 (1)	39 (18)
$09 Y 3005$	M	7500 (21)	16.8 (14)	5.0 (1)	86 (1)	1 (1)	39 (18)
$09 Y 3523$	M	7400 (22)	17.2 (6)	3.9 (35)	89 (8)	1 (1)	38 (10)
10 Y 2082	MPQ	7330 (23)	17.0 (11)	4.9 (8)	88 (5)	1 (1)	43 (35)
10 Y 1059	LJ	7300 (24)	15.1 (31)	4.8 (11)	91 (18)	1 (1)	40 (21)
10 Y 2093	MPQ	7300 (24)	17.4 (5)	4.8 (17)	89 (8)	1 (1)	47 (38)
AKITA	SPQ	7010 (26)	15.8 (25)	3.6 (38)	88 (5)	1 (1)	41 (25)
09Y1079	L	6930 (27)	15.2 (30)	4.9 (4)	93 (26)	1 (1)	41 (23)
10 Y 1162	L	6870 (28)	15.5 (27)	4.6 (29)	94 (28)	1 (1)	39 (13)
10 Y 1038	L	6770 (29)	15.5 (28)	4.6 (31)	92 (23)	1 (1)	41 (26)
10 Y 151	LB	6480 (30)	14.9 (34)	4.8 (16)	95 (36)	1 (1)	37 (5)
A201	LA	6470 (31)	15.6 (26)	4.8 (11)	99 (38)	1 (1)	41 (26)
10 Y 1149	LA	6130 (32)	15.0 (32)	4.5 (33)	93 (26)	1 (1)	35 (3)
10P1433	LB	6020 (33)	16.3 (21)	3.7 (36)	96 (37)	1 (1)	41 (30)
10 Y 150	LJ	6020 (34)	15.0 (33)	4.6 (31)	92 (20)	1 (1)	38 (11)
$08 Y 1115$	LA	5880 (35)	13.8 (36)	4.7 (26)	94 (30)	1 (1)	37 (7)
CT202	LB	5410 (36)	14.3 (35)	4.7 (27)	94 (33)	1 (1)	39 (14)
10P1597	LB	5160 (37)	12.4 (38)	4.9 (5)	94 (30)	1 (1)	35 (2)
10Y153	LB	4200 (38)	13.2 (37)	4.3 (34)	90 (10)	1 (1)	37 (6)
MEAN		7560	16.1	4.6	91	1	40
CV		14.6	4.3	9.3	1.4		0.9
LSD (.05)		2240	1.4		3		1

$\mathrm{S}=$ short; $\mathrm{M}=$ medium; L = long; $\mathrm{PQ}=$ premium quality; LA=low amalose; J=Jasmine; $\mathrm{A}=$ aromatic; $\mathrm{B}=$ Basmati;
WX = waxy; R = Newrex, SR=stem rot resistant; IM=IMMI herbicide resistant.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 9. 2011 Early Rice Variety Trial - Butte

Variety	Grain Type	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { Heading } \\ \hline \end{gathered}$	Lodging $(1-99)$	Plant Height (in)
$09 Y 1122$	L	10300 (1)	21.3 (14)	5.0 (1)	95 (11)	1 (1)	39 (6)
$09 Y 2141$	SWX	10280 (2)	25.4 (3)	5.0 (1)	91 (4)	1 (1)	42 (16)
08 Y 3269	M	9520 (3)	26.0 (2)	5.0 (1)	96 (12)	1 (1)	39 (3)
M208	M	9350 (4)	24.5 (7)	5.0 (1)	92 (6)	1 (1)	40 (11)
L206	L	9330 (5)	20.2 (16)	5.0 (1)	92 (6)	1 (1)	37 (1)
08 Y 3126	M	9230 (6)	24.1 (8)	5.0 (1)	88 (1)	1 (1)	42 (15)
$09 Y 2179$	S	8980 (7)	21.9 (11)	5.0 (1)	92 (10)	1 (1)	42 (14)
M205	M	8860 (8)	27.0 (1)	5.0 (1)	96 (14)	1 (1)	39 (8)
$06 Y 575$	LR	8760 (9)	22.5 (9)	5.0 (1)	99 (16)	1 (1)	43 (17)
M206	M	8520 (10)	25.0 (5)	5.0 (1)	89 (3)	1 (1)	40 (11)
09Y2159	SLA	8490 (11)	25.0 (4)	5.0 (1)	100 (17)	1 (1)	39 (5)
10Y1025	L	8480 (12)	21.8 (12)	5.0 (1)	97 (15)	1 (1)	39 (7)
S102	S	8280 (13)	19.7 (17)	5.0 (1)	89 (2)	1 (1)	41 (13)
M202	M	8180 (14)	24.7 (6)	5.0 (1)	91 (5)	1 (1)	40 (9)
CH201	SPQ	8060 (15)	20.6 (15)	5.0 (1)	96 (13)	1 (1)	37 (2)
$04 Y 177$	SPQ	7960 (16)	22.4 (10)	4.9 (17)	92 (9)	1 (1)	39 (3)
CM101	SWX	7680 (17)	21.4 (13)	5.0 (1)	92 (8)	1 (1)	40 (10)
MEAN		8840	23.2	5.0	93	1	40
CV		6.6	4	1.2	0.8		2.9
LSD (.05)		830	1.3		1		2
Preliminary Lines and Varieties							
$09 Y 3886$	M	9920 (1)	24.0 (14)	5.0 (1)	95 (19)	1 (1)	38 (8)
M105	M	9270 (2)	21.4 (27)	5.0 (1)	86 (1)	1 (1)	40 (23)
$09 Y 3912$	M	9210 (3)	24.4 (11)	5.0 (1)	95 (19)	1 (1)	40 (23)
10Y2094	MPQ	9160 (4)	22.5 (21)	5.0 (1)	92 (9)	1 (1)	41 (30)
$09 Y 3517$	M	9140 (5)	21.9 (24)	5.0 (1)	89 (4)	1 (1)	41 (29)
$09 Y 3708$	M	9060 (6)	27.2 (1)	5.0 (1)	98 (30)	1 (1)	37 (3)
09Y3665	M	9010 (7)	24.8 (9)	5.0 (1)	95 (19)	1 (1)	38 (6)
10Y2082	MPQ	8950 (8)	22.0 (23)	5.0 (1)	91 (7)	18 (37)	40 (23)
$09 Y 3605$	M	8860 (9)	26.0 (5)	5.0 (1)	98 (34)	1 (1)	38 (8)
09Y1079	L	8770 (10)	24.0 (12)	5.0 (1)	98 (30)	1 (1)	38 (8)
$09 Y 3671$	M	8750 (11)	26.3 (4)	5.0 (1)	97 (27)	1 (1)	39 (16)
10P1433	LB	8740 (12)	24.0 (13)	5.0 (1)	99 (35)	1 (1)	45 (38)
$09 Y 3805$	M	8700 (13)	26.7 (3)	5.0 (1)	92 (9)	1 (1)	42 (34)
09Y3600	M	8660 (14)	22.6 (20)	5.0 (1)	96 (24)	1 (1)	39 (16)
10Y1038	L	8610 (15)	20.9 (29)	5.0 (1)	97 (27)	1 (1)	42 (34)
10Y1059	LJ	8590 (16)	20.8 (31)	5.0 (1)	95 (19)	1 (1)	40 (26)
08Y3239	M	8570 (17)	20.8 (30)	5.0 (1)	89 (4)	1 (1)	36 (1)
10Y1067	LJ	8560 (18)	19.8 (34)	5.0 (1)	92 (8)	1 (1)	37 (3)
10Y1162	L	8520 (19)	21.6 (26)	5.0 (1)	96 (25)	1 (1)	36 (1)
$09 Y 3523$	M	8510 (20)	22.6 (19)	5.0 (1)	88 (2)	1 (1)	39 (16)
$09 Y 3580$	M	8330 (21)	25.0 (8)	5.0 (1)	93 (14)	1 (1)	39 (13)
$09 Y 2184$	S	8330 (22)	27.0 (2)	5.0 (1)	97 (27)	1 (1)	38 (6)
$09 Y 1067$	LIM	8320 (23)	20.3 (32)	5.0 (1)	94 (17)	1 (1)	41 (30)
09Y3005	M	8040 (24)	22.1 (22)	5.0 (1)	88 (3)	1 (1)	39 (13)
CT202	LB	8020 (25)	17.6 (36)	5.0 (1)	103 (38)	1 (1)	40 (26)
$10 Y 2086$	MPQ	8010 (26)	23.0 (18)	4.8 (36)	92 (9)	1 (1)	40 (26)
10Y1149	LA	7940 (27)	21.4 (28)	5.0 (1)	95 (19)	1 (1)	38 (8)
08 Y 1115	LA	7900 (28)	20.0 (33)	5.0 (1)	98 (30)	1 (1)	37 (3)
A201	LA	7860 (29)	21.7 (25)	4.4 (38)	102 (37)	1 (1)	42 (36)
10 Y 150	LJ	7730 (30)	19.8 (35)	5.0 (1)	94 (16)	1 (1)	39 (16)
09 Y 2171	M	7720 (31)	23.9 (15)	4.9 (35)	92 (9)	1 (1)	39 (16)
10Y2126	MPQ	7590 (32)	25.4 (7)	5.0 (1)	93 (15)	1 (1)	41 (30)
10Y2093	MPQ	7490 (33)	26.0 (6)	5.0 (1)	89 (4)	1 (1)	41 (30)
10 Y 151	LB	7400 (34)	24.6 (10)	5.0 (1)	99 (35)	1 (1)	39 (16)
10Y2046	SPQ	6760 (35)	23.4 (16)	5.0 (1)	98 (30)	1 (1)	39 (16)
AKITA	SPQ	6410 (36)	23.3 (17)	4.8 (36)	92 (9)	83 (38)	43 (37)
10P1597	LB	6250 (37)	16.6 (37)	5.0 (1)	97 (26)	1 (1)	39 (13)
10 Y 153	LB	5090 (38)	16.0 (38)	5.0 (1)	95 (18)	1 (1)	38 (8)
MEAN		8230	22.7	5.0	94	4	39
CV		6.9	6.5	1.8	1.2	68.9	3.9
LSD (.05)		1150	3	0.2	2	5	3

