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THERMODYNAMICS OF SOIL MOISTURE1 

N. E. EDLEFSEN2 AND ALFEED B. C. ANDERSON3 

INTRODUCTION 
THE WORKER who attempts to study the basic principles of thermody
namics with reference to soil moisture has considerable difficulty because 
both the nomenclature and the method of treatment in existing literature 
vary greatly. Writers on thermodynamics have usually had in mind spe
cific purposes quite foreign to soil-moisture studies; their conclusions and 
equations, being adapted to some other particular field, are not easily 
applied to soil moisture. This paper aims to eliminate at least part of the 
difficulty and also to make certain helpful original applications. It ap
plies the well-grounded principles of thermodynamics to a study of the 
soil-moisture system. The first part includes, for the convenience of the 
reader, some material that can be found scattered in numerous published 
reports and books. Such material, it is hoped, is here presented in such a 
way as to be more readily available. 

Probably the most useful thermodynamic function, as far as the stu
dent of soil moisture is concerned, is free energy. The following treatment 
has been built, accordingly, around that function. The chief purpose of 
this paper, aside from the presentation of the basic thermodynamic prin
ciples, is to develop quantitative expressions for the dependence of the 
free energy of soil moisture on such factors as the adsorptive force field 
that surrounds a soil particle, the hydrostatic pressure on the soil mois
ture, the dissolved material present, and the temperature. 

In mathematical treatments of physical systems, the inexperienced 
student cannot always distinguish clearly between the parts that result 
from pure mathematical manipulation and the parts that can be de
duced, either directly or indirectly, from experimental measurements. 
Certain aspects of mathematical analysis used in this paper are difficult 

1 Received for publication April 27, 1940. 
2 Associate Professor of Irrigation and Associate Irrigation Engineer in the Ex

periment Station. 3 Junior Irrigation Physicist in the Experiment Station. 
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for the student of soil moisture to find elsewhere in the literature, espe
cially in a form immediately applicable to his own research. At the 
beginning of this discussion are presented, therefore, several mathe
matical articles that do not depend on any physical or chemical facts 
relative to soil moisture. They are, however, used later in the paper in 
analyzing certain aspects of the thermodynamics of soil moisture. Since 
they are presented early, the reader may be more easily able to distin
guish between the deductions that are purely mathematical and those 
that are physical. Since the mathematical developments are used only in 
certain parts of the treatment, the reader may well scan them over but 
need not necessarily master every detail before reading the general dis
cussion that follows. He may even skip the first section entirely until he 
is referred back to it at some later point. 

To be most useful, any treatment of thermodynamics of soil moisture 
must recognize certain phenomena related in some ways to plant phys
iology and in other ways to soil hydrodynamics. In the present treat
ment, three types of phenomena have been distinguished. 

The first deals with the vapor pressure of soil moisture as a function of 
moisture content (2, 46, 104, 119,188,158,154,169)* When the soils are 
very wet, the vapor pressure is approximately that of free water at the 
same temperature. As the moisture content is decreased, the vapor pres
sure decreases very slightly with respect to changes in moisture content 
until a certain value is reached that is characteristic of the soil. At this 
point the decrease in the vapor pressure with respect to a decrease in 
moisture content becomes and remains very great. In other words, there 
is a moisture content where the second derivative of the vapor pressure 
with respect to moisture content is a maximum, which means that, at 
this point, the slope of the vapor-pressure-moisture-content curve 
changes most rapidly. 

The second might be classed as a plant-physiological type of phenome
non. The extensive work of Veihmeyer, Hendrickson, and co-workers 
(33, 40, 78, 74, 75,157,158,161,162) has demonstrated that plants seem 
to grow normally (assuming other conditions to be favorable) until the 
moisture content is reduced to a certain value that, because of the man
ner in which it is defined, can be fixed only within a narrow range of 
moisture contents. Other work, in general, seems to support this view 
(15,16, 29, 47,152,174). When this value is reached, the plants begin to 
evidence their need of water by drooping of leaves, by lack of growth, or 
by some other fairly obvious sign; they will no longer function normally 
unless water is added to the soil. According to available data (46, 153, 
154), the point on the curve mentioned in the previous paragraph, where 

4 Italic numbers in parentheses refer to the Bibliography at the end of this paper. 
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the vapor pressure of the soil moisture changes most rapidly with respect 
to changes in moisture content, falls in this narrow range where plants 
wilt. This moisture content has been characterized as the "permanent 
wilting percentage/ ' and might be regarded as the lower limit above 
which moisture is readily available to plants. This does not mean, of 
course, that plants cannot dry the soil out to lower moisture contents 
than the permanent wilting percentage. They may continue to use some 
water, but at a markedly reduced rate, while their normal functioning is 
markedly inhibited. The permanent wilting percentage is approximately 
independent of the kind of plant grown in the soil, and seems to depend 
only upon the type of soil, being a characteristic of a given soil. 

The third type of phenomenon concerns the hydrodynamics of soil 
moisture. If a field is saturated by irrigation or rain and then allowed to 
drain freely, water will at first filter through the soil rather rapidly until 
a certain moisture content is reached; then the drainage will practi
cally cease (19, 20, 32, 82, 96, 97,157,159,163). This moisture content is 
also a characteristic of the particular soil. I t too is represented by a 
narrow range in moisture content and, when applied to field conditions, 
will here be called "field capacity." The "moisture equivalent" (21, 28, 
87,155,163,164,165,170,173) is a convenient and for most soils a fairly 
accurate method of evaluating the field capacity. The marked slowing of 
the downward motion is usually reached within two or three days after a 
heavy rain or irrigation, the time depending on the type of soil. Any 
further downward movement is so slow that, from the agricultural point 
of view, it may be neglected. The field capacity represents the maximum 
amount of water that can be stored for long periods, in the absence of 
plants, in a soil having free drainage. This statement applies only to the 
soil below the depth to which evaporation is effective. Loss by evapora
tion is extremely small below the top 6 inches of soil (91, 157). Earlier 
literature (76, 97,170), however, seemed to stress this loss. 

For practical purposes in agriculture, the amount of water that is 
readily available to plants and that can be stored in a soil is represented 
by the difference in moisture content between field capacity and perma
nent wilting percentage. This range of what is termed "readily available 
water" is likewise characteristic of a given soil and nearly independent of 
the kind of plants grown. 

After heavy irrigations amounts of water larger than field capacity can, 
of course, be held in the soil for short periods; but since moisture above 
field capacity drains out soon after application, very little of it can be 
used by plants. Likewise, plants can extract water to moisture contents 
below the permanent wilting percentage. In that case, however, they 
usually evidence need for water and fail to function normally. 
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"Field capacity" and "permanent wilting percentage," as we use these 
terms, are recognized by most students of soil moisture as significant in 
agriculture. They are not alwa3^s, however, known by these names, some 
investigators (76, 97, 11$) selecting other soil-moisture contents near 
these as having similar significance. These terms are either arbitrary or, 
like those mentioned above, less specific than one might wish; they are 
merely narrow ranges of moisture content. In reporting data, however, 
they are customarily given a specific value. This practice of reporting 
single values that really represent narrow ranges is sometimes misleading. 
The student of soil moisture bears in mind, however, that the measure
ment might vary by plus or minus a slight amount. For certain purposes 
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Fig. 1.—Relation between permanent wilting percentage, field capacity, range of 
readily available moisture, drainage, vapor pressure, and moisture content. 

some investigators might find other nomenclature convenient, but for 
this discussion the terms mentioned above will serve. -

Figure 1 summarizes graphically the three foregoing types of phenom
ena. It shows how the drainage, the vapor pressure, and the amount of 
moisture available to plants all change after a soil planted to a crop has 
been saturated by irrigation. It shows the relation between the field ca
pacity, the permanent wilting percentage, and the readily available 
water. It also points out the nearly constant time rate of use of readily 
available water by a crop growing on the soil. Suppose we consider a soil 
immediately after irrigation in the nearly saturated state as represented 
by the point A. At this point the soil will possess its maximum moisture 
content; and the vapor pressure of its moisture will be that of free, pure 
water as represented by the point a. If desired, the osmotic pressure 
equivalent to the vapor pressure can be readily calculated from the ex
pressions given in articles 35 and 36. 

Consider first the case of a soil immediately after an irrigation with no 
plants growing on it. As time goes on, the soil moisture content will de-



Feb. 1943] Edlef sen-Anderson : Thermodynamics of Soil Moisture 35 

crease very rapidly by free drainage until it reaches the point Bh corre
sponding to the field capacity or the moisture equivalent. (For most 
agricultural soils, the moisture equivalent is nearly equal to the field 
capacity.) Where evaporation is unimportant, as is usually the case, the 
soil moisture content would remain for an indefinite period relatively 
constant near field capacity, as illustrated by the nearly horizontal sec
tion of the part B\E of the curve. The vapor pressure of the soil moisture 
at field capacity is still practically that of free water, as given by the 
point b. 

If, on the other hand, a crop is growing on the soil, the field capacity 
will be reached sooner at B2 because of transpiration. Transpiring plants 
will reduce the moisture content still further, eventually to the permanent 
wilting percentage C along some curve such as B2C, without showing 
appreciable inhibition of their normal functions. At the permanent wilt
ing percentage, the vapor pressure of the soil moisture is still relatively 
near that of free, pure water, as represented by the point c. With decrease 
of moisture content below the permanent wilting percentage, the energy 
required to remove the soil moisture begins to increase so rapidly and to 
such a high value that neither the plant nor gravity is able normally to 
remove much additional moisture. What little might be removed by the 
plant below the permanent wilting percentage is sufficient only to permit 
the plant to function at a greatly inhibited rate. The approximate con
stancy of the soil moisture content after the permanent wilting percent
age is reached is represented by the almost horizontal section CD. 
Simultaneously the vapor pressure of the soil moisture decreases tre
mendously, as represented by cd. As will be shown later, the free energy 
of the soil moisture, being proportional to the logarithm of the vapor 
pressure, also begins to decrease very rapidly at the point c. These condi
tions and behavior are what one normally finds a few inches below the 
soil surface, where evaporation into the atmosphere is negligible. 

The field capacity and the permanent wilting percentage may, of 
course, vary slightly with such factors as the temperature and the near
ness of the soil moisture to the water table. The small ranges covered by 
the terms "field capacity" and "permanent wilting percentage" are illus
trated in the diagram by the small brackets. 



MATHEMATICAL THEOREMS TO BE USED IN THE THERMO-
DYNAMIC ANALYSIS OF SOIL MOISTURE6 

1. Single-valued Functions and Perfect Differentials 

Two types of functions are used in thermodynamics. The first may be 
represented as a single-valued function of one or more variables, as 
follows : 

φ = φ(χ, y,....). (1) 

A particular set of values (x, y, . . . .) will represent and determine a 
definite state of the system and will therefore determine uniquely a 
single value of φ. In consequence any infinitesimal change in φ, which we 
shall represent by άφ, depends solely upon the initial and final state or" 
the initial and final sets of values of (x, y, . . . .). For example, the change 
άφ caused by changing (x, y, . . . .) to (x + dx, y + dy, . . . .), which 
means that φ(χ, y, . . . .) becomes φ(χ + dx, y + dy, . . . .), may be 
expressed as follows : 

άφ = φ(χ + dx,y + dy, ) - φ(χ, y, ). (2) 

Assuming that the partial derivatives 

θφ οφ 
dx dy 

exist and are continuous in the vicinity of the point (x, y,. . . .), equation 
2 may be written in terms of the differentials (dx, dy, . . . .) in the form 

dx dy 

Purely as a mathematical consequence, therefore, άφ may be expressed as 
above in terms of the changes (dx, dy, . . . .) in the variables (x, y, . . . .) 
representing the state of the system. If φ is a function of but one variable, 
x, we have the following almost trivial case: 

Φ = 4>(x), 
άφ = φ(χ + dx) — φ(χ), 

and 

άφ = — dx. 
dx 

5 This section contains a number of mathematical articles tha t do not depend on 
any physical or chemical facts relative to soil moisture. They are, however, used 
later in the paper in analyzing certain aspects of the thermodynamics of soil mois
ture. The reader may well scan them over and then revert to them only as the 
occasion demands. 

[36] 
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When the differential d<¡> of a function may be represented in terms of 
the differentials of its dependent variables (eq. 3), we say that άφ is a 
"perfect differential." For example, the independent variables x and y 
may represent the temperature T and specific volume v, respectively; the 
dependent variable φ, the internal energy e of the system. Other proper
ties of a function that may be represented as a perfect differential will 
be found in succeeding articles. 

The other type of function, which we shall, for generality, here repre
sent by 0, is not a single-valued function of the variables of state (x, y,....) 

I 
5 

¡/OLUM£ -
Fig. 2.—Carnot cycle for an ideal gas engine. 

and cannot be represented in the form of equation 1. Instead, its values 
depend solely on the path followed by the process causing the change of 
state. Thus a change dd in 0 caused by going from one state to another 
depends not upon the initial and final values of the variables of state 
(x, y, ), but solely on the path followed in going between the two 
states. Consequently, the differential άθ can never be represented in the 
differential form of equation 3 above; that is, it is not a perfect differen
tial. As an illustration from thermodynamics of such functions as these, 
we have the heat energy q added to the system, and the work w done by 
the system, whose differentials depend not upon the initial and final 
states of the system, but rather upon the path followed during the 
thermodynamic process. Consider, for example, figure 2, which represents 
the Carnot cycle of an ideal gas engine. The work done by the system dw 
on its surroundings in going from A to C along the path ABC is greater 
than along the path ADC by the area ABCD of the figure, although the 
initial and final points A and C are the same. Likewise, the heat added to 
the system dq in going from the state A to the state C depends upon the 

Cr-

c M 
D 

wËhÀ 

1 
^ 
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path taken and not upon the initial and final states A and C. More heat is 
taken in by the system in going along the path ABC than along the 
path ADC. We therefore distinguish thermodynamic functions as to 
whether their differentials are perfect or not. 

To fix our ideas and to bring out the meaning and importance in 
thermodynamics of the functions of the former type, let us consider some 
of the more common single-valued thermodynamic functions with which 
we shall be dealing. 

Such variables as the temperature T, the pressure P, and the specific 
volume v serve to define the state of a system and correspond to the 
variables (x, y, . . . .) used previously. For simple substances such as 
water, any two of these variables will, in general, define the state. If, 
for example, the pressure P and temperature T are given, the volume v 
of the water is immediately fixed. If, on the other hand, we have a simple 
solution composed of a solvent and solute, three variables will define the 
state of the system; and, in this case, they might be P, T, and the mol 
fraction X of solute. To define the state of a more complicated system, 
more than three variables will, of course, be necessary. 

Expressed in terms of the variables of state given above are a number 
of thermodynamic functions such as the internal energy e, the heat 
content h, the free energy /, the maximum work a, and the entropy s. 

The internal energy e, by the very nature of its definition, must de
pend on the variables of state, for it represents the internal energy of the 
substance, which is due to such factors as molecular attraction, kinetic 
energy, molecular vibration, and intramolecular and intra-atomic attrac
tion. Experience has shown that these forms of energy are fixed by any 
two of the variables: specific volume, pressure, or temperature. The 
internal energy of water, for example, is immediately fixed when its spe
cific volume and temperature have been given. The entropy s is likewise 
determined by the specific volume and temperature, as will be shown 
later. Evidently, therefore, the differentials of the internal energy e and 
the entropy s are perfect, since the functions e and s may be expressed in 
terms of the variables of state, T, P, and v. 

The other three thermodynamic functions, whose meaning is con
sidered in detail later in this paper, are there shown to be defined by the 
following equations : 

h = e + Pv 1 
/ = h - Ts = e - Ts + Pv K4) 
a = e- Ts J 

The differentials of such functions as h, / , and a above are called "per
fect differentials" because, as equations 4 show, the functions are com-
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pletely determined by the variables of state such as T, P, and v; it has 
already been pointed out that the internal energy e and the entropy s 
may be expressed in terms of these same variables of state. Thus the 
right-hand side of equations 4 is composed of quantities which either are 
or can be expressed in terms of the variables of state T, P, and v. For 
example, if T7, P, and v are given, h is fixed. Thus equations 4 are each 
perfectly analogous to equation 1 and have all the same mathematical 
properties. In analogy to equation 3, for instance, we have the following 
perfect differentials, which we shall merely accept for the present but 
which are derived in articles 11, 21, and 44: 

dh = Tds + vdP ) 
df = -sdT + vdP L , 
da= -sdT-Pdv f (δ) 

de = Tds - Pdv J 

The last equation follows immediately from a combination of the First 
and Second laws of thermodynamics, since the First Law (art. 11) states 
that de = dq — Pdv, where dq is the amount of heat added to the system ; 

and the Second Law (art. 14) states that ds = —. 

2. The Interrelations of the Properties of a Substance 

Several properties or quantities, such as P, v, T, s, and h, serve to 
describe the state of a substance or system. Offhand, therefore, it would 
seem that many of these quantities would have to be known before the 
state of a system could be fixed and described quantitatively. Generally, 
however, as previously stated, any two of such quantities as those given 
above will quantitatively describe and uniquely fix the state of a simple 
substance such as water. Such descriptive quantities are usually so inter
related that to determine any two of them will for a simple substance 
immediately fix the others. The state of free, pure water, for example, is 
immediately fixed if any two of the quantities named above are known. 
If both the pressure and the temperature are given, the water can exist in 
but one state; and therefore all its other properties, such as its specific 
volume v, its entropy s, and its heat content Λ, are simultaneously fixed. 

In mathematical language we speak of such a system as having two 
degrees of freedom or two independent variables, because two variables 
are needed to fix the state of the system. All the other quantities, proper
ties, or variables of the system are then called dependent variables be
cause their value depends on the independent variables. If, for example, 
the pressure and temperature of water are given, the volume, which is 
then the dependent variable, is immediately fixed. I t is usually imma-
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terial, except for convenience, which variables are taken as independent. 
Those remaining then become the dependent variables. 

If we take T and P as the independent variables of state for water, 
with v, the specific volume, as the dependent variable of state, we have 
v = f (P, T), which expresses the specific volume as a single-valued func
tion of the variables of state T and P . To fix our ideas for the present, 
we might assume that we are dealing with water vapor, the specific 
volume of which will be determined by the pressure and temperature. 
Then from the general theorem of mathematics, stated at the beginning 
of article 1, we should have 

dv = (dJL)dt + (d-L)dp. 
\dT/p \dP/T 

If, instead, P and s had been taken as independent variables, then 
v = f (P, s) ; and we should have 

dv = (dA ds + (*L) dP. 

It will be noticed that ( — ) is not the same in the two equations : ( — 1 
\dP/ \dP/T 

refers to the variation of v with respect to P with T constant, whereas 

—- ) refers to the variation of v with respect to P with the entropy s 
dP/8 

kept constant. When the differential of the dependent variable of a func
tion can be expressed in a form such as dv above, in terms of the differen
tials of the independent variables, dv is called a "perfect differential." 
This fact leads us to an important mathematical theorem in thermo
dynamics presented in article 3. 

3. Properties of Single-valued Functions of Two Variables 

Single-valued functions of but two independent variables have an im
portant mathematical property, arising from the fact that the function 
may be expressed as a perfect differential. Suppose 

d<f> = Xdx + Ydy, (6) 

where φ is a function of x and y—that is, φ = φ(χ, y)—and likewise where 
X and Y are each functions of both x and y. We shall now show that 

\dy /* \dx h 
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To prove this theorem, consider the single-valued function φ = φ(χ, y). 
According to equation 3, we may express άφ in the form of a total differ
ential as follows : 

άφ = p*(*>y)1 dx + \^(x,y)l dy (7) 
L ¿to Jy L dy Jx 

Comparing equation 6 with 7, we have 

X = \ d ^ i A \ and Y = \ΘΦ(Χ> y)] . (8) 
L dx Ay L d?/ J* 

Differentiating equations 8, we get 

idX\ = d^(xyy) a n d /dY\ = θ*φ(χ, y) ^ ( g ) 

\dy )χ dydx \dx Jv dxdy 

Since the order of differentiation is immaterial, the right-hand sides of 
equations 9 are equal. We conclude, therefore, from 9 that when άφ = 
Xdx + Ydy, it follows that 

(r)-(r)· ( 1 0 > 
\dy Jx \dx Jy 

An application of equation 10 to each of the four perfect differentials 
of equations 5 gives the four following, which are often referred to as 
Maxwell's equations : 

( * ) - - ( * ) (12) 
\dP/T \dT/p 

\dvjr \dTjv 

\dv J* \ds Jv 

To illustrate the usefulness of these equations, let us show that the 
Clausius-Clapeyron equation (given by eq. 15 and considered in detail 
in art. 27) falls immediately out of equation 13, the third of Maxwell's 
equations above. From article 19 we have, by definition (eq. 70), 

Δ ? l 

As = — = - , 
T T 

file:///dvjr
file:///dTjv
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Dividing through by an increment in the volume while the temperature T 
remains constant, we have to a first approximation 

fds\ = ± J_ 
\dv/T T Av 

and therefore, since the left-hand side of this is equal to the left-hand 
side of equation 13, we obtain 

£--L. (15) 
dT TAv 

The restriction of the constancy of volume may be omitted because the 
equilibrium pressure is independent of the volume. This is the Clausius-
Clapeyron equation showing the relation between changes of temperature 
and pressure if two phases are to remain in equilibrium. Here I is the 
latent heat of transformation and Av is the change in volume per gram 
(when the c.g.s. system is used) when one phase is transformed into 
the other. 