S = short; M = medium; L = long; PQ = premium quality; WX = waxy; LA=low amalose; J=Jasmine; R = Newrex;
SR=stem rot resistant; A = aromatic; B=Basmati; IM=IMMI herbicide resistant.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 10. 2011 Early Rice Variety Trial - Colusa

Variety	$\begin{aligned} & \text { Grain } \\ & \text { Type } \\ & \hline \end{aligned}$	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	Days to 50% Heading	Lodging $(1-99)$	Plant Height (in)
09Y2179	S	10700 (1)	16.0 (7)	5.0 (1)	93 (9)	2 (5)	43 (17)
$06 Y 575$	LR	10560 (2)	13.3 (15)	5.0 (1)	95 (12)	3 (7)	42 (16)
10 Y 1025	L	10370 (3)	13.5 (14)	5.0 (1)	94 (11)	1 (1)	38 (5)
M208	M	10240 (4)	16.0 (8)	5.0 (1)	95 (12)	1 (1)	41 (15)
$08 Y 3269$	M	10210 (5)	15.8 (9)	5.0 (1)	96 (15)	1 (1)	41 (12)
M206	M	9960 (6)	17.1 (3)	5.0 (1)	89 (3)	71 (12)	39 (6)
09 Y 1122	L	9930 (7)	12.7 (17)	5.0 (1)	94 (10)	1 (1)	38 (4)
M205	M	9760 (8)	15.2 (12)	4.9 (17)	101 (17)	2 (5)	40 (9)
$08 Y 3126$	M	9730 (9)	16.1 (6)	5.0 (1)	89 (6)	12 (8)	41 (13)
L206	L	9660 (10)	13.2 (16)	5.0 (1)	89 (4)	40 (9)	37 (2)
M202	M	9350 (11)	16.5 (4)	5.0 (1)	91 (8)	69 (11)	39 (6)
$09 Y 2159$	SLA	9060 (12)	14.1 (13)	5.0 (1)	98 (16)	46 (10)	41 (11)
$09 Y 2141$	SWX	8000 (13)	17.3 (2)	5.0 (1)	89 (4)	97 (14)	41 (14)
S102	S	7420 (14)	15.3 (11)	5.0 (1)	85 (1)	94 (13)	40 (10)
$04 Y 177$	SPQ	6950 (15)	18.8 (1)	5.0 (1)	90 (7)	99 (16)	36 (1)
CM101	SWX	6510 (16)	16.2 (5)	5.0 (1)	86 (2)	99 (16)	39 (8)
CH201	SPQ	6040 (17)	15.6 (10)	5.0 (1)	96 (14)	97 (14)	38 (3)
MEAN		9090	15.5	5.0	92	43	40
CV		9.3	4.4	0.6	2.6	46.6	4.6
LSD (.05)		1200	1	0	3	29	3
Preliminary Lines and Varieties							
08Y3239	M	10530 (1)	15.2 (20)	5.0 (1)	90 (5)	1 (1)	36 (7)
$09 Y 1067$	LIM	10520 (2)	12.8 (35)	5.0 (1)	92 (11)	1 (1)	40 (30)
$09 Y 3805$	M	10410 (3)	15.7 (16)	5.0 (1)	94 (22)	6 (25)	41 (34)
09 Y 3580	M	10040 (4)	17.0 (6)	5.0 (1)	95 (25)	6 (25)	39 (19)
$09 Y 1079$	L	9950 (5)	13.3 (30)	5.0 (1)	94 (22)	1 (1)	38 (11)
09 Y 3708	M	9900 (6)	16.1 (8)	5.0 (1)	103 (35)	1 (1)	38 (11)
10 Y 1038	L	9700 (7)	12.9 (34)	5.0 (1)	90 (5)	1 (1)	40 (23)
10 Y 1059	LJ	9640 (8)	13.3 (31)	5.0 (1)	92 (11)	1 (1)	39 (22)
$09 Y 3912$	M	9640 (9)	14.8 (25)	5.0 (1)	100 (34)	1 (1)	41 (31)
$09 Y 3517$	M	9600 (10)	15.7 (14)	5.0 (1)	92 (10)	3 (24)	40 (25)
10 Y 1162	L	9410 (11)	12.9 (33)	5.0 (1)	94 (19)	1 (1)	37 (8)
10 Y 1067	LJ	9320 (12)	12.0 (38)	5.0 (1)	90 (5)	1 (1)	36 (5)
$09 Y 3605$	M	9180 (13)	14.9 (24)	5.0 (1)	103 (35)	1 (1)	38 (16)
$09 Y 3523$	M	9180 (14)	16.1 (11)	5.0 (1)	88 (3)	28 (28)	38 (18)
$09 Y 3671$	M	9160 (15)	15.3 (19)	5.0 (1)	99 (32)	1 (1)	38 (11)
10 Y 2094	MPQ	8950 (16)	15.9 (12)	5.0 (1)	93 (14)	25 (27)	39 (20)
09 Y 2184	S	8860 (17)	15.3 (17)	5.0 (1)	103 (35)	1 (1)	38 (17)
$09 Y 3600$	M	8660 (18)	15.1 (22)	5.0 (1)	100 (33)	1 (1)	39 (21)
$09 Y 2171$	M	8650 (19)	17.1 (5)	5.0 (1)	94 (19)	99 (34)	40 (29)
$09 Y 3665$	M	8610 (20)	14.7 (26)	5.0 (1)	97 (28)	1 (1)	38 (11)
$10 Y 2046$	SPQ	8560 (21)	15.7 (15)	5.0 (1)	97 (28)	80 (32)	38 (11)
10 Y 2126	MPQ	8420 (22)	17.2 (4)	5.0 (1)	93 (14)	99 (34)	43 (37)
$09 Y 3005$	M	8290 (23)	15.7 (13)	5.0 (1)	89 (4)	53 (30)	40 (25)
10 Y 2086	MPQ	8250 (24)	16.6 (7)	5.0 (1)	93 (14)	75 (31)	41 (32)
A201	LA	8180 (25)	14.1 (27)	4.8 (38)	103 (35)	1 (1)	40 (23)
10 Y 1149	LA	8110 (26)	13.2 (32)	5.0 (1)	93 (14)	1 (1)	37 (10)
10 Y 150	LJ	8040 (27)	12.4 (37)	5.0 (1)	91 (8)	1 (1)	36 (5)
$08 Y 1115$	LA	7800 (28)	12.6 (36)	5.0 (1)	95 (27)	1 (1)	34 (1)
10 Y 151	LB	7630 (29)	13.8 (29)	5.0 (1)	94 (22)	1 (1)	36 (3)
M105	M	7580 (30)	17.5 (3)	5.0 (1)	87 (2)	97 (33)	40 (25)
$09 Y 3886$	M	7460 (31)	14.0 (28)	5.0 (1)	99 (31)	1 (1)	40 (25)
10 Y 2093	MPQ	6940 (32)	16.1 (10)	5.0 (1)	91 (9)	99 (34)	41 (32)
10 Y 2082	MPQ	6710 (33)	17.8 (2)	5.0 (1)	92 (11)	99 (34)	41 (34)
10P1433	LB	5830 (34)	15.3 (18)	5.0 (1)	94 (19)	31 (29)	45 (38)
CT202	LB	5210 (35)	16.1 (9)	5.0 (1)	98 (30)	1 (1)	36 (3)
10 Y 153	LB	4770 (36)	15.0 (23)	5.0 (1)	93 (14)	1 (1)	37 (9)
AKITA	SPQ	4580 (37)	18.8 (1)	5.0 (1)	85 (1)	99 (34)	42 (36)
10P1597	LB	4520 (38)	15.1 (21)	5.0 (1)	95 (25)	1 (1)	35 (2)
MEAN		8340	15.1	5.0	94	24	39
CV		8.2	7.9	1.1	0.8	59.8	3
LSD (.05)		1380	2.4		1	29	2

$\frac{1380}{S}=$ short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{WX}=$ waxy; LA=low amalose; J=Jasmine; $\mathrm{R}=$ Newrex;
$S R=$ stem rot resistant; $A=$ aromatic; $B=B a s m a t i ; I M=I M M I$ herbicide resistant.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 11. 2011 Early Rice Variety Trial - Yuba

Variety	Grain Type	Grain Yield at 14% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	Days to 50\% Heading	Lodging $(1-99)$	Plant Height (in)
09Y2179	S	10800 (1)	22.7 (8)	5.0 (1)	98 (9)	1 (1)	43 (13)
09 Y 1122	L	10770 (2)	20.8 (11)	4.8 (13)	100 (10)	1 (1)	40 (3)
09 Y 2141	SWX	10740 (3)	24.0 (6)	4.9 (12)	95 (6)	18 (10)	45 (17)
06 Y 575	LR	10320 (4)	20.8 (10)	5.0 (1)	103 (16)	1 (1)	44 (16)
08Y3269	M	10260 (5)	23.6 (7)	5.0 (1)	101 (12)	1 (1)	44 (15)
M206	M	10190 (6)	24.2 (4)	5.0 (1)	94 (3)	5 (9)	43 (9)
L206	L	10160 (7)	18.6 (14)	5.0 (1)	97 (7)	1 (1)	39 (2)
M205	M	10000 (8)	25.8 (1)	5.0 (1)	102 (15)	1 (1)	43 (9)
08 Y 3126	M	9630 (9)	24.8 (3)	5.0 (1)	94 (3)	27 (11)	43 (13)
M208	M	9450 (10)	24.1 (5)	5.0 (1)	101 (11)	2 (8)	43 (12)
04 Y 177	SPQ	9420 (11)	21.2 (9)	4.7 (15)	95 (5)	96 (15)	40 (4)
M202	M	9300 (12)	24.9 (2)	5.0 (1)	97 (8)	35 (13)	43 (11)
10Y1025	L	9190 (13)	19.9 (12)	4.8 (13)	102 (14)	1 (1)	40 (5)
09 Y 2159	SLA	8800 (14)	18.6 (15)	4.4 (17)	105 (17)	29 (12)	40 (5)
S102	S	8740 (15)	18.2 (17)	5.0 (1)	90 (1)	86 (14)	42 (8)
CH201	SPQ	7800 (16)	18.3 (16)	5.0 (1)	101 (12)	97 (17)	38 (1)
CM101	SWX	7370 (17)	19.3 (13)	4.7 (15)	93 (2)	96 (15)	41 (7)
MEAN		9590	21.7	4.9	98	29	42
CV		6.0	6.3	4.7	0.5	70.9	3.1
LSD (.05)		820	1.9	0.3	1	29	2
Preliminary Lines and Varieties							
09 Y 3665	M	10640 (1)	24.4 (9)	5.0 (1)	98 (13)	5 (28)	41 (11)
09 Y 3600	M	10470 (2)	21.8 (21)	5.0 (1)	101 (25)	1 (1)	42 (16)
09 Y 3523	M	10440 (3)	24.1 (12)	5.0 (1)	88 (1)	1 (1)	40 (8)
10Y1059	LJ	10200 (4)	21.1 (25)	5.0 (1)	98 (14)	1 (1)	41 (13)
09 Y 3517	M	10170 (5)	23.8 (14)	5.0 (1)	94 (4)	3 (27)	45 (36)
10Y2094	MPQ	10130 (6)	24.1 (12)	5.0 (1)	96 (8)	63 (34)	42 (25)
$09 Y 3605$	M	10110 (7)	23.6 (15)	5.0 (1)	106 (35)	1 (1)	42 (23)
09 Y 2184	S	10100 (8)	23.4 (17)	5.0 (1)	105 (31)	1 (1)	42 (20)
$09 Y 3671$	M	10060 (9)	23.4 (16)	5.0 (1)	101 (25)	1 (1)	42 (16)
$09 Y 3805$	M	10010 (10)	24.6 (7)	5.0 (1)	100 (22)	1 (1)	43 (26)
08Y3239	M	10000 (11)	22.5 (20)	5.0 (1)	99 (18)	1 (1)	41 (13)
10 Y 1067	LJ	9940 (12)	18.1 (37)	5.0 (1)	95 (7)	1 (1)	38 (2)
09 Y 3912	M	9880 (13)	23.4 (18)	5.0 (1)	102 (29)	1 (1)	44 (31)
M105	M	9800 (14)	25.0 (5)	5.0 (1)	93 (3)	16 (29)	43 (30)
$09 Y 3708$	M	9700 (15)	25.7 (2)	5.0 (1)	105 (32)	1 (1)	42 (20)
09 Y 3580	M	9700 (16)	25.0 (4)	4.8 (33)	99 (18)	1 (1)	41 (15)
09 Y 3886	M	9500 (17)	24.4 (10)	5.0 (1)	100 (23)	1 (1)	44 (34)
09 Y 1067	LIM	9480 (18)	19.5 (29)	5.0 (1)	99 (16)	1 (1)	45 (35)
10Y2046	SPQ	9400 (19)	18.3 (36)	5.0 (1)	96 (8)	48 (31)	42 (16)
10Y2086	MPQ	9150 (20)	23.0 (19)	5.0 (1)	99 (16)	50 (32)	42 (16)
10Y1162	L	9070 (21)	19.4 (30)	5.0 (1)	99 (18)	1 (1)	41 (12)
09 Y 1079	L	9040 (22)	21.5 (23)	5.0 (1)	105 (32)	1 (1)	40 (8)
09 Y 3005	M	9020 (23)	24.5 (8)	5.0 (1)	94 (4)	21 (30)	44 (32)
10Y2082	MPQ	8650 (24)	25.0 (5)	5.0 (1)	94 (4)	99 (36)	42 (20)
10Y1038	L	8590 (25)	19.2 (33)	5.0 (1)	101 (25)	1 (1)	43 (28)
$09 Y 2171$	M	8470 (26)	24.4 (10)	5.0 (1)	97 (11)	99 (36)	42 (24)
10Y2126	MPQ	7870 (27)	26.7 (1)	5.0 (1)	99 (18)	50 (32)	45 (38)
10 Y 150	LJ	7770 (28)	20.8 (27)	5.0 (1)	97 (11)	1 (1)	40 (8)
A201	LA	7680 (29)	21.3 (24)	5.0 (1)	107 (37)	1 (1)	43 (26)
10 Y 2093	MPQ	7600 (30)	25.2 (3)	5.0 (1)	96 (8)	99 (36)	45 (36)
10Y1149	LA	7520 (31)	20.4 (28)	5.0 (1)	100 (23)	1 (1)	38 (2)
AKITA	SPQ	6970 (32)	19.3 (31)	4.1 (38)	91 (2)	97 (35)	44 (33)
10 Y 151	LB	6910 (33)	20.8 (26)	4.9 (32)	107 (36)	1 (1)	38 (4)
08 Y 1115	LA	6300 (34)	21.6 (22)	4.5 (37)	108 (38)	1 (1)	39 (5)
10P1433	LB	6040 (35)	19.2 (34)	4.8 (33)	101 (25)	1 (1)	43 (29)
CT202	LB	6030 (36)	19.0 (35)	4.8 (33)	105 (32)	1 (1)	37 (1)
10P1597	LB	5290 (37)	19.2 (32)	5.0 (1)	104 (30)	1 (1)	40 (7)
10 Y 153	LB	4910 (38)	16.6 (38)	4.7 (36)	98 (14)	1 (1)	39 (6)
MEAN		8750	22.2	4.9	99	18	42
CV		5	5.1	3.7	1.9	117.9	3.4
LSD (.05)		890	2.3	0.4	4	42	3