As an application of the second of Maxwell's equations, let us derive 
the relation 

J PA \dT/P 

which is used in article 77. As will be recalled, by applying equation 10 
to the second of equations 5, we obtain equation 12, which is 

(*L) - - ( * V 
\dP/T \dT/p 

That is, a change ds when T is kept constant is given by 

ds = _ (*L) dP> 
\dT/p ' 

which when integrated between the limits PA and PB gives 

fpB(dv\ ,_ 
As = sB — SA = — I [ — 1 dP. 

J PA \dT/P 
(16) 

4. Simplest Conditions for the Maximum or Minimum of a Function of 
Any Number of Variables without Constraining Conditions 

Let us consider first the simplest case where the function φ is a func
tion of but one variable, x. That is, 

φ = φ(χ). 
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At any maximum or minimum, x = x0 of φ, the first derivative of φ must 
be zero. In other words, when φ is a maximum or minimum at x = x0, we 
have 

(<*) = 0. 
\dx/x=xo 

(17) 

That is, a slight change of x in either direction from x = x0 will cause no 
change in φ except for infinitesimals of higher order than the first. That 
is, δφ = 0 for infinitesimal variations δχ about the point x = x0j where Xo 
corresponds to either a maximum or minimum value of φ. This is clarified 

1 1 1 

£ 

á>' 

1 

^ < Γ 0 ^ 

Fig. 3.—Properties of a function at a maximum and at a minimum. 

by figure 3. Any infinitesimal variation δχ in the neighborhood of either 
A or C, the minimum and maximum of φ, is seen to produce no variation 
δφ in the function φ ; that is, δφ = 0 /or infinitesimal variations δχ about 
the point x = x0, which corresponds to either a maximum or a minimum of 
the function φ. If, however, we focus attention on B, any other point of the 
curve, we note that slight variations δχ do produce appreciable varia
tions δφ of the function φ. 

Considerations of the maximum or minimum of functions of any num
ber of variables resemble those above. Let 

φ = φ{χ,ν, ). 

Then from article 1 it follows that the differential of φ may be represented 
as 

dx dy 
(18) 

Now if the set of values (xo, 2/o, . · · ·) are such that φ = φ(χο, yo, . . . .) is 
either a maximum or minimum, then any slight variation (δχ, δ?/, . . . .) 
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of any or all the values (x, y, . . . .) about the set of values (x0, y0, . . . .) 
will cause no change in the function φ except for infinitesimals of higher 
order than the first. That is, δφ = 0 for infinitesimal variations (ôx, ôy, 
. . . .) about the set of values (x0, yQ, . . . .), which corresponds to either a 
maximum or minimum of the functions φ. Obviously, δφ must equal zero 
for variations (ôx, ôy, . . . .) about (x0, 2/o, · . · · ) > for if the variations 
(δχ, ôy, . . . .) produced a change δφ different from zero, the set of values 
(x0, yo, . . . .) could not correspond to a maximum or minimum of φ. 

Further, since δφ must equal zero for any arbitrary set of variations 
(δχ, ôy, . . . .) about (x0, y0j . . . .), according to equation 18 we must have 

dl = o, *t = 0, (19) 
dx dy 

in perfect analogy with equation 17. This follows because if any one of 
r)rh 

the partial derivatives—for example, were not equal to zero at 
dx 

(x0,2/o, . · . ·)> then φ(χ, ?/o, ¿o, . . . .), which is a function of x alone, would 
be either increasing as x passes through the value x0, or else decreasing, 

according to the sign of — . In neither case, therefore, could φ(χ, y, . . . .) 
dx 

have a maximum or a minimum at (x0, ?/o, ). 
That the conditions in equations 19 must hold also follows from the 

fact that if any of the partial derivatives were not equal to zero, the 
variations (δχ, ôy,. . . .) could not be carried out in any arbitrary manner 
but would have to be always so adjusted that δφ = 0 in equation 18. 
There are no restrictions on the variations, for they are independent of 
each other. As will be remembered, the variations (ôx, ôy, . . . .) are 
independent and may be carried out in any arbitrary manner about 
(xo, 2/o, . . . .)> still keeping οφ = 0, if (xo, yo, . . . .) isto correspond to a 
maximum or a minimum value of φ. 

If, on the other hand, δφ = 0 and equations 19 are not satisfied, then 
φ is merely a constant. This means that the variations (ôx, ôy,....) must 
take place in such a way as to leave the value of φ unchanged. Under 
these conditions the variations cannot be made in an arbitrary manner, 
as we found to be the case above, at a maximum or minimum. This latter 
case can be stated mathematically from equation 18 by 

δ ψ = 0 = ^ δ χ + ^ δ 2 / + . . . . 
dx dy 

when 
φ(χ, y, ) = constant. 
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5. Determination of the Maximums or Minimums of a Function Subject to 
One or More Constraining Conditions 

(Lagrange's Method of Undetermined Multipliers) 

In article 49 on the statistical treatment of the properties of molecules, 
we shall have to determine the values of the independent variables whw2, 
. . . . wn, for which a certain function W has its maximum, subject to 
several restrictions or equations of constraint. Let us now consider the 
presentation ,and proof of a general method for making this determina
tion. 

Assume that we have a function H0 = Ho(wi, w2, . . . . wn) of the n 
variables wh w2, . · . . wn and that we wish to find the values of wh 
ilk, . . . . wn for which HQ = H0(wh w2, . . . . wn) has a maximum or mini
mum value subject to h conditions, restrictions, or constraints. In apply
ing the results of this article to the specific problem of article 49, we shall 
there set H = IF. The h conditions, restrictions, or constraints, which 
are also to be functions of the n variables, may be denoted by 

Hx = Hi(wh w2, wn) 

Hh = Hh(wh w2, wn) 

(20) 

Our h conditions will then be described by h fixed values Hh H2, . . . . Hh, 
although the variables wh w2, . . . . wn may vary widely. Thus, we wish to 
find for what values of the variables wh w2, . . . . wn the function H0 has 
a maximum subject to the h restrictions or conditions Hh H2, . . . . H^ 
each of which has a fixed or assigned value. 

Having stated our problem, let us now recall from article 4 an impor
tant property of a function—namely, that when H0 = H0 (wh w2.... wn), 
for example) is at its maximum or minimum value, we can make small 
changes in the variables wh w2, . . . . wn without altering the value of H0. 
In general, according to article 1, we have 

jj dHo dHo ? , , dHo 
öHo = dWi H ÔW2 + H own. 

dWi dw2 dwn 
When HQ has a maximum value, we can carry out small changes, 8wh 
8w2,.... dwn, quite independently of each other without altering H0; that 
is, δΗ0 = 0, according to article 4. Hence, if H0 is to be a maximum or a 
minimum, we must have 

¿H„ = 0 = —°ÔWl + + — to», (21) 
dWi dwn 
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and all the variations ôwh . . . . bwn about the values wh w2, . . . . wn for 
which Ho has a maximum or minimum may be carried out quite indepen
dently of each other. This is a universal property of any function at its 
maximum or minimum. In other words, without any of the restrictions 
given by equations 20 and to be considered below, the system has n 
degrees of freedom. 

We now also wish to state the h conditions or restrictions in differential 
form. Since they are each functions of the n variables, we have 

_Tr dlii _ , dH\ _ . , dHi _ 
δΗι = ÔWx -\ ôw2+ H ôwn 

dWi dw2 dwn 

jj dHh ,> . dHh -, , , dHh ç. 
ôHh = ôWi H ôw2 + H àwn . 

dWx dw2 dwn 

Our conditions, it will be recalled, are that Hh H2, . . . . Hh are to remain 
constant no matter how the n variables change; that is, the variations 
δΗι, δΗ2, ôHh are to remain zero no matter how the n variations 
bwh bw2i bwn behave. Our h conditions in differential form above, 
therefore, become 

«TT Λ dH\ . . . dH\ 
bHx = 0 = — · bwi + H dwn 

dWi dwn 

SHh = 0= d-^8Wl + + — A a w „ 
dWi dWn 

(22) 

Each of these h equations restricts the freedom of the system and reduces 
the total number n of the degrees of freedom of the system by one. Hence, 
with these h equations, the number of degrees of freedom (or indepen
dent variables) of the system is reduced from n to {n — h). 

Thus our problem finally resolves itself into finding the values wh 
w2, wn which will make 8H0 equal zero, subject to the h conditions, 
δΗι = 0, δΗ2 = 0, and δΗκ — 0. Therefore the system has only (n — h) 
degrees of freedom. That is, (n — h) of the n variables may be varied 
independently of each other. We shall now proceed to solve the problem 
by using undetermined multipliers in accordance with Lagrange's meth
od. Let us multiply each of equations 22 through by a different multi
plier, and group them with equation 21 as follows: 
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dH0 . . dHo t . . dHo t ~ 
ÔWi + blü2 + + OWn = 0 

dWi dw2 dwn 

λ] ôwi + λι bw2 + + λι - bwn = O 
dWi dw2 dwn 

, dH2. dH2 d#2 \(23) 
\2 bWi + λ2 bw2 + + λ2 bwn = 0 ' 

dWi dw2 dwn 

dHh dHh ? « , Λ dHh . n 
\h àwi + \h ôw2 + +\h ôwn = 0 

dWi dw2 d Wn 

Since each term in a given equation is multiplied by the same constant, 
the equations must still remain satisfied. The h quantities λι, λ2, . . . . \h 
are called Lagrangian multipliers; their values will be determined later. 
Suppose now we add all these equations 23 together, collecting terms 
having like coefficients of the variations bw—that is, all terms in the 
same vertical columns. We then have 

'dHo , λ θ#ι , λ dH2 dH 
-h λι -f- Λ2 -h -h ΛΛ. — 

KdWi dWi dWi dw: 
1 / 

+ [ + λι + λ2 + + \h 1 àw2 
\dw2 dw2 dw2 dw2 / 

+ 
+ 
+ 

(dHo dHi dH2 dHh\ ç n /0/(N 
I + λι + λ2 + + λΛ J bwn =0 . (24) 
\dwn dwn dwn dwn/ 

It will be noticed that this equation contains h new variables λι, λ2, 
λΛ. 

We shall next see that by introducing the h variables or multipliers, we 
may change all the n variations bwh bwn of equation 24 indepen
dently of each other, while the right side of the equation still remains 
zero. This will mean that the coefficients of all the variations must be 
equal to zero at all times. 

As will be recalled, there are h equations of constraint (see equations 
20) and therefore h dependent variables. Let these be Wi, w2, . . . . Wh. 
Each of the variations bwh bw2, . . . . bwn is therefore dependent for its 
value on all the remaining (n — h) variations bWh+i . . . . bwn. Let 
us then make the coefficients of each of the h dependent variations in 
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equation 24 equal to zero by adjusting the values of the h undetermined 
multipliers of Lagrange. We then have 

dHo dHi dH2 . . λ dHh A + λι -J- Λ2 h "Γ λλ = U 
dWi dWi dWi dWi 

dHo.. dH,^ dH2. dHh 

dw2 dw2 dw2 · dw2 (25) 

dHo , . ¿)#ι , λ dH2 dHh 

dWh dWh dWh dwh 

This is possible because we have here h equations with the h unknowns 
λι, λ2, XA, which can be readily solved for, in an actual prob
lem, by the well-known method of determinants. Thus we can make the 
first h terms of equation 24 drop out by properly choosing the h mult i
pliers, so t ha t equation 24 becomes 

/ dHo , λ d # i , . dH2
 dHA*n 

I h Xi h λ2 + + ΧΛ I owH 
\dwh+i dwh+i dWh+χ dwh+1/ 

, (dHo , , dH, , , dH2
 dHAx 

+ [ h λ2 h λ2 + + ΧΛ ) dwh+ 
\dwh+2 dwh+2 dwh+2 dwh+2/ 

+ 
( dHo , . dHi dH2 ^ # Α \ n 

+ I + Xl + λ2 + + λ Α 1 ÖWn = 0, 
\ dwn dwn dwn dwn / 

(26) 

Now, as previously stated, (n — h) variations are independent of each 
other; and each can, therefore, be varied in any arbitrary manner inde
pendently of the others. In equation 26 there happen to be exactly 
(n — h) variations, dwh+h dwh+2) . . . . bwn. Therefore, all the variations 
in 26 can be varied arbitrarily. Under these conditions the only possible 
way for the expression above to remain equal to zero at all times is for 
the coefficients of each variation in equation 26 also to be zero at all 
times. That is, 

dH0 , . dHx dH2 dHh ' 
τ ΛΙ 1- Ä2 ■+- r ΛΛ = υ dwh+i dwh+i dwh+i dwh+i 

dHo , . dHt , . dH2 dHh 
T" Ai + A2 + + AA 

dWn dWn dWn dWn 

(27) 
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There are (n — h) of these equations, which, with the h equations of 25, 
give n equations in all. This is just sufficient to determine the values of 
the n variables wh w2, wn at the point where H0 has a maximum or 
minimum subject to the h constraining conditions Hh H2, . . . . Hh. 

We have thus not only solved our problem but justified the method of 
its solution. In practice, the h equations of constraint (eqs. 20) may be 
used for evaluating the h multipliers λι, λ2, \h> The mathematical 
technique involved will depend upon the particular problem at hand. 

To illustrate these methods in determining maximums and minimums, 
let us consider the following very simple example : 

Let us find the greatest value of the volume V = 8 xyz, subject to the 
condition that the sum of the squares of the sides of the solid is equal to 
unity; that is, 1 = x2 + y2 + z2. Here by analogy, H0 = V = 8 xyz; and 
we have only one constraining condition, which is Hi = 1 = x2 + y2 + z2* 
Applying equation 21, we have 

dV = dH0 = 8yz dx + Sxz dy + Sxy dz = 0. 

The eight's can of course be dropped. Also applying equations 22, we have 

dHi = 2xdx + 2y dy + 2zdz = 0. 

The two's can of course be dropped. Multiplying the latter by λ and 
adding it to the former in accordance with equations 23, we have, corre
sponding to 24, 

(yz + \x)dx + (xz + \y)dy + (xy ■+ X2)cte = 0 

and in accordance with equations 25 plus 27 

yz + λχ = 0; xz + \y = 0; xy + \z = 0. 

We now wish to determine λ by means of the constraining condition. In 
this particular case, we can make the determination most easily by mul
tiplying the three equations given above by x, y, and z, respectively: 

xyz + \x2 = 0; xyz + \y2 = 0;xyz + \z2 = 0. (28) 

Substituting the values of re2, y2
} z2 from equations 28 into the equation 

of constraint, we have 
λ = -Sxyz, (29) 

which, with Ho = 8xyz = Vf becomes 

8 
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Substituting 29 into each of the equations 28 we have, subject to the 
constraining condition, the values of x, y, z, for which F is a maximum. 

= Vïï;2/ = V^2 = \ r 
From this, 

V 44· 
This paragraph should be read principally in connection with article 

49. In that article we shall wish to find the maximum of a function 
W = Ho subject to the two constraining conditions—namely, the con
stancy of the quantities e = Hi and N = H2. We will have, therefore, in 
accordance with equations 21 and 22, the following: 
èHo = bW = 0 = (wjimjoijbwi + (w2hiw2)bw2 + . . . . + (wn\nwn)bwn 

δΗι = be = 0 = eibwi + e2bw2 + + enbwn 
and 
bH2 = bN = 0 = bwi + bw2 + + bwn 

(30) 

where the terms W and e have the same meaning as in article 49. In this 
case, for the ith term, we have 

ÔHQ , dHi , dH2 
= WilriWi, = €¿, and = 1. 

dW{ dWi dWi 
In accordance with the general solution just presented, we will introduce 
two multipliers, which will be called a and β corresponding to λι and λ2 
in the previous general treatment, and get the following n relations, one 
for each variable Wi to wn : 

(wilnwi + a€i + $) = 0 I 
(w2 \nw2+ ae2 + β) = 0 ( , ^ 

(wn\nwn + aen + β) = 0 J 
from which the values of wh w2, wn, when W has a maximum, 
are determined subject to the two constraining conditions, Hi and H2. 

6. Relation between a Partial Differential and Its Reciprocal 

Suppose variables x} y, z to be connected by an equation so that only 
two of the variables are independent—that is, each of the variables is a 
function of the other two. We wish to prove that 
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To do so, let us first assume that x is a function of both y and z. According 
to equation 3, we must then have 

dx=(?fldy+(fXdz-Kdy/ 

If z is a function of both x and Î/, we have similarly 

dz=(?ldx+(fldy-dy/ 

Let us assume, from here on, that x and y are to be the independent 
variables, and z the dependent one. If we eliminate dz of the former 
equation by means of the latter, we have 

\dy/z \dz/y L\dx/y \dy/x J 

Rearranging, 

dx = Γ(*ή + (¿A (ÈÎ) 1 dy + (*°) (?Λ dx 
LXdy/z \dz/y \dy/xA \dz/v\dx/v 

or 

Wdy/z \dz/y\dy/xj V i\dz/y\dx/y J 

Since we assumed that x and y were to be the independent variables and z 
the dependent one, dx and dy may be varied independently of each other 
in any arbitrary manner. Under such a condition the only way in which 
this equation can remain zero at all times is for the coefficients of dx 
and dy to vanish for all values of dx and dy. That is, we must have 

\dy/' \dz/y\dy/x Kdy/z \dz/y \dy¿ 

which is of no immediate use, and 

\dz/y \dx/y 
from which 
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We can obtain two other equations like 32 between x, y, z by assuming 
x and y in turn to be the dependent variables and carrying through the 
same process twice, as above. By cyclic permutation, however, we can 
write them down immediately as 

( * ) = * and ( θ - ή = Λ -\dy/z /dy\ \dz/x (dz\ 
\dx/z \dy/x 

7. Another Theorem on Partial Differentiation 

Suppose we have three variables such as x, y, z and suppose that z is a 
function of y and that y is a function of x. Also, x, y, z may each be func
tions of several other variables. The latter will be denoted by the symbols 
Φι, </>2 . . . . We want to prove that it is then possible to write 

(^) = (^) (dl) 
\ΟΧ/Φ \dyh \θχ/Φ Kdy/Φ \οχ/Φ 

where φ denotes that all the variables, φι, φ2, . . . . except xy y, z remain 
constant. 

Since z is a function of y} we have for a change dz expressed in terms of 
a change dy, and the others, άφι, αφ2,.... 

\dy/ \ < W \οφ2/ + .. 
We shall assume here that all the independent variables except y remain 
unchanged—that is, άφι = 0, άφ2 = 0, αφΆ = 0, . . . . We have then, 

dz = (— j dy. 
Kdy/Φ \^y/Φ 

Similarly, since y is a function of x, we have 

dy = ( — ) dx. 
\ΟΧ/Φ 

If we eliminate dy from the former by means of the latter, we have 

ώ = (**) (dj) dx-
\^y/Φ \ΟΧ/Φ 

or, dividing through by dx and writing ( — ) as ( — 1 , since the φ'δ re-
\dx/ \οχ/Φ 

main constant during the differentiation, we find 

(*!) = (ÈE) (*) . (33) 
\οχ/Φ \^y/φ \οχ/Φ 
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8. Evaluation of Integrals to be Used in the Statistical Study of Molecules 

We wish to evaluate a number of definite integrals to be used later. 
They are all based on the following one : 

G=fe~x2dx. (34) 

If we let x = au and consider a in this equation to be a constant, we have 

G = I e
_a2u2 adu 

Jo 

where, instead of integrating x from zero to infinity, we now integrate u 

from zero to infinity, since u = - = 0 when x = 0 and u = — = <» when 
a a 

x = oo. On the other hand, since a definite integral is only a function of 
the limits and does not depend on the letter used to symbolize the 
variable, we may write quite independently of equation 34 : 

■ / G=l e~a da. 

Both of the two latter definite integrals have the same numerical value 
G, since they have the same form and have corresponding limits of inte
gration. Multiplying the two latter equations together, we have 

G*=r duf\-aKW)ada 

which with any table of integrals reduces to 

(?2 = f" du 
Jo 2 ( 1 + ^ 2 ) 

and by further integration becomes 

(?2 = y t an - 1 u 
7Γ 

4* 

Hence we obtain our first important integral, 

G=y^= Γ e~x2dx. (35) 
2 Jo 

From the above we may obtain integration of other integrals. Consider 
the following, where a is a constant : 

fœ e~ax2dx = - V Γ e'^diV^x) = lA\\- (36) 
J o \/aJ o \ a 
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where we have applied equation 35 to integrate the second integral. 
In the expression 

" e~ax2dx 
/ : . 

the integrand is symmetrical with respect to the y axis. The positive and 
negative half of the integral are therefore equal. We then have 

f " e~ax2dx = 2Γ e-*dx = yfe, (37) 

using 36 above. 
If now we differentiate the first and last members of 36 with respect 

to a, we obtain 

/ 
x^~ax2dx = \i J - _ (38) 

0 \ a6 

Using this equation, we may immediately integrate the following. We 
shall find that since the integrand is symmetrical with respect to the 
y axis and since therefore the positive and negative half of the integrand 
are equal, we have 

/ x2e-ax2dx = 2J x2e-ax2dx = y2J^. (39) 

Differentiating 39 with respect to a again, we have 

/ 
x*e-'*dx=*/iJ-t (40) 

0 \ a 

and, since the following integral is symmetrical with respect to the y axis, 

i xA e~ax2 dx = 2f x4 e~ax2 dx = % J - f i . (41) 

9. Determination of the Partial Specific Volume from the Specific Volume 
and the Mol Fraction 

Let us first state the meaning of the terms to be used. 
Weight Fraction.—If a solution contains U\ grams of one substance, 

U2 grams of another, and so on, then the weight fraction Xi of the first 
substance is defined by 

X 1 = VI . 
ni + n2 + 

If the solution contains only one substance—that is, if we have now the 
pure solvent only—the value for the weight fraction becomes Xi = 1. 
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Specific Volume.—If a solution contains n\ grams of one substance, 
n2 grams of another, and so on, and if V denotes the total volume of the 
solution, then the specific volume v of the solution is defined by 

v = 
V 

ni + n2 + 

Partial Specific Volume.—As above, let us suppose that a solution 
already contains ni grams of one substance, rh grams of another, and so 

Fig. 4.—Relation of specific volume to the weight fraction 
of the constituents of a solution. 

on, and that the total volume of the solution is V. Then the partial 
specific volume of the first substance, which we shall symbolize by vh 

is defined by 
Vi = 

drii 

dV 

That is, if we add a small amount of the first substance to the solution, 
keeping constant all other variables affecting the solution, the partial 
specific volume v\ is the total increase in volume of the solution per unit 
weight of the substance added. If the amount of the solution present is 
very large, Ίχ is the increase in volume of the solution when 1 gram of 
the first substance is added. 

Having disposed in a preliminary way of these definitions, let us prove 
a theorem: if the specific volume v of a solution is plotted against the 
weight fraction of the constituents as shown in figure 4, we can deter
mine the partial specific volumes of either constituent at any desired 
weight fraction as follows. Suppose we wish to determine the partial 
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specific volumes corresponding to the solution at P . We then erect the 
tangent at the point P . Its intercept CB on the ordinate Xi = 1 is equal 
to the partial specific volume v\ of the first constituent; its intercept DE 
on the ordinate X2 = 1, to the partial specific volume v2 of the second 
constituent. 

The proof is mainly geometrical. The slope of the curve or (what is the 
same thing) the slope of the tangent, at any point P, for example, is given 

by . Therefore AB = X2 . Consequently, we have for the segment 
dX2 dX2 

AC = v: 

To prove this, let us recall that 

If U\ is changed, 

Also 

Therefore 

V = 

,11 that 

v = 

dv = 

X2 

dX2 = 

"£i+X2 

V 
ni + riv 

dv 
dX2 

dV 

ni + n2 ( 

rh 
ni+ r 

■ —ru — 

h 

drii 

V drii 

>ι + n2)2 

(42) 

(ni + rh)2 

(43) 

(44) 

(45) 

Dividing equation 43 by 45 and multiplying the result by equation 44, 
we have 

Z 2 A = _ ^ + _ I _ . (46) 
dX2 drii rii + n2 

Now, from the definitions given earlier, 46 becomes 

v dv 
A 2 = — Vi + V 

dX2 

and 
v = vi + X2 , 

dX2 

which is the same as 42 and therefore proves the theorem, since exactly 
the same procedure would be followed in showing that the intercept DE 
equals the partial specific volume v2. 



THE THREE FUNDAMENTAL LAWS OF THERMODYNAMICS 
AND THEIR BASIC CONSEQUENCES 

10. Thermodynamic Concepts 

For the present, attention will be confined to a single substance, such as 
water, in the solid, the liquid, or the gaseous phase, and consisting of any 
number of coexisting phases, all parts of which are in thermal equilibriurr 
with one another. Some of the thermodynamic quantities with which w 
shall deal are proportional to the mass of water considered, such as til'-
total internal energy of the water, its volume, its total heat content, and 
its weight, and will be symbolized by capital letters. When these quan
tities are referred to unit mass of water, they will be symbolized by small 
letters, such as e, v, and h. Other quantities used, which do not refer to 
unit mass, are the temperature T, the hydrostatic pressure P, the vapor 
pressure p, and the total volume V. 

Since thermodynamics deals with energy and its transformations, the 
term "energy" must be clearly understood. Energy is the capacity of a 
body or system to perform work. Since the work done is a measure of the 
energy expended, both energy and work are measured in terms of the 
same unit, such as the erg. Energy stored in a system by virtue of motion, 
either of itself as a whole or of its parts, is known as "kinetic energy." 
Thus we may speak of the kinetic energy of a body of water moving 
through a pipe or the kinetic energy of the randomly moving molecules 
that make up the body of water. Energy stored in a system by virtue of 
the relative positions of the parts is called "potential energy." The energy 
contained in a body of water, for example, by virtue of its temperature 
and its molecular arrangement, is composed of both of the former kinds 
of energy. The sum of its internal kinetic and potential energies is known 
as its "internal energy." This includes all forms of energy due to molecu
lar atomic and subatomic motions, as well as the potential energy of the 
system due to the existence of electrical and magnetic forces. 

Classical thermodynamics is based entirely on the two fundamental 
laws that follow. 

11. The First Law of Thermodynamics 

The First Law of thermodynamics may be stated as follows : The increase 
Ae in the internal energy of a substance, such as water, during any trans
formation is equal to the amount of heat Aq taken in, minus the work Aw 
done by the substance. That is, 

Ae = Aq— Aw (47) 
or 

Aq = Ae + Aw. (48) 
[57] 
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Or if the only work done is that of expansion against a pressure P, we 
have 

Aq = Ae + PAv. (49) 

This is merely the law of conservation of energy generalized to include 
heat as a form of energy. Suppose, for example, we add some heat Aq to 
water vapor. This heat energy may appear partly as work Aw done by 
the vapor in changing its volume and partly as a change in its internal 
energy Ae due to a change in its temperature. The sum of the work Aw 
done by the water vapor in changing its volume and the change in its 
internal energy Ae is always equal to the amount of heat energy Aq added 
to the water vapor (eq. 48). 

12. Specific Heat c, Internal Energy e, and Heat Content b 

General Definition of Specific Heat.—Suppose the temperature of 1 gram 
of a substance rises from T to T + AT because of the intake of an amount 

of heat, Aq. Let us consider ——. Then in the limit when AT approaches 
zero, we shall define c, the specific heat of the substance, at the tempera
ture T as equal to c = —. 

dT 
Since the amount of heat dq required to raise the temperature of the 

substance by an amount dT differs with the condition under which the 
heat is added, we shall have a corresponding number of different specific 
heats. If the heat is added while the volume of the material is kept con
stant, — equals cv, the specific heat of the substance at constant volume. 
If, on the other hand, the heat is added so that the pressure on the system 
is constant, — equals cPl the specific heat of the substance at constant 
pressure. 

Let us now consider a homogeneous body undergoing a transfer of heat 
Aq and of mechanical work Aw either to or from the surroundings. 
According to the First Law of thermodynamics, we have 

dq = de + Pdv 

and for the specific heat c, 

C = ^ = = * + P * . (50) 
dT dT dT 
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Specific Heat at Constant Volume cv.—If heat is added to the substance 
while its volume is kept constant, dv in equation 50 will be zero. Thus, 

* = (-) 
\dT/v 

(51) 

Hence cv, the specific heat at constant volume, is equal to the rate of 
change of the internal energy de. 

Specific Heat at Constant Pressure cp.—If, on the other hand, heat is 
added while the pressure P on the substance is kept constant, we have 
(eq. 50) 

Cp = (dj\ (d*\ +P(*L) (52) 
P \dTjp \dTjp KdT/p J 

or, since P is constant, 

Let us introduce the following important abbreviation for the quantity 
in parenthesis and set : 

h = e + Pv. (54) 

Because of its wide importance in thermodynamics, the quantity A has 
been given the special name "heat content." Using the heat content, A, 
equation 53 becomes : 

\dT/p 
(55) 

\ai /p 

or 
dh = cp dT. (56) 

Thus cP) the specific heat at constant pressure, is equal to the rate of 
change of A, the heat content, with temperature; whereas, as indicated 
earlier, cv, the specific heat at constant volume, is equal to the rate of 
change of e, the internal energy, with temperature. 

Equation 56 also serves to define the heat content A, when the specific 
heat at constant pressure cp is known as a function of the temperature. 
Since the heat content at the temperature of absolute zero is taken as 
zero, as shown in the consideration of the Third Law of thermodynamics 
(art. 20), we have 

- / : hT= cpdT. (57) 

file:///dTjp
file:///dTjp
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Or, if we know the heat content at the temperature Th we may write the 
heat content at some other temperature T2 according to equation 57 
as follows: 

hTi = hTi+ cpdT. (58) 
J Tx 

13. Reversible Cycles 

Throughout thermodynamics we continually deal with what is called a 
"thermodynamically reversible process." This is one carried out so slowly 
that the system is continuously in equilibrium with its surroundings, 
that is, with respect to temperature, pressure, or any other variables 
which determine its state. The process can therefore be made to proceed 
in the opposite direction by an infinitesimal change in any one of the 
conditions, such as temperature or pressure, that determine the direction 
of the process. If, for example, a gas is expanding reversibly, then an 
infinitesimal increase in the external pressure should cause the gas to 
contract. That is, the internal pressure differs only by an infinitesimal 
from the external pressure. Clearly, since the net force carrying on the 
reversible process is an infinitesimal, the process will be carried on with 
infinite slowness, so that all parts of the system remain at thermal 
equilibrium. Although this type of change never takes place in nature, 
we can make any change approach reversibility as closely as we please. 

14. The Second Law of Thermodynamics 

The Second Law of thermodynamics may be stated: No self-acting 
device unaided by an external agency can transfer heat from a body of lower 
temperature to one of higher temperature. 

A self-acting device is one on which no work is done by an outside 
agency and which is so operated as to take the working substance through 
one or more complete cycles. After such a cycle, the final state of the 
working substance employed in the device is the same as at the start. 

An alternative statement of the Second Law is : Work can never be pro
duced in a reversible cycle of changes operating in surroundings all at the 
same temperature. Applying the First Law of thermodynamics to the 
Second, we arrive at a quantitative relation which states that when work 
is produced by a reversible cycle operating between two absolute tem
peratures ΤΊ and T2, where 7\ is greater than T2) the quantity of work 
performed spontaneously during the cycle, as will be proved later, is 

(Γχ - Γ,) „ = , _ _ _ , 
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where q is the heat absorbed at the higher temperature TV We may 
arrive at this expression by considering any one of several reversible 
processes, among which the most common is probably the Carnot cycle, 
to be discussed later. Clearly, if 7\ is less than T2, then w) the work done 
by the process, is negative. This means that w units of work must be 
done on the working substance to transfer a quantity of heat from the 
lower temperature T2 to produce a quantity of heat q at the higher TV 
This agrees with the first statement (above) of the Second Law. The 
quantitative expression given above shows, likewise, that when T2 equals 
Ti—that is, when the surroundings are all at the same temperature—w 
equals zero. According to this, no work can be produced spontaneously 
by the system composed of the working substance and the surroundings 
when both are at the same temperature, a finding that agrees with the 
alternative statement of the Second Law given above. 

Although mechanical work can always be transformed into heat, the 
reverse process of converting heat into mechanical work is by no means 
always possible. The First Law merely specifies the quantitative relation 
that must exist between any interchange of work and heat. The Second 
Law specifies the conditions under which it is possible to convert heat 
into work. That is, the Second Law limits the First. Whereas work may 
always be transformed into heat according to the First Law, the reverse 
change (heat into work) is subject to further restrictions, according to 
the Second Law. The Second Law also tells us the direction in which heat 
will flow when two bodies of heat are brought together. 

To place the Second Law of thermodynamics on a quantitative basis 
and therefore to enable us to predict the amount of work w obtainable 
from a given quantity of heat q, as well as to predict the direction in which 
heat will flow spontaneously when two reservoirs of heat are intercon
nected, it has been necessary to introduce a term called "entropy," which 
we shall symbolize by s. The increase in entropy of a system ds is defined 

where dq is the amount of heat added to the system whose temperature 
is T. This concept will be discussed in detail later. 

15. Carnot Cycle and Its Utility in Deriving Important Thermodynamic Relations 

Definitions of Some Thermodynamic Terms.—Because of their repeated 
use, several new terms should be defined. A "cycle" is a succession of 
transformations that brings the working substance back to its original 
state. An "isothermal" transformation is one during which the tempera-
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ture remains constant. An "adiabatic" transformation is one during 
which heat is neither taken in nor given out. A "Carnot cycle'' (fig. 5) 
consists of two isothermal and two adiabatic transformations. During 
the isothermal expansion AB, the working substance takes in heat; dur
ing the isothermal contraction CD it gives out heat. During the adiabatic 
transformations the pressure, volume, and temperature always change in 
such a way that heat flows neither in nor out of the system, although me
chanical work may be performed. The efficiency ef of a heat engine or of a 
system acting as an engine gives the ratio of the work w done by the sys
tem on its surroundings, to the heat g taken in when the working sub
stance goes through a complete cycle in the engine. 

1 
5 

l/OLUME 

Fig. 5.—Relation of heat energy to useful work in a Carnot cycle. 

Relation between the Heat, Work, and Efficiency of a Carnot Cycle.—The 
Second Law of thermodynamics and many of its implications are stated 
in terms of the Carnot cycle. Let us begin by determining the efficiency c/ 
of an engine operating in a reversible manner according to the Carnot 
cycle (fig. 5). We shall assume here that the working substance is a gas, 
though any substance may be put through a Carnot cycle. (Later in the 
discussion the conclusions will be applied to water vapor in equilibrium 
with soil moisture.) A quantity of heat qi is taken into the system during 
the isothermal expansion AB at Th and a quantity of heat q2 is given out 
by the system during the isothermal contraction CD at T2. No flow of 
heat q takes place during the adiabatic expansions or contractions BC 
and DA. The amount of work w done by the reversible engine in going 
through the cycle is represented by the area 

/

(ABCDA) 
P dv 
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enclosed by the curve. Since the gas arrives in the same condition, A 
(with respect to its internal energy) at the end of the cycle as at the be
ginning, we know, according to the First Law, that the (gi — q2) units of 
heat which have disappeared from the system during the cycle are com
pletely converted into the work w performed by the system or engine. 
Of the original amount of heat qi given to the working substance by the 
surroundings, an amount qx — q2 = w has been converted into work. The 
efficiency e¡ of a reversible engine or system following a Carnot cycle is 
given, therefore, by 

We specify that the process be reversible because we wish the pressure 
and the temperature of the working substance at all times to equal those 
of the surroundings with which it is in contact, except for an infinitesimal 
amount. Otherwise the work performed by the working substance during 
the isothermal expansion will be somewhat greater than the work done by 
the working substance on the surroundings, the discrepancy depending 
(as will be shown later) upon the irreversibility of the process. The part 
of the work performed by the system during the irreversible expansion 
that does not reach the surroundings is converted into heat by friction. 
When the process is reversible, the work w performed by the system or 
engine in passing through a complete cycle [where (#1 — q2) units of heat 
are absorbed from the surroundings ] always equals the work w done on 
the surroundings. 

Since the Carnot cycle is reversible, the engine may be made to run in 
the reverse direction ADCBA. In contrast to the previous case, if the 
cycle is carried out in the reverse direction, an amount of heat q2 is now 
taken from the surroundings while an amount of work w is done on the 
working substance or engine, enabling the working substance to give out 
to the surroundings an amount of heat q\. In the latter case, instead of 
having the heat (qi — q2) added to the working substance and converted 
into work w on the surroundings, we now have an amount of work w being 
performed by the surroundings on the working substance, which work is in 
turn converted into an amount of heat (qi — q2) in the working substance; 
this amount of heat (ci — q2) is returned to the surroundings by the com
pletion of the cycle. 

Next we shall prove two fundamental theorems of great importance, 
based upon the Second Law of thermodynamics. 

Theorem 1. No engine can be more efficient in converting heat into work 
than is the ideal Carnot engine just considered above. 

Let us assume that we have two engines working between the same 
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two temperatures, Tx and T2. One, which we shall call engine E, works in 
a reversible cycle; the other, E'y in a cycle either reversible or irreversible. 
Let us also assume that E' is connected so as to drive the reversible Car-
not engine E. Thus the engine or working substance E' takes in an 
amount of heat q¿ from the surroundings, which are at the higher tem
perature Ti, called the "source"; and it returns to the surroundings an 
amount q2, at the lower temperature T2 here called the "sink." The 
source is at Th a higher temperature than the sink, which is at the tem
perature T2. The working substance is of course subjected to ΤΊ and T2 
at different times. 

The engine E' performs an amount of work w' on E which goes simul
taneously to run the reversible engine E. In consequence, the engine E 
takes an amount of heat q2 from the sink at the lower temperature T2 and 
gives out a greater amount of heat qx to the source at the higher tempera
ture TV The efficiency e/ of the engine E' is 

<7i QÏ 

To obtain the efficiency e¡ of the reversible engine E being run by E', let 
us recall that E, being a reversible engine, would take up the same 
amount of heat gi from the reservoir or source at the higher temperature 
ΤΊ if it were running forward (that is, in the direction ABC DA) about 
the cycle as it now gives up to the source at the higher temperature 7\ 
when running backwards (that is, in the direction ADCBA). Also E 
would give up the same amount of heat q2 to the sink, if driven forwards, 
that it now obtains from the sink while being driven backwards by the 
engine E'. For the efficiency e¡ of the reversible Carnot engine Ey we 
have, therefore, 

w <Zi — Sh 
ef = — = . 

Ox Qi 
Now the work w' done by E' during each cycle equals the work w done 

on E, since both engines are coupled without frictional losses. Also, 
according to the First Law of thermodynamics (eq. 48), since the internal 
energy e of the working substance in the engines after the completion of a 
cycle is again the same as at the start, we have 

w = q2 - qi 
and 

w' = q2' - ç / 
and therefore 

qi — Q2 = qi - q¿ . (61) 
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From equations 59 and 60 in combination with 61 we have 

efqi = e/qi'. (62) 

Now we wish to show that the efficiency e/ of the engine E' cannot be 
greater than the efficiency e/ of the reversible engine. To demonstrate 
this let us assume the converse, that e/ is greater than ef, and then by 
the method of reductio ad absurdum show that we are led to an inconsis
tency which violates the Second Law of thermodynamics. 

If we assume ef < e/, then from equation 62 qi > qi. Therefore, from 
equation 61, q2 > q2'. As will be recalled, q2 is the heat delivered by the 
engine Ef to the sink at the lower temperature T2, whereas q2 is the heat 
taken up from the sink at the lower temperature T2 by the reversible 
Carnot engine E. Therefore, since q2 > q2) there is a net transfer of heat 
from the sink at the lower temperature T2 to the source at the higher 
temperature 7\ when we consider the two engines E and E' coupled to
gether as a single self-acting engine. We are thus led to a direct contra
diction of the Second Law of thermodynamics when we assume that the 
efficiency e/ of any engine E' is greater than the efficiency ef of a revers
ible engine, for, according to the Second Law, no self-acting engine (here 
composed of the two engines coupled together) can transfer heat from a 
body of lower temperature to one of higher temperature unaided by any 
external agency. The efficiency e/ of any engine must be, therefore, either 
equal to or less than the efficiency ef of a Carnot engine. That is, 

e/ ^ ef. 

Theorem 2. Every reversible engine, no matter what its construction or 
working substance, has the same efficiency when working between the same 
two temperatures. 