$\frac{\text { LSD (.05) }}{\mathrm{S}=\text { short; } \mathrm{M}=\text { medium; } \mathrm{L}=\text { long; } \mathrm{PQ}=\text { premium quality; } \mathrm{WX}=\text { waxy; LA=low amalose; J=Jasmine; } \mathrm{R}=\text { Newrex; }}$
$S R=$ stem rot resistant; $A=$ aromatic; $B=B a s m a t i ; I M=I M M I$ herbicide resistant.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and 99 = completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 12. Grain Yield (Ib/acre @14\% moisture) Summary of Early Rice Varieties by Location and Year (2007-2011)

Calhikari							Calmati		
Location	Year	201	S-102	M-202	M-105	M-205	M-206	202	L-206
Biggs (RES)	2007	6230	8730	6940	-	8920	9430	6080	9540
	2008	9520	10950	10580	10590	10800	10620	7930	10820
	2009	9090	9700	8940	8690	9430	9080	7650	10840
	2010	9390	9400	10210	11530	10790	10990	8730	11090
	2011	9210	10230	9660	9490	10610	10050	5410	10020
Location Mean		8688	9802	9266	10075	10110	10034	7160	10462
Butte	2007	7430	8580	7640	-	8310	8060	7160	8900
	2008	6360	7470	7150	8450	8220	8450	7020	8700
	2009	8690	7800	9690	8530	9830	8170	7780	9610
	2010	7900	7330	8190	8530	7950	8440	6770	8400
	2011	8060	8280	8180	9270	8860	8520	8020	9330
Location Mean		7688	7892	8170	8695	8634	8328	7350	8988
Colusa	2007	8270	9040	9030	-	9630	9960	6260	9100
	2008	8640	9870	9950	10100	10080	10080	5740	9730
	2009	7350	8130	8560	8880	9680	8800	5510	8600
	2010	9510	10190	10910	10930	11190	10560	4690	10440
	2011	6040	7420	9350	7580	9760	9960	5210	9660
Location Mean		7962	8930	9560	9373	10068	9872	5482	9506
Yuba	2007	5910	6170	7040	-	7480	7960	5800	6520
	2008	8880	9830	10140	10270	10500	10720	6250	11000
	2009	6880	7950	7940	8160	8790	8530	5960	9150
	2010	8350	10010	10220	10040	9370	10330	5470	9070
	2011	7800	8740	9300	9800	10000	10190	6030	10160
Location Mean		7564	8540	8928	9568	9228	9546	5902	9180
Loc/Years Mean		7976	8791	8981	9428	9510	9445	6474	9534
Yield \% M-202		88.8	97.9	100	105.0	105.9	105.2	72.1	106.2
Number of Tests		20	20	20	16	20	20	20	20