Suppose that Εγ and E2 are two reversible engines of quite different 
construction whose efficiencies are efl and e/t, when working between the 
same two temperatures. Since both engines are reversible, either may 
replace the reversible engine E of the previous discussion, the other one 
then replacing Έ' of the previous discussion. If E2 replaces E and if E\ 
replaces Er. we have . /noN 

efl Ú eh. (63) 
If we now interchange the engines E\ and E2 so that Ελ takes the place 
of E and E2 that of Ef

y we have 

efiúefl. (64) 

Now, obviously, the inequalities 63 and 64 can be satisfied simultaneously 
only if 

eh = efl. 
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Since Ei and E2 were any two reversible engines, each working between 
the temperatures 7\ and T2, then all reversible engines working between 
the same twTo temperatures have the same efficiency. Since one of these 
engines might be a Carnot engine, therefore every reversible engine has 
the same efficiency as the Carnot engine when working between the same 
two temperatures. 

16. Kelvin's Scale of Absolute Temperature 

Up to now, nothing has been said about measuring temperature. If 
heat flows from ΤΊ to T2 spontaneously, Τλ is said to be at the higher tem
perature. In practice the temperature is measured by the expansion of 
an arbitrary substance calibrated in terms of an arbitrary temperature 
scale. Two fixed temperatures (such as the freezing point and the boiling 
point of pure water under standard conditions of pressure) are chosen on 
the scale, and arbitrary values are assigned to them. Having established 
these two fixed points, we determine other temperatures merely by the 
relation of the length or volume of the thermometric substance at the 
unknown temperature to its change in length or volume in going from 
one of the fixed temperatures to the other. For example, the thermometric 
substance often taken is mercury; and the interval between the freezing 
point and the boiling point of pure water is then divided into 100 equal 
parts by so dividing the total change in length of the mercury column. If 
an unknown temperature causes the mercury to expand by 15 of these 
equal parts, we say that the temperature has changed by 15 degrees. 
Though we always assume that the expansion of the thermometric sub
stance is proportional to the temperature, this assumption is not correct, 
and the deviation varies from one thermometric substance to another. 
Thus thermometers made from such thermometric substances as mer
cury, alcohol, water, and nitrogen all give slightly different readings in 
the same constant-temperature bath except at the two fixed tempera
tures. 

Kelvin, on the basis of reversible heat engines working in a Carnot 
cycle, has introduced an absolute scale of temperature entirely indepen
dent of the thermometric substance used. Suppose, for example, we con
sider the two fixed temperatures, one at the freezing and the other at the 
boiling point of pure water. The associated Carnot cycle working between 
these two extremes is represented in figure 6. Let us divide this Carnot 
cycle into 100 equal parts such that each of them has the same area on the 
pressure-volume diagram. We thus have 100 reversible engines, each 
going through a Carnot cycle. Suppose the first engine takes in heat at 
the boiling point of water and rejects heat to the second engine; the 
second takes in the heat rejected by the first and rejects heat to the third; 
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the third takes in heat rejected by the second and rejects heat to the 
fourth; and so on. The last engine will then reject heat at the temperature 
of freezing water. Let the temperature of the boiling water, at which the 
first engine takes in heat, be 100°; that at which the second takes in the 
heat given out by the first, 99°; that at which the third takes in the heat 
given out by the second, 98°; and so on. This will give us a temperature 

! 

l/OLUME-
Fig. 6.—The Carnot cycle as the basis of Kelvin's scale of 

absolute temperature. 

scale divided into 100 equal parts between the freezing and boiling points 
of pure water. 

The 100 divisions are entirely independent of the thermometric sub
stance used whether it be gas, mercury, alcohol, or any other substance, 
because (art. 15, theorem 2) the efficiency of all reversible engines work
ing-between the same temperatures is the same regardless of the working 
substance. No matter, therefore, what working substance is used in the 
set of 100 reversible engines, the temperatures they determine will 
always be the same. The temperature scale may in like manner be ex
tended below and above the freezing and boiling point of pure water. 



68 Hilgardia [Vol. 15, No. 2 

Experimental facts indicate that there is a lower temperature limit 
beyond which it is impossible to go. This temperature is found to be 
273 of the above temperature units below the freezing point of water. 
At 272 units below, therefore, we should find the last reversible engine 
taking in heat rejected by the one above, but having no heat to reject at 
273 units below. This lower limit of the temperature scale is known as the 
absolute zero. 

Thus, as Kelvin has shown, the temperature difference between any 
two bodies can be measured in terms of the work performed by an ideal 
reversible engine working between the two temperatures, because equal 
temperature intervals are represented by equal areas on the pressure-
volume diagram. Or—what is the same thing—equal areas on the dia
gram represent the performance of the same amount of mechanical work 
by a reversible engine. Thus in equal temperature intervals an ideal re
versible heat engine performs the same amount of work per cycle. Hence 
the measurement of temperature on this scale is independent of the prop
erties of any particular substance. This temperature scale is often called 
the "Absolute" or "Kelvin" scale. Temperatures measured on this scale 
(in contrast to the centigrade scale) are symbolized by the letter "A" 
throughout this paper. For most practical purposes, however, the divisions 
on the Kelvin scale can be regarded as equal in size to those on the centi
grade scale. 

17. Relation between the Efficiency, Heat, and Temperature 
in an Ideal Reversible Engine 

To determine the relation between the efficiency, heat, and tempera
ture in an ideal reversible engine, let us begin by finding the relation be
tween the area ABEF of figure 7 and the heat taken in during the iso
thermal transformation AB. 

All points of the isothermal FE at 0° A may be considered as having 
zero internal energy e. The isothermal FE at 0° A coincides with the 
volume axis. This follows because in passing from one point to another on 
this axis, no heat is taken in or rejected by the engine or working sub
stance, and no work is done by the engine, the pressure here being zero. 

We shall now show that the area ABEF (fig. 7) represents the heat ci 
taken in by the engine in going from A to B. Since no heat is taken in or 
given out by the engine in going along A F or BE, these being adiabatics, 
the increase in internal energy EA of the working substance in going from 
F to A is equal to the work done on the working substance in going from 
F to A—that is, the area AUF. Likewise the increase in internal energy 
EB of the working substance in going from E to B is equal to the work 
done on the working substance in going from EtoB and is represented by 
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the area BKE. The change in internal energy (EB — EA) in going from 
A to B is represented by the difference in areas BKE and AHF, since the 
working substance has the same internal energy at F and at E. Also the 
work done w in going from A to B is represented by the area ABKH. 
Now, according to the First Law, equation 48, we have 

q1 = w+(EB- EA). 

! 

J73°K 

<£K°C or 0°λ\ 

VOLUME ■ 

Fig. 7.—Relation between heat energy, maximum useful work, 
and temperature in a Carnot cycle. 

Expressing £his relation in terms of the areas of figure 7, we have q\ 
represented by the area 

or 
qi = ABKH + (BKE - AHF) 

= ABEH - AHF = ABEF. 

Thus the heat qi taken in by the working substance while going from A 
to B is the area ABEF included between the two adiabatics. Similarly, 
the heat q2 taken in while going from D to C is the area DCEF. 

Now we can express the total areas, qi and ç2, between the adiabatics 
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in terms of the area of the small Carnot cycles considered in the previous 
article and in figure 6. Let Q represent the area of any one of the small 
cycles. Since there are Ti small cycles below the temperature 7\, the 
area ABEF, or qh equals TiQ. Likewise q2 equals T2Q. 

Let us now calculate by equation 59 the efficiency e/, in terms of tem
perature, of an ideal reversible engine operating in the Carnot cycle 
ABCD such that heat ci is taken in by the working substance along AB 
and heat q2 is given out by the working substance to the surroundings 
along CD, while during the cycle an amount of work w is performed by 
the surroundings on the working substance. We have 

e = - = g l ~ g 2 = TlQ ~ T& = Tl-T* =1-1? (65) 
6f qi qi T,Q T, T, * 

From the third and last of these members it follows that 

Γχ T2 
(66) 

As equation 66 shows, when we are dealing with a reversible heat 
engine, the ratio of the amount of heat qi (taken in by the working sub
stance at the temperature 7\) to the temperature T\ always equals the 
ratio of the amount of heat q2 (given out by the working substance at the 
lower temperature T2) to the temperature T2. 

In the previous discussion no formal convention was made as to the 
signs of the q's. The expressions arrived at are in the same form as in 
most treatises on thermodynamics. Equation 66 may obviously be 
written in the following forms : 

^ - ^ = £L + ÍZ^) = o . (67) 
7\ T2 Tx T2 

Equation 67 shows that, in any reversible Carnot cycle, the heat taken 
in by a system divided by the temperature at which it is taken in, minus 
the heat given out by the system divided by the temperature at which it 
is given out, is zero. 

18. Relation between the Energy Available for Mechanical Work and the 
Temperature in Any Reversible Process 

For any ideal heat engine operating in a reversible cycle between the 
temperatures Τλ and T2, the maximum amount of work obtainable dur
ing the cycle is shown by equation 65, to be 

ql{Tl - T2) T2 ( . 
w= = g i - g (68) 
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The maximum efficiency, therefore, of an engine operating between the 
temperatures T\ and T2 is 

e / = - = lLZZi = 1 _ ^ (69) 

where #i is the amount of heat taken in by the engine at the temperature 
TV Since (art. 15) w = qx — q2, we find from the first and last members of 

T 
equation 68 that qi — represents the total amount of heat q2 given out 
by the engine at the temperature T2 during the complete cycle—that is, 
the unavailable energy or the quantity of heat not convertible into work. 
Only if T2, the temperature of the sink, could be reduced to 0° A would q2 
be zero and the total amount of heat q\ given to the engine be all converted 
into work w. In that event the efficiency of the engine would be unity, or, 
in the usual notation, 100 per cent. 

From equation 69 we concluded that the maximum efficiency e/ ob
tainable from any engine is entirely determined by the temperatures T\ 
and T2 between which it works. As T2 approaches 0° A, the efficiency of 
the Carnot engine approaches 100 per cent. Since T2 can never be 
reduced to 0° A, the efficiency of the most efficient heat engine is always 
less than 100 per cent. 

19. Entropy 
Definition of Entropy.—Because of the frequent occurrence of the ratio 

of the amount of heat Aq taken in by a system, to the temperature T at 
which it is taken in, Clausius introduced the name entropy, As. This, 
as mentioned earlier, is defined by 

As = —-

or 
SB — SA JA T 

(70) 

where the small letters s and q refer respectively to the entropy and heat 
per gram of the substance and A and B are the initial and final states. By 
convention dq is positive ( + ) when heat flows into the substance and 
negative ( —) when heat flows out of the substance and into the sur
roundings. 

The Total Change in Entropy of a System or Working Substance in Pass
ing Through a Reversible Cycle.—The system includes the engine or work
ing substance together with its surroundings, the source and the sink. Let 
the working substance—water vapor, for example—pass through the re-
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versible cycle represented by the closed figure 8. Divide the complete 
cycle into a number of small Carnot cycles bounded by adiabatics and 
isothermals as indicated. Thus we are replacing the single engine, work
ing along the curve ACBDA, by a number of small reversible engines, 
each working on one of the cycles into which the area has been divided. 
It is clear from the figure that the greater the number of Carnot cycles 
into which the large cycle is divided, the more nearly is the effect of the 
sum of all the small Carnot cycles equivalent to the effect of the large 
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Fig. 8.—A generalized reversible cycle divided into l i t t le Carnot cycles. 

single one. The sum of all the quantities of heat, Aqa, Aq2a, Aq3a, . . . . 
Aqna, . . . . taken in by all the small separate reversible engines from the 
source (that is, from the surroundings) at the different temperatures, 
1 ay 1 la·) 1 3a> « « · · Tnay.... respectively, equals the total amount of heat 
taken in from the source by the large single engine. The sum of all the 
quantities of heat, — Aqb, — Aq2b, — Aqsbj . . . . — Aqnb, . . . . given out to 
the sink (that is, to the surroundings) by the small separate reversible 
engines at the temperatures Tb, T2b, T3&, Tnb,. . . . respectively, equals 
the total amount of heat given out by the large single engine. Thus in the 
limit when the number of small cycles is extremely great, the system of 
small engines is thermodynamically equivalent to the single large one. 
The signs of the quantities Aqa and Aqb are defined in accordance with the 
conventions mentioned in connection with equation 70. 

Consider the small single nth cycle. We have, according to equation 67, 

Aqn Aqn = 0. (71) 
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To find the total change in entropy As in going around the complete 
cycle ACBDA, we must sum up all the small changes in entropy pro
duced by all the small cycles. According to equation 71, the change in 
entropy in each small completed cycle is zero.We have, accordingly, for 
the following summation, 

-=(t-f)+(t-t)+-+fe-t)+-°-™ 
Hence we conclude that the total change of entropy of a system or working 
substance in any reversible cycle, no matter what the path, is zero. Equation 
72 is equivalent in the limit to 

fUCBDA) d 

As=J T=0' (73) 

The Change in Entropy As of a Working Substance in Going Reversibly 
from a State A to a State B.—Consider the change in entropy in going 
around the complete cycle ACBDA, figure 8. This may be split up into 
two parts—one in going along ACB, the other along BDA. According to 
equation 73, we have then, for the total change, 

AS(ACB) + AS(BDA) = 0 
or 

AS(ACB) = —AS(BDA). 

Since the sequence of the letters in the subscripts indicates the direction 
of the path followed and since when we change our path to the opposite 
direction we merely change the sign of the entropy change, As, without 
changing its magnitude, we therefore have 

ASUCB) = AS(ADB) . (74) 

Since ACB and ADB are any arbitrary paths, equation 74 says that no 
matter what path we take in going from the state A of the working sub
stance to the state B, the change in entropy s is the same as long as the 
change is carried out reversibly. The change in entropy As in any reversible 
process depends, therefore, only on the coordinates of the initial and final 
states, A and B. This is unlike such quantities as the work w and the heat 
q, which depend wholly on the manner of going from A to B. The fact 
that the change in entropy As of a substance, in going from a state A to 
a state B, is independent of the manner in which the change is carried 
out, is what makes entropy so important in thermodynamics. 

The Total Change in Entropy of a System or Working Substance in Pass
ing through an Irreversible Cycle.—In all the previous considerations, we 
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have dealt with reversible processes. Spontaneous changes in nature, 
however, are always irreversible to a lesser or greater extent. In such 
cases, the system cannot be restored to its initial state solely by its own 
effort; mechanical energy must always be added from the outside. Thus 
in natural changes, mechanical energy is always dissipated. This does not 
violate the conservation of energy, since the energy itself is conserved. 
Part of the heat that is available for mechanical energy is dissipated or 
degraded; it passes into a form of heat energy too low in temperature to 
be available for the particular process being considered. In other words, 
no energy is lost—it is merely rendered unavailable. 

We shall now show that in all natural processes, which are always irre
versible to a greater or lesser extent, the change in entropy of the working 
substance plus its surroundings (including the source and the sink), in 
going through a complete cycle, is always greater than zero. This, as will 
be recalled, is in complete contrast to reversible cycles, where no entropy 
is lost. 

Consider both a reversible and an irreversible engine operating in cycles 
between the same two temperatures ΤΊ and T2 and such that the amount 
of heat #i passing from the surroundings into the working substance of 
the reversible engine is the same as the amount q'i passing from the sur
roundings into the irreversible engine at the temperature 7V The quan
tities — and — will obviously be the same in both cases. The quantity — 

Ti T\ T2 

of the irreversible engine is greater, however, than for the reversible one: 
in an irreversible engine, friction or its equivalent is always present, caus
ing a greater amount of heat q2 to be given back to its surroundings by 
the irreversible engine than q2, which is given out by the reversible 
engine. Thus we have both 

and 

T2 T2 

By the addition of the two 
secure 

«L 

Hence 

«L 
2Ί 

above and the recollection of equation 67, we 

- £ L >£L -SI = o 
Ti 2Y T2 

> 0. (75) 
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This inequality states that the total change of entropy in the irreversible 
cycle is greater than zero because, by our convention of signs used in 
arriving at equation 67, qi represents heat flowing from the surroundings 
into the working substance, whereas q2

f represents heat flowing from the 
working substance into the surroundings. Each of the terms on the left 
side of inequality 75 represents changes of entropy, according to their 
definition in equation 70. The first term of 75 represents an increase in 
the entropy of the system during the cycle whereas the second term 
represents a decrease in entropy of the system. Their difference is there
fore the net increase in entropy of the system during the cycle. 

In general, any irreversible cycle can be replaced thermodynamically 
by a group of small cycles as was done for the reversible cycle in arriving 
at equation 72. Each of these small cycles will behave in accordance with 
inequality 75. We have, then, for the total change in entropy As of any 
system when the working substance or engine passes through an irrevers
ible cycle, 

""(it - ̂ )+fe' - iú+-Ai6 - ττ)+·>0'<7β) 

The primes are retained to indicate that the cycles are irreversible. Equa
tion 76 is equivalent in the limit to 

/

(ACBDA) i , 
f>0 (77) 

where the path (ACBDA) refers to a cycle similar to figure 8 but here 
considered irreversible. As we see, As of equation 77 above represents the 
total change in entropy of the source and the sink that make up the sur
roundings of the engine. The engine, with its surroundings, makes up a 
closed system. The total change in entropy of the system is synonymous 
with the total change in entropy of the surroundings, since the entropy of 
the working substance is the same at the end of the cycle as at the start. 

As equation 77 above has shown, in any irreversible cycle of operations, 
the total entropy change is positive when both the surroundings and the 
working substance are considered together as a whole system. That is, in 
any natural process the entropy always tends to increase. Only in the limit 
when the process is reversible does the total change of entropy in a closed 
cycle of operations approach zero (eq. 73). 

Calculation of Increase of Entropy in Natural Processes.—All natural 
processes are irreversible.The question then is, how are we to calculate the 
change in entropy undergone in such a case when the system passes from 
a state A to a state ΒΊ As will be recalled, equation 70 is applicable only 
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in calculating the change in entropy in going from the state A to the 
state B when the transformation is reversible. If, for example, water va
por confined at a fixed pressure is allowed to escape into a vessel at a lower 
pressure, the vapor undergoes an increase of entropy even though no heat 
passes into or out of the system. To calculate the change in entropy of a 
natural process by equation 70 in going from A to B in such a case, we 
replace the irreversible transformation by a reversible one, connecting the 
same two states A and B. The change of entropy can then immediately be 
calculated by means of equation 70 as will be illustrated below. As pre
viously shown, it is immaterial what reversible path we take between A 
and B in calculating the change of entropy As. All paths will give the 
same value for As (eq. 74). 

Change in Entropy When Heat Flows Spontaneously from a Hot to a Cold 
Body.—Consider two bodies in contact, one at a temperature ΤΊ, the other 
at T2. Both bodies are insulated so that there is no heat interchange with 
the surroundings. Assume that a quantity of heat dq flows by conduction 
from the body at the higher temperature T\ to the other at T2. The de
crease in entropy of the hotter body is 

and the increase in entropy of the colder body is 

ds2 = — . 
T2 

The total change of entropy of the system as a whole is 

ds = dSl + ds2 = - * + * = dq {Tl - Γ > ) > 0 (78) 
τχ τ2 τλτ2 

since Ti > TV Thus the total change in entropy ds of the whole system 
is positive whenever an amount of heat dq flows spontaneously from one 
point to another. 

Generalizing, therefore, in any irreversible process (that includes all 
natural processes) the entropy always increases. I t will always tend 
toward a maximum. When this maximum is reached, the available 
energy will become zero, and all parts of the system will acquire a uniform 
temperature. The Second Law of thermodynamics, re-expressed in terms 
of entropy, states that in all natural processes the total entropy of a com
pletely isolated system will increase. That is, a system is subject to spon
taneous changes if any process can occur in which ds > 0. When the state 
of equilibrium has been reached by the system, ds = 0 for any conceiv-
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able infinitesimal change that the system might undergo. Never in na
ture will entropy tend to decrease spontaneously. If it could, heat would 
tend to flow from a colder to a hotter body, and this would be in violation 
of the Second Law of thermodynamics. According to this law, as will be 
recalled from article 14, no self-acting device unaided by any external 
agency can transfer heat from a body of lower temperature to one of 
higher temperature. 

Comparing the First and Second laws of thermodynamics, we may 
say that entropy stands in the same relation to the Second Law as energy 
stands to the First. Entropy and its characteristics, which embody the 
Second Law, predict in what direction the process or reaction will be 
carried out. On the other hand, the First Law, that of the conservation of 
energy, predicts the quantitative relation between the various kinds of 
energy involved in case the reaction is carried out. 

Dependence of the Entropy of an Ideal Gas on the Temperature T, Volume 
v, and Pressure p.—The change in entropy is calculated according to the 
fundamental equation 70: 

= fBdq 
JA T ' As = sB - sA = / -± . (79) 
JA T 

Since the change in entropy is a function entirely of the limits A and B 
and since only two of the variables T, V, and p are needed to define the 
state of an ideal gas (art. 1 and 2), dq then can always be expressed in 
terms of any two of the variables. Since the integrand of equation 79 
contains T, let us express dq first, for example, in terms of T and v. 
From equation 49: 7 7 . 7 

dq = de + pdv1 

where we use p since it refers to pressure in a gas. From equation 51, 
T>rp 

de = cvdT; and from the ideal-gas law (eq. 367), p = — . Therefore 
v 

dq = cvdT + RT—. 
v 

Equation 79 therefore becomes : 

SB — sA = cv 
T J A V 

= cv\n— + Ä l n — . (80) 
TA VA 

This gives the change of the entropy of an ideal gas in terms of the cor
responding changes of temperature T and volume v. Eliminating v by 
means of the ideal gas equation, pv = RT, and eliminating R in equation 
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80 by equation 370, cp — cv = R, we can express the change in entropy in 
terms of corresponding changes of pressure p and temperature T (after 
again substituting R from equation 370), as follows : 

SB - sA = cp\n — - Ä l n ^ . (81) 
TA PA 

Similarly, equation 80, using the same two expressions, may be trans
formed into 

SB — SA = cv In — + cp In —, (82) 
PA VA 

giving the change in entropy in taking a gas from a pressure PA and vol
ume vA to another pressure PB and volume vB. 

Dependence of Entropy s of Any Substance on the Temperature T While 
the Pressure P Remains Constant.—Recalling the analytic definition of 
entropy, equation 70, we have 

SB - SA = As = Γ § . (83) 
J TA T 

The heat dq is here in too general a form. Let us secure a form more suit
able to heat transformations carried out at constant pressure and involv
ing the temperature T. From the First Law of thermodynamics, we have 
(eq. 49) 

dq = de + dw = de + Pdv. 

Since we are here postulating that P is constant, we may write 

dq = de + d{Pv) 
= d(e + Pv). 

The heat content h was defined by (e + Pv) (eq. 54). At constant pres
sure, therefore, 

dq = dh = CpdT 

because dh = cpdT (eq. 56). Equation 83 therefore becomes 

rTBcPdT rT*dh fQA. 
SB- sA= I JL— = / — (84) 

J TA T J TA T 
or 

SB = sA + fTBc-^. (85) 
J TA T 

Let us consider equation 85 when TA is 0° A. We shall assume then that 
the entropy s A will equal zero. This assumption, which forms the basis of 
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the Third Law of thermodynamics, will be discussed in article 20. 
Equation 85 then becomes 

«» -£·ψ. (86) 
Equation 86 gives the absolute value of the entropy per gram of a sub
stance. To evaluate this, cp must in general be known as a function of T. 
At the higher temperatures, cp may be considered as nearly constant. 
This is by no means true in the neighborhood of 0° A, where the specific 
heat Cp approaches zero. The variation of the specific heat cp at constant 
pressure with temperature T7, particularly in the vicinity of 0° A, will be 
considered in article 20. 

Change of Entropy during an Isothermal Process.—We shall use equation 
84 for calculating the change in entropy As when ice is melted reversibly 
and isothermally at 273° A. In connection with an italicized statement 
earlier in this article, it will be recalled that to calculate the change in 
entropy of a substance in going from one state, A, to another, B, one 
must choose a reversible path between the two states and then carry out 
the integration of 

C dh 

sB - sA =JA _ . (87) 
At the melting point of ice, for example, the two phases, ice and water, 

are in equilibrium, and the process of fusion is therefore reversible: if the 
external temperature is raised by an infinitesimal amount, the solid will 
melt; and if it is lowered by an infinitesimal amount, the liquid will 
freeze. In other words, there is always a state of balance between the 
two opposing tendencies when the melting is carried out isothermally 
and reversibly at 273° A. 

Since the process is isothermal, we have 

1 fB 

SB- sA = - I dh (88) 

where sB denotes the entropy per gram of water and sA the entropy per 
CB 

gram of ice. Here, obviously, the integral / dh is simply the heat of 

fusion of ice. It might also be regarded as the heat of reaction. Since the 
heat dh required to melt 1 gram of ice at 273° A is 79.6 calories per gram, 
fB 

I dh = 79.6 calories per gram. Consequently, 
79 6 As = —— = 0.29 calories per gram per degree absolute. (89) 
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Thus at 273° A the entropy of a gram of water is 0.29 calories per degree 
greater than that of a gram of ice. 

In the same manner, we may calculate the change in the entropy of a 
gram of water upon being vaporized. We must always remember that in 
calculating changes of entropy, the path of integration chosen for equa
tion 87 must be reversible whether the process is isothermal or not. 
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Fig. 9.—Typical way in which the atomic heat depends on temperature. 

20. Specific Heat of Solids at Low Temperatures and the Third Law 
of Thermodynamics 

Most of the chemical elements, particularly those of high atomic 
weight, show approximately the same value for the product of specific 
heat and atomic weight at ordinary temperatures. This product, usually 
called the atomic heat, was first shown experimentally by Dulong and 
Petit to be about 6.2 calories per gram atom. The value 6.2 was readily 
accounted for under the classical theory of thermodynamics and the 
kinetic theory of matter. 

In 1911, however, Nernst's critical examination of the specific heat of 
many different substances at constant pressure over a wide range of tem
peratures showed that this rule held true only in special instances. At 
ordinary temperatures the atomic heat was constant—approximately 6 
calories per gram atom. At very low temperatures, however, it was found 
to be very small and to approach zero at 0° A. A typical case is shown in 
figure 9. In 1912, Debye presented a theory of the variation of atomic 
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heat with change of temperature that gave curves coinciding very closely 
with those observed experimentally by Nernst. Debye's theory is based 
upon the quantum theory. 

Figure 10 for water is a particular case of figure 9, taken from data in 
the International Critical Tables. According to figure 10, the specific heat 
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Fig. 10.—The dependence of specific heat of water at constant pressure, on tem

perature. Extension of the curve to the left for liquid represents supercooling. 

of ice at constant pressure is zero at 0° A but gradually increases, until 
at 273° it is approximately 0.5 calorie per gram. Upon melting, the spe
cific heat of the water suddenly jumps to approximately 1.0 calorie per 
gram. 

A knowledge of the variation of the specific heat at constant pressure 
cp is extremely important in computing the total value of such thermo-
dynamic functions as entropy s, equation 90; total heat content A, equa
tion 91; and the free energy /, equation 416. The total entropy s of a 
body, in general, is defined by 

- / o T 

where K is an arbitrary additive constant, independent of the pressure, 
state of aggregation, gud special chemical modification of the substance. 
This statement with respect to K has been amply verified by Nernst 
(1906) and by others. 
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The additive constant K can be arbitrarily taken as zero at 0° A. Such 
a selection makes the entropy s zero at absolute zero since, as was pre
viously pointed out, the specific heat cp becomes zero at 0°. This leads 
to the following expression for the value of the absolute specific entropy 
of a substance such as water: 

-ϋΨ- (9o> 
Equation 90 is merely the analytic expression and a special case of 
Nernst's general heat theorem, which serves to define the absolute value 
of the entropy. This theorem was stated by Planck as follows: "As the 
temperature diminishes indefinitely, the entropy of a chemical homo
geneous body of finite density approaches indefinitely near to a definite 
value, which is independent of the pressure, the state of aggregation, and 
of the special modification." When we set the arbitrary constant K equal 
to zero (eq. 90), the theorem defining the absolute value of the entropy 
becomes, according to Planck: "As the temperature diminishes indefi
nitely, the entropy of a chemical homogeneous body of finite density 
approaches indefinitely near to the value zero." This basic theorem is 
often called the Third Law of thermodynamics. This means that at 0° A, 
we shall always assume the entropy of a substance to be zero. 

Knowing the specific heat cp at constant pressure as a function of the 
temperature, we can calculate the heat content h of a substance at any 
temperature T. The heat content has previously been defined according 
to equation 56, which becomes 

ΓΤ 
h= I cpdT + h0 

where h0 is the heat content at 0° A. Now if h0 is arbitrarily put equal to 
zero at 0°, we have 

rr 
h=J cpdT. (91) 

This arbitrarily makes the heat content h equal to zero at 0°. 



PROPERTIES OF FREE ENERGY USEFUL IN A THERMO-
DYNAMIC STUDY OF SOIL MOISTURE 

21. Characteristics of Free Energy 

Use of Free Energy in Describing Natural Processes.—As has been shown 
(art. 19), any natural process is characterized by an increase in the sum 
of the entropies ds of all parts of the system involved in the process. Also, 
if there is any possible change in the system for which ds > 0, the system 
is subject to spontaneous changes and cannot remain in equilibrium. If, 
furthermore, the system is in a state of equilibrium, its total change of 
entropy ds for all conceivable infinitesimal changes that the system might 
be made to undergo is zero—that is, ds = 0. 

These facts are somewhat analogous to the conditions for spontaneous 
change and for equilibrium in the studies of mechanics, electricity, mag
netism, and some aspects of the hydrodynamics of soil moisture. These 
studies make use of a quantity called'"potential" that corresponds to 
entropy in the field of thermodynamics. A system is said to be subject to 
a spontaneous change if, in any conceivable infinitesimal change that it 
might be allowed to undergo, its total potential energy ψ will decrease— 
that is, Αψ < 0. During a spontaneous change, as will be noticed, the 
entropy s of a system always increases, whereas the potential energy φ of 
the system always decreases; that is, As > 0 and Αψ < 0 describe the 
same conditions. If a system is in equilibrium, the change of the potential 
energy of the system Δι/' for all conceivable infinitesimal changes that the 
system might undergo is zero ; both As = 0 and Δ^ = 0 describe the con
ditions for equilibrium. 

The term "entropy" was invented to describe and deal with energy 
changes associated primarily with the transformations of heat into other 
forms of energy in the field of thermodynamics. "Potential," on the other 
hand, was invented to deal with changes of mechanical energy and of 
work in the fields of mechanics, electricity, and magnetism. The two 
terms and sets of criteria for equilibria arose originally somewhat inde
pendently of each other to deal with their respective types of energy 
changes as found in nature. 

In studies on soil moisture and plant relations, the criteria set up by 
entropy alone, for energy changes and for equilibria, are far too general 
for most purposes, whereas those set up by potential are sometimes too 
limited and restricted. Potential, for example, takes no explicit account 
of the effect of temperature on the total energy change of a system. For
tunately, another function, called "free energy" / was invented many 
years ago in the field of thermodynamics. This function combines all the 
criteria and characteristics of both potential and entropy that are most 

[83] 
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useful in the study of the thermodynamics of soil moisture and its use by 
plants. For example, it permits one to take account, explicitly, of the 
effect of temperature on the energy changes of a soil-moisture system, 
which may include several phases in equilibrium with each other. It is 
less general than entropy, which makes it more convenient and practical 
than entropy in the study of some actual problems. As will be shown be
low, the free energy / i s defined in terms of entropy. 

Thermodynamic Properties of Free Energy.—Absolute free energy / is 
defined by the two equations 

/ = e + Pv - Ts = h - Ts. (92) 

These are equivalent because h = e + Pv (eq. 54). Here e represents the 
internal energy, v the specific volume, h the heat content, and s the 
entropy, of the substance under consideration. 

The student might reasonably ask why such functions as heat content 
h and absolute free energy / are defined in such an apparently arbitrary 
manner with seemingly so little preliminary justification. Such functions, 
however, are usually arrived at during a mathematical analysis of a par
ticular problem. Sometimes, in such analyses, a certain combination of 
mathematical terms describing physical quantities appears frequently in 
the equations, and the investigator may for convenience give it a par
ticular name. The justification for introducing such quantities can be
come evident only as the student grows sufficiently familiar with their 
characteristics to appreciate their convenience and power in the analyses 
of problems. The genesis of such a function might be illustrated by the 
introduction of the term h for the combination (e + Pv) in the expression 
of the specific heat at constant pressure cp discussed in connection with 
equation 53. 

Now the total work dw performed by a system may, in general, be 
separated into two parts: the work of expansion Pdv against a pressure P, 
and any other mechanical work dwm, including electrical work, that the 
system might perform. In general, therefore, the total work dw may be 
represented by 

dw = Pdv + dwm . (93) 

Differentiating the first of equations 92, we have 

df = de + Pdv + vdP - Tds - sdT. (94) 

According to the First Law of thermodynamics (eq. 47), we have 

de = dq — dw . (95) 
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Now, in any reversible process, since ds = — (eq. 70), we have dq = Tds, 

which, in combination with equation 93, makes equation 95 become 

de = Tds - Pdv - dwm. (96) 

Substituting 96 into 94, we have 

df = -sdT + vdP - dwm. (97) 

For isothermal changes, dT = 0, and equation 97 becomes 

df = vdP - dwm. (98) 

If the pressure P is constant during the change, then 

df = — dwm 
or 

-df=dwm. (99) 

According to equation 99, if a reversible change is taking place in a sys
tem at a constant temperature and pressure, the work dwm done by the 
system, excluding the work of expansion against the constant pressure P, 
equals the decrease of the free energy ( — df) of the system during the 
change. Thus a finite decrease in the free energy — Δ/ is a measure of 
the maximum work Awm (including both electrical and mechanical work 
but excluding any mechanical work of expansion against a constant 
pressure P) that can be performed by the system, at constant tempera
ture and pressure, on its surroundings. 

Let us now consider finite isothermal changes in a system from a state 
A to a state B. Since dT = 0, we therefore have, from equation 98, 

Af= i* df = fB-fA = Γ vdP - fBdwm. (100) 
if A is A ^y A 

If the pressure remains constant throughout the isothermal change of 
state, then dP = 0, and equation 100 becomes 

Δ/ = fB — ÍA = — I dwm = - Awm. (101) 

According to equation 101, in finite isothermal, isobaric changes of state 
of a system from A to B, the increase in the free energy Δ/ of the system 

equals the work ( — / dwm J that must be performed on the system in 

carrying it from state A to state B. As already pointed out, this integral 
does not include work of expansion against a pressure P , as is seen from 
equation 93. 
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Equation 101 may also be interpreted as follows: if we let A represent 
the datum (see art. 40), the free energy Δ/of a system in the state B with 
respect to the datum A is equal to the work that must be done on the sys
tem at constant temperature and pressure to bring it from the datum A 
to the state B. Another way of interpreting equation 101 is: the decrease 
in the free energy — Δ/ of the system in going from state A to state B 
equals the total work done isobarically and isothermally by the system on 
the surroundings, excluding any work of expansion against a constant 
pressure P. 

If, on the other hand, no work is performed during the isothermal 
change, but there is a change in the pressure P (that is, when 
iB 

I dwm = 0), then equation 100 becomes 

Af = fB-fA=f*vdP. (102) 

Thus the mere increase of the hydrostatic pressure P on the system will 
increase its free energy. 

If a reversible process occurs at constant temperature and pressure, 
with no work done except an expansion against a constant pressure P , 
equation 102 becomes , . . ,1ΛΟ, 

Δ] = JB — JA = U. UUoJ 
Equation 103, as will be shown later, describes the conditions at equi
librium or where two or more phases remain in equilibrium. If, for exam
ple, water and vapor are in equilibrium at 100° C and if heat is added to 
the water so as to vaporize 1 gram of water at 100° C and at 1 atmosphere, 
then equation 103 says that the absolute free energy JB in the vapor state 
equals that in the liquid state /A. This follows because the temperature 
and pressure remain unchanged and because no work is done during the 
change except the expansion against the constant pressure P of the 
atmosphere. 

Knowing the absolute value of the entropy s as defined by equation 90 
and knowing the heat content h as defined by equations 57 and 91, we can 
express the absolute free energy/, previously defined by 

f=h-Ts, (104) 
in another useful form. From equations 90 and 57, equation 104 becomes 

f=íTcpdT-TÍTc-^-. (105) 
Jo Jo T 

Hence if cp is known as a function of temperature, all three of the thermo-
dynamic functions s, h, and /may be computed as indicated above. 
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At this point, the reader should clearly distinguish between the mean
ings of the absolute free energy / and what we shall simply call "free 
energy," Δ/. The letter/defined by equations 92 denotes the absolute free 
energy (that is, the free energy of a substance when 0° A is used as the 
reference point), whereas we shall represent by Δ/ the difference in free 
energy between the substance in any particular state and the chosen 
reference point, both being usually at the same temperature. For sim
plicity we shall speak of Δ/ as the free energy of the substance. We shall 
always understand it to represent the difference between the absolute 
free energy / of the substance in the standard state and in the state in 
question. 

Relation between Changes in Free Energy and Work Performed in Re-
versible and Irreversible Processes.—In all reversible processes (eq. 99), 
the maximum amount of work dwm obtainable from a system equals the 
decrease in its free energy. That is, 

-Af=Awm. (106) 

In practice, however, all processes are irreversible to some extent; other
wise they would have to occur so slowly as never to be completed. If an 
isothermal process is to occur with a finite velocity, the process will be 
irreversible, and some of the mechanical work will be lost in the form of 
heat, so that we always find 

-Af> Awm'. (107) 

In other words, the mechanical work Awm' performed in a natural process 
or transformation is less than the decrease in free energy occurring in the 
process. The difference (Awm — Awm') represents a loss in mechanical 
energy. It generally becomes heat energy at a temperature too low to be 
available for work in the system under consideration. 

A simple example in mechanics might clarify the preceding ideas. The 
relations given above may be illustrated by figure 11. By analogy, since 
temperature is here not involved, we shall take the level A where h = 0 
as representing our absolute zero of free energy/. Here h has of course not 
the same meaning as it has been given previously. Our system is here 
composed of the weight Mi, which by analogy we shall regard as the 
working substance, and the weight Af2, which we shall regard as the sur
roundings, both weights being hung from the frictionless pully P by a 
weightless rope. As Mi moves downward, work dwm is done on the sur
roundings M2. All changes in the system will be carried out at constant 
temperature and pressure. Reference to the discussion following equa
tion 101 shows that the absolute free energy /, in ergs, of the working 
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substance Mi at B with respect to the point A is given by the potential 
energy (in the c.g.s. system) 

f = hMig ergs. (108) 

While Mi travels downward, work Awm is performed on the surround
ings M2; numerically this is equal to 

Awm = hM2g ergs. (109) 

Í 
M, Γ · Ί 

Working j 
substance ι 

rJn 
ourround/nps 

Fig. 11.—Mechanical mo
del for illustrating the mean
ing of the term "free ene rgy." 

Since Mi > M2, 

We shall first consider an irreversible 
change represented by inequality 107 above. 
In order that Mi may move downward with 
finite velocity, the weight Mi must be greater 
than M2 in order that there may be a net 
driving force K. The greater the disparity 
between Mi and M2} the greater the force 
K, the greater the velocity of movement, 
and consequently (as we shall show) the 
greater the irreversibility of the process. 

When Mi moves from 5 to A, the decrease 
in free energy of the working substance is 
(eq. 108) 

- Δ / = h Mx g ergs. (110) 

The work done on the surroundings, consist
ing here of the weight M2, is 

Awm' = hM2g ergs. (HI) 

hM!g>hM2g; 

and therefore (eq. 110, 111) we have 

-áf>Aw¿, 

which corresponds to inequality 107 for an irreversible process. The 
greater Mx is with respect to M2 (that is, the more irreversible the pro
cess), the greater the above inequality. 

The question now is, when Mi moves downward, what happens to the 
free energy that is lost and not stored in the surroundings as available 
energy? It is mainly dissipated as heat when Mx strikes the bottom at J5, 
since the directed kinetic energy of the downward motion of Mi is con
verted into random heat movements of the individual molecules. In 
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addition, when Mi strikes the bottom at By some of the lost energy may 
go into energy of deformation of the bodies as well as into sound. 

Let us now consider the case when the working substance Mi moves 
down reversibly. Only in the limit when M\ = M2 and therefore when Mi 
moves downward with infinite slowness will the decrease in the free 
energy — Δ/ of the working substance Mi equal the work dwm performed 
by the system on M2) for, under these conditions, the net driving force K 
tending to move Mi downward must be an infinitesimal, in order to de
velop only an infinitesimal amount of kinetic energy in M\. The decrease 
in the free energy of the working substance from equation 108 is 

- Δ / = h Mxg ergs; (112) 

and the work performed reversibly on the surroundings (eq. 109) is 

Awm = hM2g ergs. (113) 

Since Mi = M2, we have in the limit, from equations 112 and 113, for the 
reversible process, which must be carried out infinitely slowly, 

— Δ/ = Awm, 

corresponding to equation 106 of a reversible process. 
The foregoing examples demonstrate that any natural spontaneous 

process must be to some extent irreversible. This follows because the 
forces of the system cannot all be completely balanced at all times. If 
they were, in order to satisfy the condition of reversibility, the process 
would go on with such infinite slowness that it would never be completed 
in a finite time. To carry out the process within a finite time, there must 
be an inequality in magnitude of opposing forces; in other words, there 
must be a resultant driving force K of the process. The greater K is, the 
greater the irreversibility. In all such cases, as is shown by the illustration 
above, the decrease of the free energy — Δ/ is greater than the useful 
work accomplished Awm'. That is, 

- Δ / > Aw¿. 