Table 13. 2011 Intermediate/Late Rice Variety Tests - Three Location Summary

Variety		Ave Grain Yield at 14\%	Single Location Yields			Ave Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { Heading } \\ \hline \end{gathered}$	Lodging$(1-99)$	Plant Height (in)
	Grain Type	Moisture Ibs/acre	Biggs	Glenn	Sutter					
06Y575	LR	10310 (1)	10390 (1)	10010 (1)	10540 (1)	15.7 (8)	4.9 (4)	100 (8)	1 (1)	42 (9)
$08 Y 3310$	M	9780 (2)	10230 (3)	9280 (4)	9820 (2)	20.0 (4)	4.8 (8)	95 (5)	1 (1)	38 (4)
M205	M	9710 (3)	10270 (2)	9550 (3)	9310 (6)	20.4 (3)	4.7 (9)	98 (6)	1 (3)	39 (5)
$04 Y 177$	SPQ	9650 (4)	10140 (4)	9120 (5)	9690 (4)	17.3 (6)	4.9 (3)	91 (1)	29 (9)	36 (2)
L206	L	9560 (5)	9990 (5)	8900 (8)	9780 (3)	15.3 (9)	4.9 (2)	93 (2)	2 (5)	36 (1)
$09 Y 2176$	MPQ	9300 (6)	9220 (7)	9100 (6)	9580 (5)	20.7 (2)	4.9 (6)	99 (7)	4 (6)	41 (8)
M202	M	9060 (7)	9160 (9)	9030 (7)	9010 (7)	19.3 (5)	4.8 (7)	93 (3)	20 (7)	41 (7)
M402	MPQ	9000 (8)	9200 (8)	9820 (2)	8000 (9)	21.6 (1)	4.9 (5)	109 (9)	1 (3)	40 (6)
CH2O1	SPQ	8850 (9)	9230 (6)	8430 (9)	8900 (8)	16.8 (7)	5.0 (1)	94 (4)	23 (8)	37 (3)
MEAN		9470	9760	9250	9400	18.6	4.9	97	9	39
CV		4.7	4.1	4.2	5.7	3.5	3.5	1.3	169.5	3.3
LSD (.05)		360	580	560	780	0.5	0.1	1	13	1
Preliminary Lines and Varieties										
10 Y 1012	L	10460 (1)	11170 (1)	9710 (6)	10500 (1)	16.0 (18)	5.0 (1)	98 (23)	1 (1)	39 (13)
$09 Y 1079$	L	10250 (2)	10810 (3)	9520 (8)	10440 (2)	15.9 (19)	5.0 (6)	98 (20)	1 (1)	37 (8)
$09 Y 3700$	M	10170 (3)	11050 (2)	10010 (1)	9470 (11)	20.0 (11)	5.0 (1)	98 (17)	1 (1)	37 (7)
$09 Y 3887$	M	9970 (4)	10220 (11)	9830 (3)	9850 (6)	21.2 (3)	4.9 (12)	97 (13)	1 (1)	39 (18)
$09 Y 3607$	M	9870 (5)	10540 (8)	8940 (14)	10110 (4)	20.3 (10)	4.9 (24)	97 (15)	1 (1)	39 (15)
$09 Y 3830$	M	9790 (6)	10610 (6)	8860 (15)	9910 (5)	20.9 (4)	4.9 (22)	97 (15)	1 (1)	42 (25)
06 Y 513	L	9780 (7)	9930 (12)	9780 (4)	9620 (9)	15.7 (22)	4.9 (18)	99 (24)	4 (21)	39 (16)
$09 Y 3502$	M	9680 (8)	9820 (13)	9700 (7)	9530 (10)	20.3 (7)	5.0 (7)	97 (11)	9 (23)	41 (24)
08 Y 3314	M	9680 (9)	10690 (4)	9180 (11)	9170 (16)	20.3 (9)	4.9 (12)	97 (12)	1 (1)	38 (11)
$09 Y 3622$	M	9670 (10)	10680 (5)	9280 (9)	9060 (17)	21.3 (2)	4.9 (24)	98 (18)	1 (1)	42 (26)
$09 Y 3610$	M	9670 (11)	10370 (9)	9180 (10)	9460 (12)	20.3 (8)	4.8 (28)	97 (9)	1 (1)	38 (12)
08 Y 2163	SPQ	9520 (12)	9670 (17)	9710 (5)	9180 (15)	18.6 (16)	4.9 (12)	96 (5)	1 (1)	37 (6)
$09 Y 4002$	M	9450 (13)	10310 (10)	8250 (21)	9780 (7)	18.0 (17)	5.0 (7)	90 (1)	1 (1)	39 (14)
10Y2081	MPQ	9430 (14)	9740 (15)	9150 (12)	9380 (14)	20.4 (6)	4.8 (26)	94 (3)	14 (25)	40 (20)
08 Y 3338	M	9220 (15)	10560 (7)	8330 (20)	8780 (22)	18.9 (15)	4.9 (12)	97 (13)	1 (1)	36 (1)
09 Y 1067	LJ	9190 (16)	9720 (16)	8140 (22)	9730 (8)	15.7 (20)	5.0 (7)	94 (2)	1 (1)	39 (17)
$09 Y 2173$	MPQ	9150 (17)	9750 (14)	8690 (16)	9010 (18)	20.8 (5)	4.8 (27)	98 (21)	11 (24)	40 (22)
10Y2120	MPQ	9110 (18)	9260 (19)	8640 (17)	9430 (13)	19.2 (13)	4.9 (12)	96 (7)	19 (26)	40 (21)
10Y1059	LJ	8990 (19)	9580 (18)	8410 (19)	8990 (19)	15.4 (23)	4.9 (18)	94 (4)	1 (1)	39 (19)
10Y1196	LJ	8930 (20)	8200 (22)	8420 (18)	10160 (3)	15.4 (24)	4.9 (20)	102 (27)	1 (1)	38 (9)
M401	MPQ	8870 (21)	8910 (20)	9930 (2)	7780 (25)	22.7 (1)	5.0 (1)	113 (30)	32 (28)	44 (29)
09 Y 2174	MPQ	8790 (22)	8430 (21)	9050 (13)	8910 (20)	19.9 (12)	4.9 (20)	96 (6)	37 (29)	42 (27)
10 Y 150	LJ	8180 (23)	8030 (24)	7700 (23)	8820 (21)	15.7 (21)	4.9 (12)	96 (8)	1 (1)	36 (4)
10 Y 151	LB	7840 (24)	8150 (23)	7330 (24)	8030 (24)	15.3 (25)	5.0 (7)	97 (9)	1 (1)	36 (2)
10Y1199	LB	7270 (25)	6780 (25)	6990 (25)	8040 (23)	15.1 (26)	4.8 (28)	103 (28)	24 (27)	43 (28)
CT202	LB	6950 (26)	6640 (27)	6770 (28)	7440 (26)	15.0 (28)	4.9 (22)	98 (21)	1 (1)	36 (3)
10P1597	LB	6640 (27)	5720 (29)	6900 (26)	7310 (27)	14.7 (29)	5.0 (4)	99 (25)	8 (22)	36 (5)
10P1610	LB	6450 (28)	6160 (28)	6780 (27)	6410 (28)	14.2 (30)	5.0 (4)	101 (26)	1 (1)	41 (23)
KOSH	SPQ	6210 (29)	6760 (26)	6080 (29)	5780 (29)	19.2 (14)	5.0 (7)	107 (29)	65 (30)	47 (30)
10 Y 153	LB	5160 (30)	5020 (30)	5520 (30)	4940 (30)	15.0 (27)	4.5 (30)	98 (18)	1 (1)	38 (10)
MEAN		8810	9110	8490	8830	18	4.9	98	8	39
CV		6.1	4	5.7	8.1	3.4	1.3	1	110.7	3.5
LSD (.05)		620	750	990	1460	0.7	0.1	1	10	2

$\mathrm{S}=$ short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{B}=$ Basmati; $\mathrm{LA}=$ =low amalose; $\mathrm{J}=$ Jasmine; $\mathrm{R}=$ Newrex.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 14. 2011 Intermediate/Late Advanced RiceVariety Trial - Biggs
Advanced Lines and Varieties