We have considered above the change in the free energy — Δ/ of the 
system when there has been interchange of useful work Aw¿ with the 
surroundings. We shall now consider a case where Awm' = 0—that is, 
where no work is done on the surroundings during the process, and the 
energy is instead dissipated into unavailable forms such as heat at too 
low a temperature to be available. In this case we have from inequality 
107 

- A / = - ( / 2 - / i ) > 0 . 
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Assume a closed system in which spontaneous changes are taking place, 
where there is no interchange of work, and where, accordingly, Awm

f = 0. 
This might correspond to a spontaneous change in a system such as one 
composed of a moist and a dry soil placed in contact. Suppose, for con
venience, we have enough wet and dry soil so that the total weight of 
moisture in both is 1 gram. Moisture will spontaneously go from the 
moist to the dry soil, and the process will be irreversible. Here /i repre
sents the average absolute free energy of the moisture in the entire system 
initially, and/2 the average absolute free energy in the entire system after 
the spontaneous change has taken place. Since Awm' = 0, inequality 107 
shows that 

- Δ / = - ( / 2 - / i ) > 0 (114) 
or 

Δ / = ( / 2 - / ι ) < 0 . 
That is, 

/ 2 < / i . (115) 

As moisture continues spontaneously to flow from the moist to the dry 
soil, the initial average absolute free energy /i of the entire system de
creases to the final value /2. 

We may thus conclude that when any spontaneous change occurs at 
constant temperature and external pressure, the absolute free energy of 
the system will invariably decrease ; that is, the free-energy change Δ/ is 
always negative. Or, stated algebraically, we have for all spontaneous 
changes 

Δ / < 0 . (116) 

Never in any spontaneous change will the free energy increase. 
Condition of Equilibrium.—For an isothermal reversible process occur

ring at constant pressure, it was shown that — Af = Awm. If we are 
dealing with an isolated system that can perform no net work on the 
surroundings except an expansion against constant pressure P, we must 
set Awm = 0; that is, Δ/ = 0. 

Now, at equilibrium, all possible infinitesimal displacements of the 
system are also reversible—that is, all forces are completely balanced 
except for infinitesimal differences. The work done, Awm, in any possible 
infinitesimal displacement of the system, when at equilibrium, must 
accordingly equal zero, for there is no resultant force in any direction at 
equilibrium and hence Δ/ = 0. Therefore, since for any process occurring 
at constant temperature and pressure at equilibrium we have Δ/ = 0, 
the state of equilibrium may be defined by 

Δ / = 0 . (117) 
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Comparison of Free Energy with Potential.—The discussion above 
brings out another similarity of free energy to the potential energy as 
used in such fields as mechanics, electricity, magnetism, and soil moisture. 
The following tabulated comparisons between potential and free energy 
will illustrate some of their points of similarity. Earlier in this article we 
considered some of the differences between them that make free energy 
superior for present purposes. Other comparisons will be made later. 

Condition for 
equilibrium 

Free energy / 
For any infinitesimal 
change of system, Δ/ = 0 

Potential Φ 
For any infinitesimal 
change of system, ΔΦ 

ΔΦ<0 Necessary condition for Δ / < 0 
spontaneous change 

Usual conditions of sys- Constant temperature and Constant temperature and 
tern for spontaneous pressure pressure 
change 

Typical spontaneous 
changes 

Soil moisture moves spon
taneously from wet soils, 
where / is high, to drier 
soils, w h e r e / i s lower 

Soil moisture moves spon
taneously from wet soils, 
where Φ is high, to dry soils, 
where Φ is lower 

Electrici ty moves spon
taneously from points 
where Φ is high to points 
of lower Φ 

Masses under influence of 
gravitational field move 
downward from points of 
high Φ to points of lower Φ 

Specific Free Energy of Several Phases of the Same Substance in Equi
librium with Each Other.—Often we shall be concerned with several phases 
of a substance in equilibrium with each other, such as ice and water. In 
order to deal with the energy changes involved, let us give the abso
lute free energy term / additional meaning. In the past, the amount of 
mass to which the term / referred was not always specifically stated. It 
sometimes denoted the absolute free energy of the entire system, which in 
our present case would be composed of the total amount of the ice and 
water present. This definition of / is too general ; it does not permit us to 
deal with the separate phases that compose the entire system or with 
their interrelations. For this reason we shall redefine / to mean the abso
lute specific free energy per unit mass of the substance in a single phase. 
We shall speak of this as absolute specific free energy, or as absolute free 
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energy of the substance in that phase. Changes in the free energy of our 
system will now consist of changes in absolute free energy of the unit 
mass within the same phase or of changes in absolute free energy of the 
unit mass in going from one phase to another. As was shown earlier, if 
two phases are in equilibrium with each other, any infinitesimal change 
in the variables of state of the system (for example T and p) will not 
change its total absolute free energy. Also, when a gram of ice melts by 
the addition of heat or a gram of water freezes by the removal of heat, 
no change in the total free energy of the system occurs so long as both 
the temperature and the pressure remain constant. 

The change in the absolute free energy of the system when 1 gram of 
ice melts under equilibrium conditions of temperature and pressure is 
given (eq. 117) by Δ / = 0 

Here Δ/ represents the change in free energy of 1 gram of the substance 
when it changes state. That is, Δ/ = 0 simply states the fact that the free 
energy of the substance is the same in the two phases. As long as the two 
phases are present together, equilibrium will be maintained. For finite 
changes of the free energy of the system at equilibrium, we therefore have 

Δ / = ( / 2 - / 0 = 0 . 

That is, if /i is the absolute specific free energy of the substance (ice) in 
the initial phase and if /2 is the absolute specific free energy of the sub
stance (water) in the final phase, we have 

Λ = / 2 . (118) 

Thus, if two phases coexist at equilibrium, their absolute specific free 
energies are the same. 

It will now be interesting to inquire how the absolute specific free ener
gies /i and /2 will be altered by changing the temperature of the system 
from the equilibrium temperature considered above, at which both phases 
are in equilibrium with each other, to some other temperature. Through
out the following considerations, we shall- assume the pressure to remain 
constant. If the temperature of the two phases should be raised, the 
change of ice to water is of course spontaneous. That is (inequality 
107), since AwJ = 0, we have 

Δ / = ( / 2 - / ι ) < 0 

as the free-energy change of the reaction where / i is the absolute specific 
free energy of the initial state (ice) and /2 is the absolute specific free 
energy of the final state (water), or 

/ 2 < / i . (119) 
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Thus, above 0° C the absolute free energy of the ice is greater than the 
absolute free energy of water. If one phase (ice) having the absolute free 
energy /i changes spontaneously to another (water) having the absolute 
free energy/2, the absolute free energy of the former must be the greater. 
This statement agrees with the generalization that the free energy de
creases in all spontaneous changes. 

If, on the other hand, the temperature should be lowered below 0° C, 
water will of course pass into ice spontaneously. If we now consider 
liquid water (/2) as the initial state and ice (/i) as the final state, we have 
(inequality 107 again) = , . < Q 

from which we can derive the relation for the free-energy change Δ/ for 
the imaginary reaction of ice melting into water below 0° C. It is clear, 
t h e n ' t h a t - 4 f = C W i ) > 0 
° r / 2 > / i . (120) 

Thus, below 0° C, the absolute free energy of water is greater than the 
absolute free energy of ice. If one phase (ice) having the absolute free 
energy /i cannot change spontaneously to another (water) having the 
absolute free energy /2, the absolute free energy of the former must be 
less. This agrees with the generalization that spontaneous changes never 
take place where the free energy of the system increases. 

From the foregoing discussion, we may conclude that if several phases 
of the same substance are in equilibrium, the absolute specific free ener
gies are the same in all phases of the system. More detailed and rigorous 
proof will be presented in article 22. If, however, the absolute free energy 
of any one phase should be greater than that of the others, then that 
phase will disappear into the others. 

Negative Character of the Free Energy of Unsaturated Soils.—The dis
cussion above shows clearly that the specific free energy of a system or 
substance decreases in any spontaneous change. Let us consider a body of 
free water in contact with an unsaturated soil. By common experience, 
water flows spontaneously from a body of free water (whose absolute 
specific free energy we shall call /i) into an unsaturated soil (whose abso
lute specific free energy we shall call/2). It is customary to use free, pure 
water under a pressure of 1 atmosphere (art. 62) as the zero point or da
tum for the free energy of soil moisture. Thus the free energy Δ/ of pure 
water under these conditions becomes zero. We have shown (inequality 
107), in going from an initial state /i to a final state /2, that, for any 
spontaneous change in the case where Awm' = 0, it follows that 

Δ / = ( Λ - / ι ) < 0 . (121) 
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Here Δ/ = /2 — /i represents the free energy of the unsaturated soil 
with respect to the reference point/i. That is, the absolute free energy /2 
of the unsaturated soil moisture is less than that of free, pure water. The 
inequality 121 states the general fact that the free energy Δ/of soil mois
ture in all unsaturated soils is negative with respect to the commonly 
accepted datum, since Δ/ < 0. 

Going a bit further, let us consider the relation between the magnitude 
and sign of the free energy Δ/ of a wet soil and those of a drier one. Since, 
as is commonly known, moisture will flow spontaneously from the wet to 
the dry soil and since we are here considering spontaneous changes, let 
us take the wetter soil as the initial state of the soil moisture having the 
absolute free energy/i and the drier soil as the final state of the soil mois
ture having the absolute free energy/2. For spontaneous changes (inequal
ity 121), we have 

/ 2 < / i . (122) 

Inequality 122 states the general fact that the absolute free energy /2 
of the moisture in a comparatively dry soil is less than the absolute 
free energy/i of that in a wet soil. 

As was shown previously, the free energy Δ/ of the moisture of all un
saturated soils is negative. The free energy of the moisture is therefore 
always more negative in a drier soil than in a wetter soil. Only if the wet 
soil is saturated can its free energy, at the most, be zero. 

22. The Equality between the Free Energies of Several Coexistent Phases 

We have previously shown (eq. 118) somewhat indirectly, in discussing 
the various characteristics of free energy, that the free energies of two or 
more phases coexisting at equilibrium must be the same. We shall now 
show this, for the case where the temperature and pressure are equal in 
all phases, in a much more rigorous and direct manner. 

All substances exist in different modifications between which transi
tions may occur. These modifications are often called the different phases 
of a substance, the most important examples being the different states of 
aggregation—for example, gaseous, liquid, and solid. In addition, we have 
the different allotropie modifications of a substance, which make up still 
other possible phases. 

From article 4 we recall that if we have a function φ of one or more 
variables and if we are at a maximum or minimum of the function φ, 
then any slight change in any one or more of the variables will not change 
φ. We shall represent slight variations in their magnitude by the symbol 
δ. At a maximum or minimum of the function φ we have 

δφ = 0 
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for any slight change of the variables. Conversely, δφ = 0 serves to 
determine the values of the variables for which φ has a maximum or 
minimum. For example, taking the simplest case where φ is a function of 
but one variable, x, we find that at any maximum or minimum of φ the 
first derivative of φ is zero. Any infinitesimal variation δχ in the neighbor
hood of either C or A (fig. 3), the maximum and minimum of φ, is seen to 
produce no variation δφ in the function φ ; that is, δφ = 0 for infinitesimal 
variations of δχ. If, however, we focus our attention on any other point B 
of the curve, we note that slight variations δχ do produce appreciable 
variations δφ of the function φ. 

We will also utilize the following mathematical fact : If φ is a function 
of one or more variables and if we wish it to remain constant for all 
possible variations of the independent variables, then 

δφ = 0 

for all infinitesimal changes of the variables upon which φ depends. The 
changes in the variables must therefore so adjust themselves that δφ = 0. 
If, for example, φ = xy, and φ is to remain constant during changes of x 
and y, then δφ = 0 = xδy + yôx, which serves to define the relation that 
must exist between changes of x and y. 

We shall now prove that when two or more phases are in thermody-
namic equilibrium with each other, and their temperatures and external 
pressures are equal, then their free energies must all be the same. To 
prove this we have merely to assume the First and Second laws of ther
modynamics as well as the conservation of matter. It was shown for a 
specific case (connected with eq. 78) that when a system has attained 
equilibrium, the total entropy S of the system has attained a maximum for the 
given values of the total mass, energy, and volume of the system. This is a 
general characteristic of entropy at equilibrium. Our problem is thus to 
find the conditions which make S a maximum subject to the conditions 
that the total mass M, the total internal energy E, and the volume V 
remain constant. Hence one condition for the coexistence of several 
phases of a system in thermodynamic equilibrium is that 

OS = 0. (123) 

That is, any slight displacement or change of the system composed of the 
several phases in equilibrium with each other does not alter the total 
entropy of the system. Certain almost self-evident subordinate condi
tions follow, furthermore, according to the previous paragraph. First, 

δΥ = 0, (124) 
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which states that the total volume of the system remains constant. Then, 
too, 

δΕ = 0, (125) 

which states that the total internal energy of the system remains con
stant. Also, 

8M = 0, (126) 

which states that the total mass M of the system remains constant— 
none is created or added and none is destroyed or taken away. That is, 
with a given mass, energy, and volume of the system, 5S = 0 at equi
librium. 

Let us now consider the simple example of a system composed of only 
two coexisting phases. Let s, v, and e represent the entropy, volume, and 
internal energy of the substance per unit mass—that is, the specific 
values. Let m represent the mass of the two phases, and let X be a frac
tion such that mX represents the mass of one of the phases. Then 
mil — X) will represent the mass of the other phase. In what follows we 
shall assume for simplicity that m is unity; that is, we are dealing with 
only 1 gram of the substance. The quantities associated with one of the 
phases will be distinguished by a prime ; those with the other by a double 
prime. The specific entropy of the system then becomes 

s = Xs' + (1 - X)s", (127) 
and the specific volume 

Ό = Χυ' + (1- Χ)υ", (128) 

and the specific internal energy 

e = Xe' + (1 - X)e", (129) 

and the specific mass of the system m, which we shall set equal to unity 

m = Xm+(1- X)m. (130) 

Because of equation 123,127 becomes 

8s = 0 = X8s' + (1 - X)ôs" + (β' - 8")δΧ. (131) 

Similarly, we have 

U = 0 = Χδυ' + (1 - X)bv" + (υ' - υ")δΧ (132) 
and 

δβ = 0 = Χδβ' + (1 - Χ)δβ" + (c' - β")δΧ (133) 
and 

δηι = 0 = πιδΧ - πιδΧ. (134) 
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On the other hand, in accordance with the Second Law of thermody
namics stated by equations 49 and 70, we have 

and 

SS' = *L - * + *"" (135) 
rpi rpi v / 

V>-*£ = M' + P"M\ (136) 
mil mil v 7 

We want to express be" and bv" in terms of be' and δζ/. To do this, solve 
equations 132 and 133 for (1 — X)bv" and (1 — X)be" respectively, and 
substitute these values in equation 136. We then have 

(i - x)Ss» = - ™ - * ^ - Γ ^ + ^ > ' - ο Ί δΧ. 
v ' rpn mil rpn rpn 

Substituting this as well as equation 135 into equation 131, we have 

LÏ" τ"Α \_r τ"Α 

+ bx\s>-s»-e-^-P"V-^]. (137) 

As may be seen from equations 131, 132, and 133, the variations be', bv', 
and bX (the quantities associated with but one of the phases) can be 
carried out quite arbitrarily and independently of each other and still 
satisfy the three equations that define the states of equilibrium between 
the two phases. The reason is that no matter what values are given to 
be', bv', and bX, the other variations in these equations can be given the 
proper values to still satisfy the three equations defining the state of 
equilibrium. Since the variations be', bv', and bX of equation 137 are 
therefore quite independent of each other and can assume any arbitrary 
value, equation 137 can be satisfied at all times only when each of the 
three expressions in square brackets vanishes separately. This will be 
the case for the first two brackets when 

T = T" and P' = P". (138) 

For simplicity, let T and P denote the equal temperatures and pressures 
respectively of equation 138. The third bracket then becomes 
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0 Γ e* Pv' e" Pv" 

T T T T 

° r -s'T + e' + Pv' = -s"T + e" + Pv". (139) 

Now it will be recalled (eq. 92) that we defined the absolute specific free 
energy / of a substance by 

/ = e - sT + Pv. 

We see, therefore, that equation 139 above actually states that 

/ ' = / " (140) 

We thus conclude from the foregoing that if two phases are in equi
librium with each other and are at the same temperature and under the 
same pressure, then, as an inevitable consequence, both phases must pos
sess the same absolute specific free energy. What was shown to hold for 
the free energies of two phases in equilibrium at the same temperature 
and pressure is readily seen to hold for any number of phases of a sub
stance in equilibrium with each other. 

This fact makes the quantity called "free energy" tremendously im
portant when we are dealing with systems consisting of several phases in 
equilibrium with each other. Soil moisture, for example, may exist in the 
vapor, liquid, and solid states. If we know the free energy of the vapor in 
equilibrium with both the liquid and frozen soil moisture, we also know 
the free energy of the liquid soil moisture, as well as that of the solid 
soil moisture. 

In the above proof, the pressure was made the same on the different 
phases at equilibrium to demonstrate the equality of free energy in the 
phases. This is not generally necessary. Cases when the pressures are not 
the same on the different phases at equilibrium will be discussed in 
articles 26, 30, and 41. 

23. Effect of Temperature on the Free Energy 

We wish to find how the free energy changes as the temperature is 
changed. Suppose we consider, for example, 1 gram of water at a given 
temperature and pressure, possessing a given amount of free energy. 
From equation 97 we have 

df = -sdT + vdP - dwm. (141) 

If the pressure remains constant and if no work is done on the surround
ings, equation 141 becomes ,- _ _ ,τ (ΛΑΟ\ 
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Thus the rate of change of the absolute free energy with respect to change 
of temperature equals the negative of the specific entropy. Applied to 
soil moisture, this means that the rate of change of the absolute free 
energy of soil moisture with temperature equals the negative of its 
specific entropy. 

Suppose we go further and, instead of considering the change in the 
absolute free energy of water in going from one temperature to another, 
discuss the following case. At constant temperature T and pressure P, let 
a process (fig. 12) occur such that the absolute free energy in the initial 

r£MP£fMTUR£ 

- *- M 

Fig. 12.—Dependence of specific free energy on temperature. 

state is fA, in the final state fB, so that the change in the absolute free 
energy during the process is AfT = JB — /A- If the same process is carried 
out in exactly the same manner and at the same pressure, but at a differ
ent temperature T + dT, the absolute free energy in the initial and final 
states will be JA + dfA a n d / 5 + dfB respectively, giving a different value 
Δΐτ+dT for the change in free energy at the temperature T + dT. We 
wish to find how the cha'nge in free energy AfT of the process depends on 
temperature. Suppose, for example, we have determined the change in 
free energy Δ/V of a gram of water in being carried from a drier soil to a 
wetter soil at the temperature T. We shall now wish to determine how 
this change of the free energy AfT involved in the transformation, change, 
or process is affected if the process is carried out at a different tempera
ture T + dT. In the following discussion all changes of the process at 
the same temperature are denoted by Δ, whereas changes in the process 
in going from one temperature to another are denoted by d. 

Since the process is carried out at constant pressure without the per-
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formance of work, we have (eq. 142) the change dfA of the absolute free 
energy of the initial state A for a change dT of the temperature 

dfA = -sAdT (144) 

and for the change dfB of the absolute free energy of the final state B 
because of a change of temperature dT, 

dfB= -sBdT. (145) 

The pressure in state A is to remain constant with all variations of tem
perature; so, likewise, is the pressure in state B. On the other hand, the 
pressure in state A will not in general be the same as in state B. The sub
script P in equation 146 below denotes these facts. 

From equations 144 and 145, we have 

d(fB-fA) = d(Af) = - ( « * - sA)dT 
or 

fêr) =-(sB-sA) = -AsP. (146) 
\ dT /p 

Thus, for example, the rate of change of the free energy Δ/ of soil moisture 
with respect to changes of temperature T7, with the restrictions placed on 
the pressure as given above, equals the negative of the specific entropy, 
Asp, of the soil moisture, both Δ/ and AsP being measured with respect to 
free water in this example. 

24. The Effect of Osmotic Pressure on the Free Energy of a Liquid 

Suppose we have a pure solvent in contact with a solution through a 
semipermeable membrane as in figure 13. If the pressures on A and B are 
the same, the system will not be in equilibrium. Solvent will then flow 
from C into D. Also the vapor pressure p over A will be less than p0 over 
By which would cause a resultant movement of solvent from B to A 
through the vapor phase if the pistons were not present. Only when we 
increase the pressure on the solution by a definite amount ΔΡ—by means 
of a piston, for example—will the resultant flow of solvent through the 
semipermeable membrane from C to D be stopped and the vapor pressure 
p of the solvent over A become equal to p0 over B. The pressure APo on 
the solution, which will just stop the movement of solvent from B to A 
in the vapor phase as well as from C to D in the liquid phase, is known 
as the "osmotic pressure" of the solution. I t will be zero if no solute is 
present, and will increase as the amount of dissolved material increases. 

From a kinetic viewpoint the situation may be described as follows, 
when we are not dealing with concentrated solutions. The presence of 
dissolved materials lowers the escaping tendency of the solvent molecules, 
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and thus holds back a definite fraction of those that would normally 
escape. On this basis, for example, if one fifth of the molecules of the so
lution were solute molecules, both the vapor pressure and escaping ten
dency of the solvent would be reduced to four fifths of their values for 
the pure solvent. Thus more of the solvent will move from B to A as well 
as from C to D than in the opposite direction, and there will consequently 
be a net flow of solvent into the solution. The escaping tendency of the 
solvent on the right side is the same throughout all parts of the solution. 
It is also the same throughout the pure solvent on the left side, but it has 
a higher value there than on the right. A quantitative measure of the 

Pure 
\jo/vent 

' P/sfons 

óem/permeob/e 
membrane 

4 

i 

ΔΡ 

Jo/uf/om 

\y&por pressure p0 kbpor pressure p > 

Fig. 13.—Equilibrium between a solu
tion and the pure solvent through a semi-
permeable membrane. 

escaping tendency of the solvent is its vapor pressure. Under the condi
tions postulated in the figure, the vapor pressure over A is less than that 
over B; that is, p is less than p0. Likewise the escaping tendency of the 
solvent on the right side is less than that on the left. Now, to establish 
equilibrium between the two sides, the vapor pressure or escaping ten
dency of the solvent on the right side must be increased. This may be 
accomplished by placing the solution under a hydrostatic pressure APo, 
now called the osmotic pressure, such that the vapor pressure originally 
having the value p is raised to p0. The vapor pressure on the right, a 
measure of the escaping tendency of the solvent, is then equal to that on 
the left, and equilibrium is established. Incidentally the hydrostatic 
pressure AP0 (that is, the osmotic pressure) required to raise the vapor 
pressure from p to p0 can be immediately calculated according to 
equation 239. 

The osmotic pressure APo, which equals the hydrostatic pressure ΔΡ 
that must be applied to the solution to establish equilibrium, is by van't 
HofTs law (eq. 226) given to a first approximation by 

{AP0)v = x2RT, (147) 
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which is nothing more than the familiar ideal-gas equation. According to 
this equation, the dissolved material in a relatively dilute solution may be 
considered as behaving exactly like an ideal gas at the same temperature 
T and volume v as it occupies in the solution. The resultant solute pres
sure ΔΡ on the semipermeable membrane is found experimentally, for 
dilute solutions for which semipermeable membranes have been pro
duced, to be approximately the same as the gas pressure or osmotic 
pressure AP0 given by equation 147. 

Having considered above quantitatively some of the characteristics of 
osmotic pressure, let us now show that the free energy of the solvent of 
a solution (with respect to the pure solvent) is given by 

Af=-vAP0 (148) 

where v is the specific volume of the solvent and AP0 is the osmotic pres
sure of the solution. For example, if the solvent is water, the free energy 
Δ/ of the solvent is numerically equal but opposite in sign to the osmotic 
pressure AP0, since the specific volume of water is unity in the c.g.s. 
system. Here, as will be recalled, we always take the zero point of free 
energy as that of free, pure water. 

In proving equation 148, let us assume, as before, that we have a solu
tion in contact with the pure solvent through a semipermeable mem
brane (fig. 13). The absolute specific free energy and the vapor pressure 
of the pure solvent are/o and po, respectively; those of the solvent of the 
solution, / and p, respectively. As before, let AP0 denote the osmotic 
pressure—that is, the hydrostatic pressure that must be placed upon the 
solution in order to raise the escaping tendency, vapor pressure, and 
absolute free energy of the solvent of the solution to that of the pure 
solvent in the side B. We shall determine the specific free energy Δ/of the 
solution with respect to the pure solvent by calculating the amount of free 
energy required to raise the absolute free energy / of the solution to that 
of the pure solvent /0. That is, we shall calculate the change in the free 
energy of the solution caused by applying a pressure AP0 to the solution. 

By equation 102 we can calculate the change in the absolute free 
energy produced by an increase of the hydrostatic pressure on the so
lution : s*pB 

Af = fB-fA = vdP. (149) 
J PA 

In our present case the initial absolute free energy and hydrostatic pres
sure on the solution are / and zero, respectively. Thus, using our present 
notation in the equation above, JA = / , and PA = 0. In the final state the 
absolute free energy of the solvent and the pressure on the solution are 
/o and APo, respectively. Thus in the final state, fB =/o and PB = APo. 
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Since the specific volume v of a liquid is practically independent of pres
sure, equation 149 then becomes 

fo-f=l vdP = vAP0. (150) 

The quantity (/0 — /) actually gives the free energy of the pure solvent 
with respect to the solution. We want, instead, the free energy Δ/ of the 
solution with respect to the pure solvent, which is the negative of (/0 — / ) . 
This is 

f-f0= Af= -vAPo (151) 
or, in differential form, 

\dPoh (152) 

When equation 151, giving the dependence of the free energy on 
osmotic pressure, is compared with equation 156, giving the dependence 
of the free energy on hydrostatic pressure, the two are seen to have the 
same form except for the difference in sign. 

25. The Effect of Pressure on the Free Energy of Liquids and Gases 

Let us assume that we have 1 gram of a fluid contained in a volume v. 
We wish to determine the dependency of its free energy on the pressure 
applied to it. We shall assume that all changes are isothermal and that the 
only mechanical energy changes involved are those due to the expansion 
and contraction against the external pressure. These considerations will 
answer, for example, the question as to how the free energy of water due 
to hydrostatic pressure increases with depth in a reservoir; or how the 
free energy of soil moisture, due to hydrostatic pressure resulting from 
the adsorptive force field surrounding the soil particle, increases as the 
surface of the soil particle is approached. 

For isothermal changes without the performance of work except for an 
expansion against the pressure P , we found (eq. 102) 

' · - ' ' - / 
A/ = / * - / ¿ = / vdP. (153) 

If, therefore, we are dealing with almost incompressible liquids for which 
the specific volume v is practically unaffected by changes of pressure, we 
have for the free-energy change Δ/ due to a change in hydrostatic pres
sure, j~pB 

Af = fB~fA = v dP (154) 
J PA 

or fPB 
ÍB=ÍA + V dP. (155) 

J PA 

file:///dPoh
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That is, if water has a free energy JA initially and the pressure is increased 
from PA to P#, the free energy becomes JB (eq. 155). For finite changes, 
equation 154 also becomes 

àf = fB-fA = vAP. (156) 

Digressing momentarily, we will note that equation 153 may be placed 
in the very useful form 

(IX - ^ 
where the subscript T indicates that the temperature is kept constant 
during the variation of pressure P. According to equation 157, the rate of 
change of the specific free energy of a liquid with respect to changes of 
pressure equals the specific volume of the liquid. 

Returning again to equation 156, let us apply it to liquid water whose 
specific volume v in the c.g.s. system is equal to unity. We then have 

Δ/ = ΔΡ . (158) 

That is, for water the free-energy change Δ/ due to the change in hydro
static pressure is numerically equal to the change in hydrostatic pressure 
ΔΡ. On the other hand, as will be shown later or can be seen from equa
tion 151, the free energy of water due to the presence of dissolved ma
terial is numerically equal to the negative of the osmotic pressure. The 
two expressions, therefore, have the same form except for a minus sign. 

We have just shown the dependence of the free energy on pressure for 
incompressible fluids—that is, liquids. Let us now consider the same de
pendence for gases, which are compressible. In the present case, the spe
cific volume v is no longer constant but varies with the pressure. Let us 
here assume that we are dealing with gases which follow the ideal gas 
law so that pv = RT, according to equation 367. We then have (eq. 153) 

àf = fB-fA=fPBvdp= RT fPB^ = RT\n^. (159) 
J PA J VA V VA 

Equation 159 indicates that the free energy Δ/ of the gas increases as 
its pressure increases isothermally. If PB is less than p¿, the logarithm is 
negative, which indicates that the free energy of the gas in the state B 
at the pressure PB is less than in the state A at the pressure PA* 

Let us apply equation 159 in the evaluation of the free energy of soil 
moisture to illustrate its meaning and usefulness. By convention we have 
considered that our datum or zero point of reference for the free energy 
of soil moisture is that of free, pure water. As has previously been shown 
(art. 22), free energy always has the same value in all phases which are in 
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equilibrium with each other; that is, the free energy of the water vapor 
above free water must also equal that of free water itself. Thus if we wish 
to determine the free energy of soil moisture—often a very difficult thing 
to do directly—we have merely to deal with the vapor in equilibrium with 
it. The free energy of the soil moisture whose vapor pressure is ps is then 
given by equation 159, where pA is the vapor pressure of the datum— 
that is, of free, pure water at the same temperature. 

At this point we shall digress for a moment and observe a relation exist
ing between the work done during the isothermal expansion of an ideal 
gas and the change in its free energy. The most general change of the free 
energy Δ/ was given by equation 97, which may in this case (since there 
is here no distinction between p and P) be written 

Δ/ = — s AT + vAp — Awm 

where Awm included all the work performed by the system except that of 
expanding against an external pressure p. For an ideal gas we will show 
that the term vAp equals the work of expansion against the external 
pressure p. At present we are dealing merely with isothermal changes in 
volume of a gas under a variable external pressure p, so that both AT = 0 
and Awm = 0. We therefore have 

Δ/ = vAp . (160) 

We wish to show that the decrease in the free energy of the ideal gas 
upon expansion equals the work done by it during isothermal expansion 
against the variable pressure p. That is, the term vAp in equation 97 
takes care of the work pdv of isothermal expansion of a gas. In other 
words, 

— Δ/ = — vAp = pAv. (161) 

Differentiating the ideal gas equation for isothermal changes of volume 
and pressure, we have 

A(pv) = pAv + vAp = A(RT) = 0, 
or 

vAp = -pAv. (162) 

Combining this with equation 160, we finally obtain 161, showing that 
either the term —vAp or pAv represents the work done by the ideal gas 
during isothermal changes of volume under the variable external pres
sure. In other words, equation 97 when applied to an ideal gas is equiva
lent to 

Δ/ = — sAT — pdv — Awm. 
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26. Effect of a Force Field on the Free Energy of Water 

For the change in free energy Δ/ during any transformation, equation 
9 7 g l V e S Δ/ = - s AT + vAP - Awm . (163) 

At present we want to derive an expression for the change in free energy 
Δ/ per unit mass experienced by the water particle P in moving it from 
B to A (fig. 14), for example, where these points are located in a force field. 

Fig. 14.—Relation between the 
direction of the force field acting 
on a body and its pa th of motion. 

During this change neither the temperature nor the external pressure 
comes into consideration, since we shall regard both these as constant; 
and therefore both AT and ΔΡ are zero. Equation 163 then becomes 

- Δ / = Awn, (164) 

which says that the work Awm per unit mass done by the particle of water 
on the surroundings in moving from B to A equals the decrease in its spe
cific free energy ( —Δ/). According to our convention, a positive Awm 
indicates work done by the water particle (that is, the working substance) 
and a minus Awm indicates work done on the water particle by the sur
roundings. Of course, if the water moves in the opposite direction (that 
is, from A to B), work — Awm will be done by the particle on the sur
roundings; and the increase in specific free energy of the particle is Δ/. 
These changes are, of course, carried out reversibly, so that the work done 
by the particle is always equal to that done on the surroundings. 

Obviously, this form of free energy is identical with the term "poten
tial" as used throughout the domain of mechanics, electricity, and mag
netism; potential is merely a special kind of the numerous forms of free 
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energy. The great generality and superiority, for some purposes, of the 
function called "free energy'' thus become evident. 

The work done per unit mass by a particle on the surroundings in 
going from a point B to a point A is defined according to mechanics by 

Awm = / H -Il (165) 

where the vector K represents both the magnitude and direction of the 
field of force at the element of the path dl. The vector dl represents the 
element of the path both in direction and magnitude, and the dot be
tween the two vectors indicates that the product of the magnitude of the 
two vectors must be multiplied by the cosine of the angle between the 
two vectors; that is, K - dl is a scalar product. For those not acquainted 
with the vector notations, Awm may be expressed in a more common but 
often more cumbersome form : 

Awm = I K dl cos Θ, (166) 

where K and dl are now scalar quantities. 
The geometrical interpretation is clarified from a consideration of 

figure 14. As the particle of water P moves from a point B toward A 
along the path I, it does an amount of work Awm on the surroundings 
under the influence of the adsorptive force field of the soil particle S, for 
example. The direction of movement of the particle P makes an angle 0 
with the assumed direction of the force field, and the total work Awm 
done by the water particle on the surroundings in moving from B to A is 
given by the integral in equation 166. Of course, if the particle moves in 
the opposite direction (that is, from A to B) the work Awm changes its 
sign and becomes negative. We then have 

Awm=l Kdl cos Θ. (167) 

Although Aw m appears positive according to equation 167 when the par
ticle moves against the field of force, it is really not so, for the cosine of 
an obtuse angle is always negative. The disguised negative sign under the 
integral sign then makes Awm negative. 

The expression for Awm takes on a particularly simple form if the line 
of action of the force is the same as that of the path of movement dl We 
have two cases. If the particle is moved in the direction of the force field 
(that is, from B to A) then cos 0 = 1 , and 

ΓΑ 
Awm = I Kdl. 
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The particle thus releases energy to the surroundings, since Awm is posi
tive. If, on the other hand, the particle is moved in a direction opposite 
to the field (that is, from A to JB) the cos Θ = — 1, and we have 

Awm = — / Kdl. 
- / : 

The water particle therefore gains energy from the surroundings, since 
Awm is negative ; and work is done by the surroundings on the particle P 
to carry it from A to B. 

Combining 164 with either 165 or 166, we have in vector notation 

Δ/ = - / K-Jl , (168) 

or in scalar notation 

Δ / = -j K cosd dl, (169) 

or in differential form 
dl= -Kcosd. 
dl 

As will be recalled from elementary physics, a scalar possesses only 
magnitude, whereas a vector possesses both magnitude and direction. 
Hence, as shown above, the rate of change of the free energy of the par
ticle in any direction equals the negative of the component of the field 
in that direction. 

In the special case where the path dl coincides with the lines of force^ 
cos θ = + 1 ; or, if we consider the projection K of the resultant force K 
on the path of integration according to figure 14, equation 169 becomes 

Δ / = - / " Kdl; (170) 

or, in differential form, 
dl=-K (171) 
dl 

where K is a scalar rather than a vector. Thus, as mentioned earlier, 
after equation 117, this form of free energy is analogous to potential as 
used in mechanics, electricity, and magnetism. We conclude, then, that 
the change in the specific free energy Δ/ of the particle of water entailed 
by its being moved from a point A to a point B in a field of force is given 
by either of the line integrals in equations 168 and 169 or, in the special 
case where the direction of the path and field coincide, by equation 170. 

To illustrate the meaning of these relations between free energy and 
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field of force, let us consider a vertical column of liquid water at equilib
rium. We wish to study the dependence of the free energy of a water particle 
on its height y above the lower surface S of the column (fig. 15). The 
distance y will be measured from the bottom up, in which case cos Θ is 
negative, since the positive direction of y is opposite to the direction of 
the field. We suppose that the strength of the field is the same and equal 
to g at all points above the water surface. 

Ù/reef/on of gray/faf/ona/ 
f/e/d ûf fbree 

J S 
Fig. 15.—Column of water at equilibrium 

under a gravitational force field. 

The total free energy Δ/ of the particle of water of unit mass at the 
point B is composed of two parts. One of these, AfP, is due to hydrostatic 
pressure ; the other, AfF, is due to the position of the particle in the attrac
tive force field. The first is given (eq. 153) by 

)dP Afp = / V( 

and the second (eq. 169) by 
ΓΒ ΓΒ 

A/> = / gdy = g dy, 
JA JA 

since the force K = g is independent of the value of y and cos Θ = — 1. 
The total free energy Δ/ of the particle of water at the point B, with re
spect to that at A, is then 

(172) 

(173) 

ΓΒ rB 
Af=AfP + AfF= vdP+ g 

JA JA 
dy. 

Since the column of water is in equilibrium, the total free energy of the 
water must be the same throughout all parts (eq. 117). That is, Δ/ = 0. 
Hence 

vdP + gdy = 0, 
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— =--= -gp (174) 
ay v 

since v = - where p equals the density of the liquid. Equation 174 gives 
P 

the well-known relation between the change of hydrostatic pressure and 
the change of height y in the column of water. I t shows, in accordance 
with common experience, that as the height y increases, the hydrostatic 
pressure decreases. 

THERMODYNAMIC INTERRELATIONS AMONG THE 
PROPERTIES OF SOIL MOISTURE 

27. Relation between the Changes of Pressure ΔΡ and Temperature ΔΤ if Two Pure 
Phases Are to Remain in Equilibrium—Clausius-Clapeyron Equation 

As will be recalled (art. 22), if two phases of a substance are in equi
librium with each other, their specific free energies must be the same. To 
fix our ideas, suppose the two phases are ice and water at 0° C and at 1 
atmosphere. If now the pressure on the system is changed, the equi
librium is disturbed, and the free energies will no longer remain equal 
unless other changes are made in the system. 

An increase of pressure, keeping the temperature unchanged, will cause 
the free energy of the ice to become greater than that of the water, be
cause (eq. 157) 

(175) 
\dP/T 

Since for water, at 0° C, v = 1.000 cc, the rate of increase of the free 
energy of water with respect to pressure is 

\dP/T 
.000. (176) 

And since for ice, at 0° C, v = 1.090, we have for ice 

1.090. (177) 
\dP/T 

Evidently the free energy of the ice increases more than that of water for 
a given change of pressure. Thus the ice at 0° C will have a greater free 
energy at pressures higher than 1 atmosphere. As will be discussed later, 
the 1 atmosphere enters because of the peculiar definition of 0° C : 0° C 
is taken as the freezing point of water under a pressure of 1 atmosphere. 
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As will be recalled, free energy always decreases in a spontaneous 
change. Only when there is no possibility for the free energy to decrease 
will the system remain in equilibrium. From equations 176 and 177 we 
see that a given change in pressure causes a greater increase in the free 
energy of ice than it does in water. Consider ice and water at equilibrium 
under a given temperature and pressure. If now the pressure is raised, the 
free energy of the ice has a possibility of decreasing if it passes into the 
liquid state. All the ice accordingly melts. If, therefore, we have ice and 
water at equilibrium, an isothermal rise of pressure causes the ice to melt. 
By similar reasoning, since a given decrease in pressure causes a greater 
decrease of the free energy of ice than it does of water (eq. 176 and 177), 
it is clear that if ice and water are in equilibrium and the pressure is then 
decreased, all the water will pass into ice. 

On the other hand, if we now keep the pressure constant and vary the 
temperature of the two phases originally in equilibrium, the specific free 
energies of the two phases will change differently according to equation 
143, which is 

& ) , - - ( m ) 

According to equation 178, when the temperature is raised, the phase 
whose specific entropy s is the least will disappear completely, since its 
final free energy after the temperature change would be greatest. Like
wise when the temperature is lowered, the phase whose specific entropy s 
is the greatest will disappear completely, since its final free energy after 
the temperature change would be greatest. 

We have just considered how temperature and pressure affect the equi
librium of two phases originally in equilibrium with each other. One of 
the phases always disappears when either the temperature or pressure 
alone is changed from the equilibrium value. Let us now vary both tem
perature and pressure simultaneously in such a way that the amounts of 
the phases remain unchanged. We want to find the relation between the 
changes of the temperature AT and pressure ΔΡ that permit the phases to 
coexist. If /i , Si, and Vi are the quantities associated with the first phase 
and if/2, s2, and v2 are those of the second, and if the two phases are to be 
in equilibrium, we have (art. 22) 

h=h. (179) 

This means that when any change occurs in the system, the two free 
energies must change by an equal amount, namely, 

d/i = d / 2 . (180) 
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Since only two variables such as P and T are required to fix the state of a 
substance, which we shall describe by the specific free energy/, and since 
the free energy is a perfect differential, we have (art. 2) 

and 
*'-(!)/p+d>/r <181> 
«-(£),» ̂ ϊ"- (182) 

Substituting 181 and 182 into 180 and recalling 143 and 157, we have 

vdP - SidT = v2dP - s2dT. (183) 

This equation could, of course, have been obtained immediately from the 
generalized definition of the differential of the free energy given by equa
tion 97, since no useful work dwm is done. Rearranging 183 and collecting 
like terms, we have 

dP s2 — $i 
dT V2 — Vi 

(184) 

The quantity (s2 — Si) gives the change in specific entropy in going from 
phase 1 to phase 2 without change of temperature and pressure. For ex
ample, if we were transforming ice to water, (s2 — Si) would be the differ
ence in entropy of the two phases. As before (eq. 84), we now also have 

ΔΑ 82 - s* = Y 
where Ah is the latent heat involved in changing a gram from the first 
phase to the second. If we are dealing with ice and water, Ah would be 
the well-known heat of fusion of ice I. The quantity (v2 — Vi) = Av rep
resents the increase in volume per gram of the substance in going from 
the first to the second phase. Equation 184 then becomes the well-known 
Clausius-Clapeyron equation and is 

or 

dP _ 
dT~ 

dP = 

dP _ 
dT~ 

Ah 
TAv' 

AhdT 
TAv 

I 
TAv' 

(185) 

or for water 
Λ Ρ 7 

(186) 
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Although equation 186 was applied above to the equilibrium between 
the two phases liquid and solid, it applies equally well to the equilibrium 
between any two phases. For example, when water passes from liquid to 
vapor, Ah or I and Av are both positive. Equation 186 therefore predicts 
that an increase of pressure dP causes an increase dT of the boiling point. 