Variety	Grain Type	Grain Yield at 14% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	Days to 0.5 Heading	$\begin{aligned} & \text { Lodging } \\ & (1-99) \\ & \hline \end{aligned}$	Plant Height (in)
06Y575	LR	10390 (1)	12.6 (8)	4.8 (6)	95 (7)	1 (1)	40 (8)
M205	M	10270 (2)	15.3 (3)	4.8 (6)	93 (6)	1 (1)	38 (5)
08 Y 3310	M	10230 (3)	15.4 (2)	4.8 (6)	88 (3)	1 (1)	37 (4)
$04 Y 177$	SPQ	10140 (4)	15.0 (5)	4.9 (4)	88 (2)	1 (1)	36 (2)
L206	L	9990 (5)	12.5 (9)	4.8 (6)	88 (1)	1 (1)	35 (1)
CH201	SPQ	9230 (6)	14.8 (7)	5.0 (1)	91 (5)	1 (1)	36 (3)
$09 Y 2176$	MPQ	9220 (7)	15.8 (1)	4.9 (4)	95 (8)	1 (1)	40 (6)
M402	MPQ	9200 (8)	15.2 (4)	4.9 (3)	103 (9)	1 (1)	40 (7)
M202	M	9160 (9)	14.9 (6)	5.0 (2)	89 (4)	1 (1)	40 (9)
MEAN		9760	14.6	4.9	92	1	38
CV		4.1	3.7	1.8	0.6		3.7
LSD (.05)		580	0.8	0.1	1		2
Preliminary Lines and Varieties							
10 Y 1012	L	11170 (1)	12.8 (19)	5.0 (3)	94 (21)	1 (1)	38 (13)
$09 Y 3700$	M	11050 (2)	14.7 (17)	5.0 (1)	93 (14)	1 (1)	36 (7)
09 Y 1079	L	10810 (3)	12.9 (18)	4.9 (4)	93 (19)	1 (1)	37 (11)
08 Y 3314	M	10690 (4)	15.1 (10)	4.8 (15)	91 (9)	1 (1)	37 (9)
$09 Y 3622$	M	10680 (5)	15.8 (3)	4.8 (15)	93 (17)	1 (1)	42 (26)
$09 Y 3830$	M	10610 (6)	15.7 (4)	4.8 (15)	92 (11)	1 (1)	42 (27)
08 Y 3338	M	10560 (7)	15.0 (11)	4.8 (15)	91 (7)	1 (1)	36 (4)
09 Y 3607	M	10540 (8)	15.3 (8)	4.8 (22)	93 (14)	1 (1)	38 (12)
$09 Y 3610$	M	10370 (9)	15.2 (9)	4.8 (15)	90 (3)	1 (1)	38 (15)
09Y4002	M	10310 (10)	14.8 (16)	4.9 (10)	85 (1)	1 (1)	39 (18)
$09 Y 3887$	M	10220 (11)	15.5 (5)	4.9 (4)	93 (17)	1 (1)	38 (15)
$06 Y 513$	L	9930 (12)	12.5 (24)	4.7 (25)	94 (22)	1 (1)	39 (19)
$09 Y 3502$	M	9820 (13)	15.4 (7)	4.9 (10)	91 (9)	1 (1)	41 (24)
$09 Y 2173$	MPQ	9750 (14)	14.9 (15)	4.8 (15)	94 (20)	1 (1)	40 (22)
10Y2081	MPQ	9740 (15)	16.3 (1)	4.7 (25)	91 (7)	1 (1)	40 (22)
$09 Y 1067$	LJ	9720 (16)	12.5 (23)	4.8 (13)	90 (5)	1 (1)	39 (17)
08 Y 2163	SPQ	9670 (17)	14.9 (14)	4.9 (4)	89 (2)	1 (1)	36 (5)
10 Y 1059	LJ	9580 (18)	12.1 (26)	4.7 (24)	92 (11)	1 (1)	39 (19)
10 Y 2120	MPQ	9260 (19)	14.9 (13)	4.9 (4)	92 (11)	1 (1)	39 (21)
M401	MPQ	8910 (20)	16.3 (2)	5.0 (1)	106 (30)	1 (1)	48 (29)
09 Y 2174	MPQ	8430 (21)	15.0 (12)	4.8 (15)	90 (3)	1 (1)	42 (25)
10 Y 1196	LJ	8200 (22)	12.7 (21)	4.7 (28)	98 (27)	1 (1)	37 (10)
10 Y 151	LB	8150 (23)	12.7 (20)	4.8 (13)	94 (22)	1 (1)	36 (3)
10 Y 150	LJ	8030 (24)	12.7 (22)	4.8 (22)	90 (6)	1 (1)	35 (2)
10Y1199	LB	6780 (25)	12.0 (28)	4.7 (25)	101 (28)	1 (1)	42 (28)
KOSH	SPQ	6760 (26)	15.5 (6)	4.9 (10)	101 (29)	1 (1)	49 (30)
CT202	LB	6640 (27)	12.1 (26)	4.6 (29)	96 (26)	1 (1)	36 (5)
10P1610	LB	6160 (28)	10.3 (30)	4.9 (4)	95 (25)	1 (1)	38 (14)
10P1597	LB	5720 (29)	11.6 (29)	4.9 (4)	95 (24)	1 (1)	34 (1)
10 Y 153	LB	5020 (30)	12.2 (25)	4.4 (30)	93 (14)	1 (1)	37 (8)
MEAN		9110	14	4.8	93	1	39
CV		4	3.6	1.4	1		4
LSD (.05)		750	1	0.1	2		3

S = short; M = medium; L = long; PQ = premium quality; B = Basmati; LA=low amalose; J = Jasmine; R = Newrex.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 15. 2011 Intermediate/Late RiceVariety Trial - Glenn
Advanced Lines and Varieties

Variety	$\begin{aligned} & \text { Grain } \\ & \text { Type } \\ & \hline \end{aligned}$	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	Days to 50% Heading	$\begin{gathered} \text { Lodging } \\ (1-99) \end{gathered}$	Plant Height (in)
06Y575	LR	10010 (1)	12.3 (8)	5.0 (1)	95 (6)	1 (1)	41 (9)
M402	MPQ	9820 (2)	17.0 (1)	5.0 (1)	109 (9)	2 (3)	39 (6)
M205	M	9550 (3)	15.6 (3)	4.8 (9)	98 (8)	2 (3)	38 (5)
$08 Y 3310$	M	9280 (4)	15.6 (3)	5.0 (1)	95 (5)	1 (1)	37 (4)
$04 Y 177$	SPQ	9120 (5)	13.4 (6)	5.0 (1)	90 (1)	51 (7)	37 (2)
$09 Y 2176$	MPQ	9100 (6)	15.2 (5)	5.0 (1)	95 (6)	9 (6)	40 (7)
M202	M	9030 (7)	15.7 (2)	5.0 (1)	93 (4)	59 (9)	40 (8)
L206	L	8900 (8)	11.9 (9)	5.0 (1)	90 (1)	3 (5)	35 (1)
CH2O1	SPQ	8430 (9)	12.3 (7)	5.0 (1)	93 (3)	59 (8)	37 (3)
MEAN		9250	14.3	5.0	95	21	38
CV		4.2	3.2	1.6	1	111.7	3.4
LSD (.05)		560	0.7	0.1	1	34	2
Preliminary Lines and Varieties							
09Y3700	M	10010 (1)	15.7 (4)	5.0 (1)	98 (22)	1 (1)	38 (12)
M401	MPQ	9930 (2)	17.2 (1)	5.0 (1)	113 (30)	93 (28)	40 (23)
$09 Y 3887$	M	9830 (3)	16.5 (3)	5.0 (1)	96 (13)	1 (1)	40 (25)
$06 Y 513$	L	9780 (4)	12.1 (21)	5.0 (1)	96 (13)	11 (21)	38 (18)
$08 Y 2163$	SPQ	9710 (5)	14.2 (16)	5.0 (1)	97 (19)	1 (1)	37 (8)
10Y1012	L	9710 (6)	12.5 (18)	5.0 (1)	95 (8)	1 (1)	38 (16)
$09 Y 3502$	M	9700 (7)	15.1 (7)	5.0 (1)	96 (13)	26 (23)	40 (23)
09 Y 1079	L	9520 (8)	12.2 (19)	5.0 (1)	95 (8)	1 (1)	37 (6)
$09 Y 3622$	M	9280 (9)	16.8 (2)	5.0 (1)	98 (22)	1 (1)	40 (20)
$09 Y 3610$	M	9180 (10)	15.4 (5)	5.0 (1)	97 (19)	1 (1)	37 (8)
$08 Y 3314$	M	9180 (11)	15.1 (10)	5.0 (1)	96 (13)	1 (1)	38 (14)
10Y2081	MPQ	9150 (12)	15.0 (11)	5.0 (1)	93 (4)	41 (25)	37 (10)
$09 Y 2174$	MPQ	9050 (13)	15.4 (5)	5.0 (1)	95 (11)	99 (29)	43 (29)
$09 Y 3607$	M	8940 (14)	15.1 (7)	5.0 (1)	96 (12)	1 (1)	39 (19)
$09 Y 3830$	M	8860 (15)	14.6 (13)	5.0 (1)	98 (22)	1 (1)	40 (20)
$09 Y 2173$	MPQ	8690 (16)	15.1 (7)	5.0 (1)	96 (13)	31 (24)	40 (20)
10Y2120	MPQ	8640 (17)	15.0 (11)	5.0 (1)	95 (8)	55 (26)	41 (28)
10Y1196	LJ	8420 (18)	12.2 (19)	5.0 (1)	98 (25)	1 (1)	38 (12)
10Y1059	LJ	8410 (19)	11.6 (23)	5.0 (1)	91 (3)	1 (1)	38 (16)
$08 Y 3338$	M	8330 (20)	14.4 (15)	5.0 (1)	97 (21)	1 (1)	34 (2)
$09 Y 4002$	M	8250 (21)	14.4 (14)	5.0 (1)	90 (1)	1 (1)	37 (10)
$09 Y 1067$	LJ	8140 (22)	11.9 (22)	5.0 (1)	90 (1)	1 (1)	38 (14)
10 Y 150	LJ	7700 (23)	11.6 (23)	5.0 (1)	94 (6)	1 (1)	36 (4)
10 Y 151	LB	7330 (24)	10.9 (26)	5.0 (1)	93 (5)	1 (1)	35 (3)
10Y1199	LB	6990 (25)	10.6 (27)	5.0 (1)	98 (25)	70 (27)	40 (26)
10P1597	LB	6900 (26)	10.2 (29)	5.0 (1)	99 (27)	23 (22)	37 (6)
10P1610	LB	6780 (27)	9.8 (30)	5.0 (1)	100 (28)	1 (1)	41 (27)
CT202	LB	6770 (28)	11.5 (25)	5.0 (1)	94 (6)	1 (1)	34 (1)
KOSH	SPQ	6080 (29)	13.2 (17)	5.0 (1)	108 (29)	99 (29)	45 (30)
10 Y 153	LB	5520 (30)	10.4 (28)	4.7 (30)	96 (13)	1 (1)	36 (5)
MEAN		8490	13.5	5.0	96	19	38
CV		5.7	4.1		1.2	81.4	3.6
LSD (.05)		990	1.1		2	31	3

S = short; M = medium; L = long; PQ = premium quality; B = Basmati; LA=low amalose; J = Jasmine; R = Newrex.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 16. 2011 Intermediate/Late RiceVariety Trial - Sutter
Advanced Lines and Varieties

Variety	$\begin{aligned} & \text { Grain } \\ & \text { Type } \\ & \hline \end{aligned}$	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{aligned} & \text { Days to } \\ & 50 \% \\ & \text { Heading } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Lodging } \\ (1-99) \\ \hline \end{gathered}$	Plant Height (in)
06Y575	LR	10540 (1)	22.1 (8)	5.0 (3)	109 (8)	1 (1)	44 (9)
08 Y 3310	M	9820 (2)	29.0 (4)	4.6 (7)	102 (5)	1 (1)	40 (4)
L206	L	9780 (3)	21.5 (9)	5.0 (1)	101 (4)	1 (1)	37 (2)
04 Y 177	SPQ	9690 (4)	23.5 (6)	4.9 (4)	96 (1)	36 (9)	37 (1)
$09 Y 2176$	MPQ	9580 (5)	31.0 (2)	4.8 (5)	106 (7)	1 (1)	43 (8)
M205	M	9310 (6)	30.3 (3)	4.6 (8)	103 (6)	1 (1)	40 (6)
M202	M	9010 (7)	27.2 (5)	4.5 (9)	98 (3)	1 (1)	41 (7)
CH2O1	SPQ	8900 (8)	23.3 (7)	5.0 (1)	98 (2)	10 (8)	39 (3)
M402	MPQ	8000 (9)	32.6 (1)	4.8 (5)	115 (9)	1 (1)	40 (5)
MEAN		9400	26.7	4.8	103	6	40
CV		5.7	3.2	5.6	1.8	237.1	2.7
LSD (.05)		780	1.3		3	20	2

Preliminary Lines and Varieties

10Y1012	L	10500 (1)	22.7 (22)	5.0 (1)	107 (25)	1 (1)	39 (11)
09Y1079	L	10440 (2)	22.5 (24)	5.0 (1)	106 (24)	1 (1)	38 (6)
10 Y 1196	LJ	10160 (3)	21.3 (30)	5.0 (1)	109 (27)	1 (1)	39 (8)
$09 Y 3607$	M	10110 (4)	30.3 (9)	4.8 (24)	104 (14)	1 (1)	39 (11)
$09 Y 3830$	M	9910 (5)	32.4 (2)	4.9 (23)	103 (9)	1 (1)	43 (25)
09 Y 3887	M	9850 (6)	31.6 (4)	4.9 (19)	102 (7)	1 (1)	39 (8)
09Y4002	M	9780 (7)	24.8 (17)	5.0 (1)	95 (1)	1 (1)	40 (16)
09 Y 1067	LJ	9730 (8)	22.7 (21)	5.0 (1)	102 (4)	1 (1)	40 (19)
06 Y 513	L	9620 (9)	22.3 (27)	5.0 (1)	105 (21)	1 (1)	39 (11)
$09 Y 3502$	M	9530 (10)	30.4 (7)	5.0 (1)	103 (11)	1 (1)	43 (24)
$09 Y 3700$	M	9470 (11)	29.7 (11)	5.0 (1)	103 (11)	1 (1)	38 (4)
09 Y 3610	M	9460 (12)	30.4 (8)	4.6 (29)	104 (14)	1 (1)	39 (11)
10Y2120	MPQ	9430 (13)	27.7 (14)	4.9 (19)	102 (4)	1 (1)	40 (17)
10Y2081	MPQ	9380 (14)	29.8 (10)	4.8 (24)	99 (2)	1 (1)	42 (23)
08 Y 2163	SPQ	9180 (15)	26.6 (16)	4.9 (19)	102 (4)	1 (1)	38 (6)
08 Y 3314	M	9170 (16)	30.7 (6)	5.0 (1)	104 (14)	1 (1)	39 (15)
$09 Y 3622$	M	9060 (17)	31.4 (5)	4.8 (26)	103 (11)	1 (1)	44 (28)
09 Y 2173	MPQ	9010 (18)	32.3 (3)	4.7 (27)	105 (21)	1 (1)	41 (22)
10Y1059	LJ	8990 (19)	22.6 (23)	5.0 (1)	100 (3)	1 (1)	40 (18)
09 Y 2174	MPQ	8910 (20)	29.5 (12)	4.9 (19)	103 (9)	11 (29)	41 (20)
10 Y 150	LJ	8820 (21)	22.8 (18)	5.0 (1)	104 (18)	1 (1)	37 (1)
$08 Y 3338$	M	8780 (22)	27.3 (15)	5.0 (1)	104 (14)	1 (1)	37 (2)
10 Y 1199	LB	8040 (23)	22.7 (19)	4.7 (27)	110 (28)	1 (1)	45 (29)
10 Y 151	LB	8030 (24)	22.4 (26)	5.0 (1)	102 (7)	1 (1)	37 (2)
M401	MPQ	7780 (25)	34.8 (1)	5.0 (1)	121 (30)	1 (1)	43 (25)
CT202	LB	7440 (26)	21.3 (29)	5.0 (1)	105 (21)	1 (1)	38 (4)
10P1597	LB	7310 (27)	22.3 (28)	5.0 (1)	104 (18)	1 (1)	39 (8)
10P1610	LB	6410 (28)	22.7 (20)	5.0 (1)	108 (26)	1 (1)	43 (25)
KOSH	SPQ	5780 (29)	28.9 (13)	5.0 (1)	111 (29)	95 (30)	46 (30)
10 Y 153	LB	4940 (30)	22.4 (25)	4.5 (30)	105 (20)	1 (1)	41 (20)
MEAN		8830	26.6	4.9	104	4	40
CV		8.1	2.9	1.8	0.9	55.1	2.9
LSD (.05)		1460	1.6	0.2	2	5	2

$\mathrm{S}=$ short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long; $\mathrm{PQ}=$ premium quality; $\mathrm{B}=$ Basmati; LA=low amalose; J = Jasmine; $\mathrm{R}=$ Newrex.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 17. Grain Yield (lb/acre @14\% moisture) Summary of Intermediate/ Late Rice Varieties by Location and Year (2007-2011)

Location	Year	M-205	M-402	M-202	L-205	L-206
Biggs (RES)	2007	10080	8940	8960	9430	10390
	2008	10950	9220	10310	9890	10740
	2009	9290	9110	8300	9170	9950
	2010	11030	8240	10430	-	11610
	2011	10270	9200	9160	-	9990
Location Mean		10324	8942	9432	9497	10536
Glenn	2007	10400	9080	9110	9150	9670
	2008	8440	7240	8300	8820	8710
	2009	10120	10610	9230	9910	10440
	2010	9210	9360	7970	-	8340
	2011	9550	9820	9030	-	8900
Location Mean		9544	9222	8728	9293	9212
Sutter	2007	10320	8900	9800	10010	9580
	2008	8430	9180	8780	7760	7830
	2009	8180	8010	7080	6570	7470
	2010	9190	9300	10500	-	9390
	2011	9310	8000	9010	-	9780
Location Mean		9086	8678	9034	8113	8810
Loc/Years Mean		9651	8947	9065	8968	9519
Yield \% M-202		106.5	98.7	100	98.9	106.2
Number of Tests		15	15	15	9	15

Table 18. 2011 Twitchell Island Very Early Large Plot Variety Trial

Variety	Grain Type	Grain Yield at 14% Moisture lbs/acre	Grain Moisture at Harvest (\%)	$\begin{aligned} & \text { Days to } \\ & 50 \% \\ & \text { Heading } \end{aligned}$	Plant Height (in)
S102	S	9310 (1)	15.6 (4)	107 (2)	31 (2)
M104	M	9200 (2)	22.5 (2)	105 (1)	31 (2)
M206	M	8380 (3)	24.7 (1)	112 (3)	32 (4)
CM101	S	8320 (4)	17.2 (3)	117 (4)	31 (1)
MEAN		8800	20	110	31
CV		5.8	9.3	1.3	4
LSD (.05)		n.s.	3.7	3	n.s.

S = short; $\mathrm{M}=$ medium; $\mathrm{L}=$ long.
Numbers in parentheses indicate relative rank in column.
No lodging.

Table 19. 2011 Twitchell Island Very Early Small Plot Variety Trial

Variety	Grain Type	Grain Yield at 14\% Moisture lbs/acre	Grain Moisture at Harvest (\%)	Seedling Vigor (1-5)	$\begin{gathered} \text { Days to } \\ 50 \% \\ \text { Heading } \end{gathered}$	Lodging (1-99)	Plant Height (in)
$06 Y 575$	LR	9580 (1)	21.4 (15)	5 (1)	121 (10)	1 (1)	91 (16)
08 Y 3016	M	9470 (2)	25.8 (11)	5 (1)	115 (3)	1 (1)	86 (12)
08 Y 3076	M	9310 (3)	29.3 (5)	5 (1)	120 (9)	1 (1)	83 (7)
08Y3080	M	8970 (4)	28.1 (7)	5 (1)	118 (7)	1 (1)	87 (13)
M105	M	8710 (5)	28.1 (8)	5 (1)	116 (5)	1 (1)	88 (15)
M104	M	8680 (6)	26.6 (9)	5 (1)	113 (2)	1 (1)	83 (9)
$06 Y 513$	L	8620 (7)	22.3 (13)	5 (1)	122 (12)	1 (1)	81 (4)
07 Y 843	M	8430 (8)	30.6 (4)	5 (1)	117 (6)	1 (1)	85 (10)
$04 Y 177$	SPQ	8340 (9)	23.5 (12)	5 (1)	116 (4)	1 (1)	74 (2)
M206	M	8190 (10)	30.9 (3)	5 (1)	121 (11)	1 (1)	87 (14)
L206	L	7890 (11)	22.2 (14)	5 (1)	119 (8)	1 (1)	69 (1)
S102	S	7210 (12)	17.9 (16)	5 (1)	108 (1)	1 (1)	83 (7)
CM101	S	7040 (13)	28.2 (6)	5 (1)	124 (15)	1 (1)	82 (5)
09Y3024	M	6900 (14)	31.6 (2)	5 (1)	123 (14)	1 (1)	82 (5)
CH201	SPQ	6300 (15)	26.4 (10)	5 (1)	123 (13)	1 (1)	76 (3)
M202	M	5810 (16)	31.7 (1)	5 (1)	125 (16)	1 (1)	85 (11)
MEAN		8090	26.5	5	119	1	82
CV		11.1	5		2		5
LSD (.05)		1270	1.9		3		6

S = short; M = medium; L = long.
Subjective rating of 1-5 where $1=$ poor and $5=$ excellent seedling emergence.
Subjective rating of 1-99 where $1=$ none and $99=$ completely lodged.
Numbers in parentheses indicate relative rank in column.

Table 20. 2011 Twitchell Island Planting Method Test

	Grain Yield at 14%	Grain Moisture at Harvest	Days to 50% Moisture	Plant Height (in)
Planting	Heading (lbs/acre)	(1)		
Method	$9880(1)$	$23.6(2)$	$114(1)$	$33(1)$
Water Seeded	$9680(2)$	$25.0(1)$	$116(2)$	$33(2)$
Drill Seeded				
	9780	24.3	115	33
MEAN	4.7	12.1	3.4	1.1
CV				

Field variety M-104.
Numbers in parentheses indicate relative rank in column.
No lodging.