When water passes from ice to liquid, Ah or I is positive and Av is 
negative, since ice contracts upon melting. Equation 186 predicts, there
fore, that an increase of pressure dP causes a decrease dT oí the melting 
point of water. This is borne out by the common phenomenon of regela-
tion, a special case of which is the flowing of glaciers. The ice melts at 
those points where pressure is applied and refreezes elsewhere. In par
ticular, equation 186 gives, for finite changes, the effect of hydrostatic 
pressure on the freezing-point depression AT of a liquid as follows : 

AP = — . (187) 
TAv 

If we are dealing with a solution, equation 187 applies quite indepen
dently of any dissolved material, the effect of which will be discussed in 
article 29. 

The present article has taken up the treatment of the dependence of 
the freezing-point depression AT on the hydrostatic pressure ΔΡ when 
the latter has been kept the same on both phases. The treatment of the 
case where the pressure on one phase is different from that on the other 
is taken up in the more generalized treatment of article 30, and there is 
some plausible evidence that the freezing-point depression of relatively 
moist soils might fall under the latter case. 

28. Dependence of the Free Energy of a Liquid Δ/ on the Hydrostatic Pressure ΔΡ 
as Measured by Its Freezing-Point Depression ΔΤ 

As will be recalled frorn equation 156, the free energy Δ/ of a liquid 
under a hydrostatic pressure ΔΡ is given by 

Δ/ = vAP (188) 

where v denotes the specific volume of the liquid. Substituting equation 
185 into 188, we have , 

Af=^AT (189) 
J TAv 

which expresses the free energy Δ/ of a liquid, due to hydrostatic pres
sure, in terms of its freezing-point depression AT. For water, v = 1 in 
the c.g.s. system, and Ah = l) so that 

Δ/ = — . (190) 
J TAv 
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29. Relation between the Changes of Pressure ΔΡ and Temperature ΔΤ for a Solution 
to Remain in Equilibrium with the Solid Phase of the Pure Solvent 

The relation dealt with in this article might be considered as the 
Clausius-Clapeyron equation for solutions. The thermodynamic treat
ment will be remarkably similar to the case taken up in article 27, which 
was gone through in somewhat greater detail than will be undertaken 
here. To fix our ideas for the present, suppose we consider pure water and 
ice initially in equilibrium at 0° C. (The present treatment, however, 
applies to the equilibrium between two phases of any substance, one of 
the phases of which contains dissolved material.) L e t / i represent the 
specific free energy of the ice, /2 that of the liquid water. Since the ice and 
pure water are in equilibrium with each other at 0° C, we have 

Suppose we now add an amount of solute to the pure liquid water suffi
cient to raise its osmotic pressure from zero to APo. This disturbs the 
equilibrium between the two phases, and causes the specific free energy/2 
of the solvent to be decreased. Since the two parts of the system have 
now different specific free energies, a spontaneous change will occur 
according to inequality 116, tending to decrease the total free energy of 
the system. The ice, having a higher specific free energy fh will therefore 
melt and become a liquid having a lower specific free energy /2. We see, 
therefore, that without change of temperature, the ice and water cannot 
be kept in equilibrium if the amount of solute (and consequently the 
osmotic pressure AP0 of the solvent) is changed. To keep the ice and 
solution in equilibrium and thus to prevent the disappearance of one of 
the phases, the temperature of the two phases as a whole must be changed 
by an amount AT. As is well known, the addition of salt to an ice-and-
water mixture lowers its freezing point, which is the equilibrium tempera
ture for the mixture of solution and pure ice. 

We now wish to find the relation between the osmotic pressure AP0 of 
the solution and the necessary change in temperature AT in order that 
the ice and solution may remain in equilibrium. Assume that the temper
ature is changed from T to T + AT. We must recall (from eq. 118) 
that in order to have equilibrium at the new temperature T + AT the 
new free energy of the ice /i must equal that of the solution /2. That is, 
both initially and finally we have 

/l = h > 
and therefore 

d/i = # 2 . (191) 
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The specific free energy of the water in the form of ice depends here only 
upon the temperature and not explicitly on the pressure, since the system 
is assumed to be under atmospheric pressure at all times and therefore 
under a constant hydrostatic pressure. Hence (by eq. 3) we have 

With equation 143 this becomes 

d / 1 = -SldT. (192) 

The specific free energy of the water of the solution, on the other hand, 
depends not only upon the temperature change AT but also on the 
amount of solute present, which we shall here measure by the osmotic 
pressure of the solution AP0. The change in the free energy of the solvent 
of the solution df2 therefore depends upon two variables, and (by eq. 3) 
we have 

df2 = (^-) dPo + fà) dT. 
\dPo/T \dTjpo 

With equations 152 and 143 this becomes 

df2= -v2dP0 - s2dT. (193) 

Introducing 192 and 193 into 191 and remembering that v2 is nothing 
more than v, the specific volume of the pure solvent, we have 

-sxdT = -vdPo- s2dT . (194) 

Rearranging 194, we have 

dPo=_ fa - sQ 
dT v 

As in article 27, (s2 — Si) gives the change in entropy of the solvent in 
going isothermally and isobarically from phase 1 to phase 2. We may 
now write (eq. 84) 

s2 - Si = As = — (196) 

where Ah is the latent heat that must be added per gram in going from 
the first to the second phase. When we are dealing with ice and water, Ah 
would be the well-known heat of fusion of ice I. Inserting 196 in 195 we 
have 

dPo Ah 7D Ah ,_ , . 
= — — or dPo = — — dT . (197) 

dT vT vT 

file:///dTjpo
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In particular for water 

^2 = _ L or dPo = - (-)dT . (198) 
dT vT \VTJ 

For finite changes, 197 and 198 become 

Δ Ρ Ο = - ( ^ ) Δ Γ (199) 

and 
APo= ~0r)AT- (200) 

All the quantities in the parentheses of equation 199 are positive. When
ever, therefore, soluble material, whose amount is measured by the 
osmotic pressure AP0 of the solution, is added to a solution, the freezing 
point of the solution is depressed by the amount ( — AT). 

Equation 199 is quite general and is not restricted to describing 
equilibria between ice and water. It will, for example, predict how the 
boiling point of water changes with changes in its content of dissolved 
material. As a measure of the amount of dissolved material, we can take 
the osmotic pressure APo of the solution according to equation 226. 

By equation 199 we shall show that as the amount of dissolved material 
in the solution increases, the boiling point of the solution also increases. 
According to previous conventions, we must take the water vapor as 
phase 1. The second phase is therefore, as before, the solution. Conse
quently, Ah will represent the heat that must be added to the water 
vapor in order to condense it to the liquid phase. This is negative, since 
actually an amount of heat equal to the heat of vaporization of the water 
must be removed from the steam to condense it to water at 100° C; that 
is, Ah = — 540 calories, or —2.27 X 1010ergs per gram. The term v is the 
specific volume of the water at 100° C and therefore equals approximately 
unity in the c.g.s. system. Equation 199 then gives for the osmotic pres-
S U r e 2 27 X 1010 

AP0 = — AT dynes per cm2 

1 X 373 
and enables one to calculate the rise in the boiling point of water AT 
attendant upon the addition of an amount of dissolved material pro
ducing the osmotic pressure APo-

Since by equation 226, the osmotic pressure can be calculated imme
diately for dilute solutions from the amount of dissolved material, we see 
that equation 199 at the same time predicts both a decrease of the freez
ing point and a rise of the boiling point of a solution with increase in the 
amount of dissolved material. 
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30. Generalized Treatment of the Effect of Pressure on the Freezing Point, and Its 
Application to Relatively Moist Soils—Generalized Clausius-Clapeyron Equation 

Equation 186 gives the change in freezing point dT caused by a change 
in hydrostatic pressure dP on water. The hydrostatic pressure as well as 
any changes in its value was exerted uniformly on both the phases (ice 
and water). Under these conditions, the freezing point is lowered 0.00748° 
C per atmosphere increase of pressure, as 
is shown later in this article. This is only a 
special case of the following generalized treat
ment. We shall now consider the case where 
the hydrostatic pressure exerted uniformly on 
the ice differs from that exerted uniformly 
on the water. As another special case of this, 
we shall find that the freezing point of water 
is lowered 0.0899° C per atmosphere increase 
of pressure on the ice alone, the pressure on 
the water remaining unchanged. This de
pression is twelve times as great as that 
which is observed when the pressure is ex
erted uniformly on both the water and the ice. 

In order to be specific, we derive the follow
ing expressions with respect to ice and water, 
but the results apply equally to the freezing 
point of any other substance. 

Consider figure 16, in which Pi represents 
the pressure exerted uniformly on the ice by a 
piston that is permeable to water vapor only 
and Pw represents the pressure exerted uniformly on the water by a piston 
that is permeable to water vapor only, Pw and Pi being always so related 
that there is a common vapor pressure p throughout. This, of course, 
means that the three phases are always in equilibrium with each other. 
The total hydrostatic pressures in the water and in the ice are then 

P,*ptPf 

Fig. 16.—Equilibrium be
tween the solid, liquid, and 
vapor, when the pressure 
exerted on each of the three 
phases may be different. 

and 
P2 = v + Pw, 

Pi = p + Pi, 

respectively, as indicated in the figure, since the vapor pressure is acting 
on both the ice and the water. Let T be the freezing point of the water 
under these conditions, that is, the temperature at which all three phases 
are in equilibrium with each other. In the following discussion, v1} si, and 
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/ i are quantities associated with the ice phase and v2, s2) and f2 with the 
liquid phase. 

With these pressures, we now seek an expression relating the change in 
freezing point dT to a change in any one or all of the pressures. Since we 
have postulated that the phases are to be in equilibrium, we have (art. 22) 

/ l = / 2 . 

This means that when any change occurs in the system, the two free 
energies must change by an equal amount, namely, 

d/i = df2. 

In the same manner as with equation 180, we substitute for dfi and df2 
above and obtain 

VidPi - SidT = v2dP2 - s2dT 

since dPi and dP2 are the total changes in pressure on the ice and water, 
respectively. Unlike the previous case, these two pressures are in general 
not now equal to each other. The above equation could, of course, have 
been obtained immediately from the generalized definition of the differ
ential of the free energy given by equation 97, since no appreciable useful 
work dwm is done in changing the pressures on two such almost incom
pressible phases as ice and water. Substituting for dPi and dP2 in the 
above, and dividing through by dT, we have 

\dT dT ) \dT dT ) s2 . 

Rearranging, we have 

v2dPw dPr . dp, v f v 
— l\ H (V2 — Vi) = (S2 — Si ) 

dT dT dT 
and exactly as in obtaining equation 186, we may set 

I 

where s2 — Si is the difference in the specific entropies of the two phases in 
equilibrium with each other and I is the latent heat of fusion of ice and 
is positive. We have then 

^Pw_v1dP1 dv{ )=l_ 
dT dT dT T 



Feb. 1943] Έ die f sen-Ander son : Thermodynamics of Soil Moisture 119 

This equation was first derived by Hudson (80) through an entirely 
different line of reasoning. He recognized the following four ways in which 
the freezing point is changed by changes of pressure. 

Case 1. The total change in pressure on the ice is always equal to the total 
change in pressure on the water. Consequently, dp + dPw — dp + dPi. 
Let the total change equal dP. Equation 201 becomes then 

dp + dPw = dp + dPT = dP= I (2Q2) 

dT dT dT (vz-vJT* 

This is the special case taken up in article 27. Substitution of the proper 
values for the specific volume of water, v2, and ice, vh and the latent heat 
of fusion I from ice to water (the latter is positive as brought out in art. 
27), we find that a total increase in pressure dP equal to 1 atmosphere 
lowers the freezing temperature by the usual amount dT = 0.00748° C. 

Case 2. The pressure on the water remains constant while the pressure on 
the ice is changed. Consequently, 

dT 

and equation 201 becomes, after dividing through by v¡, 

dP1=_±_dp(l_vJ\ 
dT Tvi dT\ vj 

The first term on the right is many thousand times as large as the last 
term, as may be seen by substituting the proper values for the different 
terms; hence the last may be neglected, and we have 

<^=-±. (204) 
dT Tv! 

Substitution of the proper values in the right side of this shows that an 
increase in pressure, dPj on the ice alone, equal to 1 atmosphere, lowers 
the freezing temperature by the amount dT = 0.0899° C, a depression 
which is twelve times as great as that which is observed in case 1 when 
the pressure is exerted uniformly on the water and ice. 

Case 3. The pressure on the ice remains constant while the pressure on the 
water is changed. Consequently, 

^ - ' = 0 , 
dT 

and equation 201 becomes, after dividing through by v2, 

dPw , I irn = + — + 
dT Tv2 

dp/v1_ Λ . 
dT\v2 J' 



120 Hilgardia [Vol. 15, No. 2 

and neglecting the small second term on the right, as was done in case 2, 
we have Ατ> 7 

d^- = +± . (205) 
dT Tv2 

Substitution of the proper values in the right side of this equation shows 
that an increase in pressure dPw on the water alone, equal to 1 atmos
phere, raises the freezing temperature by the amount dT = 0.0824° C. 
This is in complete contrast to case 2. 

Equation 205 might well describe, for relatively moist but not satu
rated soils, the relation between dPw, the tension in soil moisture (as 
measured by a tensiometer for example) and dT} the corresponding 
freezing-point depression (as determined by the customary Beckmann 
method) if the soil moisture (under a state of tension depending upon the 
soil moisture content) is transformed to ice (under atmospheric pressure) 
upon freezing. This follows because if we have ice and water at equi
librium under atmospheric pressure, then the freezing point will be 0° C. 
Now if we change the pressure on the water alone, so that it is under the 
same tension dPw as the soil moisture, then dT, the freezing-point de
pression of the system, should be given by equation 205. That the change 
in the freezing point dT is negative (indicating a freezing-point depres
sion) is seen immediately from equation 205 when it is recalled that dPw 
(the tension that must be put on the free water to place it in equilibrium 
with the soil moisture) is negative. A comparison of equation 198 with 
205 shows that an osmotic pressure dP0 will cause the same freezing-point 
depression dT as a tension dPw in the soil moisture, provided that when 
the soil moisture freezes to ice, the ice separates out from the soil mois
ture to a higher pressure of 1 atmosphere. 

Schofield (188) gives an equation for calculating the freezing-point de
pression of soil moisture whose form may be transformed into that of 
equation 205 when certain suspected typographical errors in his published 
equation are corrected. He does not give any derivation for it, though, 
but mentions that the pF values, calculated from freezing-point depres
sions, he has plotted in his curve were calculated by means of it. 

The total freezing-point depression of any relatively moist normal soil 
would in this case be the sum of (1) the.effect of pressure given by 
equation 205 and (2) the effect of dissolved material in the soil solution 
given by equation 198. 

Case 4. The total changes in pressure on the ice and water are always so 
related that the freezing temperature remains constant. Consequently, dT = 
0 and equation 201 becomes, upon rearrangement, 

(dPj +dp) = d(PT +p) =dP1 = v1 

(dPw + dp) d(Pw + p) dP2 vi 
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Thus if the changes in pressure on the water and ice are inversely propor
tional to the specific volumes, the freezing temperature will not change. 

Let us now illustrate the application of the above four cases by a con
sideration of several specific examples. Let us first find the freezing tem
perature of water which is under a pressure of 10 atmospheres when upon 
freezing it is transformed into ice under a pressure of 16 atmospheres. 
According to case 1, ice and water are in equilibrium under a uniform 
pressure of 10 atmospheres at —10(0.00748)° C. If a pressure of 6 addi
tional atmospheres be applied to the ice alone, the freezing temperature 
will, according to case 2, fall an additional 6(0.0899) degrees. The result
ant freezing temperature of the system is — 0.614° C. 

But suppose the uniform pressure on the water is 16 atmospheres 
when its ice is under a pressure of only 10 atmospheres. By case 1, ice 
and water are again in equilibrium under a uniform pressure of 10 atmos
pheres at —10(0.00748)° C. If now, 6 additional atmospheres be ap
plied to the water alone, the freezing temperature will, by case 3, rise 
6(0.0824) degrees and will finally be 0.420° C above zero. 

The use of the four cases may be also illustrated by showing that the 
lowering of the freezing point of solutions can be considered as the result 
of osmotic pressure acting as a negative pressure tending to expand the 
water. At first, this seems strange. I t is known that ordinarily a positive 
pressure lowers the freezing temperature of water and a negative pressure 
raises the freezing temperature; therefore it might seem that solutions 
should freeze above 0° C rather than below, if the dissolved material pro
duces a tension. As has been pointed out by Hudson {80), this reasoning 
is not correct, because the ice which freezes from a solution is under at
mospheric pressure, not negative pressure; and only the solution may be 
properly regarded as being under a negative pressure, caused by the dis
solved substance. Both the ice and solution are, of course, under atmos
pheric pressure, but in the case of the solution, the dissolved substance in 
effect contributes an additional negative pressure to the water. Let us 
assume that the dissolved material has the same tendency to expand that 
part of the solvent containing the dissolved material as the molecules of a 
perfect gas have to expand the volume they occupy. This might be 
thought of as causing a tension — Pw in the water of the solution tending 
to pull it apart, and determined by Pwv = x2RT where x2 is the mol frac
tion of the solute in the solution. (This is recognized to be nothing more 
than the ideal gas law where R is the gas constant per gram.) Since this 
falls under case 3, let us substitute this expression for — Pw for that in 
the expression under case 3 and obtain, after rearrangement, 
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since dx2 is measured with respect to the pure solvent. This is the same as 
the well-known relation that van't Hoff obtained for the freezing-point 
depression, dT, produced by the addition of an amount of solute dx2, 
according to article 38. From the agreement of these two expressions for 
the molecular depression of the freezing temperatures, we must conclude 
that solutions may be regarded as being under a negative pressure, com
parable with a positive mechanical tension, this negative pressure being 
caused by the dissolved substance and being numerically identical with 
the osmotic pressure of the solution. 

Let us consider another illustration. As pointed out under case 4, it is 
possible to apply pressure to the ice and water in such a way as not to 
change the freezing point of the water. We had 

dP\ _ v2 

dP2 vi 

The specific volume of ice is v2 = 1.0909, and of water, vi = 1.0001 cc per 
gram, respectively. Thus 

so that the freezing temperature of the water will always remain the 
same no matter what pressure is applied to it so long as the pressure ap
plied to it is 9 per cent greater than that simultaneously applied to the 
ice. 

Finally, although it has never, so far as is known, been pointed out, it 
seems that freezing according to case 3 might occur in the freezing of soil 
moisture in the soil during winter. Of course, if as pointed out previously 
under case 3, the ice (freezing out from the relatively moist soil) separates 
out from the soil moisture to a pressure of 1 atmosphere, then this case 
must always occur. Suppose in a soil cavity some distance above a water 
table, we have an isolated particle of ice; and suppose also that below this 
cavity and extending down to the water table are capillary columns of 
water. Since the water in the capillaries is under tension, it will, at 0° C, 
have a lower vapor pressure than the particle of ice. Consequently, the 
moisture system in the cavity will not be at equilibrium at that tempera
ture, and the ice will distill over to the water in the capillaries. The tem
perature of equilibrium may be calculated as follows: the water in the 
capillaries leading up to the cavity is under a tension that is less than 
atmospheric by an amount given by the height of the capillaries accord
ing to article 42. If, for the sake of our present argument, we assume that 
the water table is 76 X 13.6 centimeters below the cavity and that all the 
soil capillaries are small enough to raise the water this high, then the 
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hydrostatic pressure in the water at the upper end of the soil capillaries 
having their terminals in the cavity is —76 X 13.6 grams, or minus 1 at
mosphere. At 0° C, if the water in the soil capillaries were not under 
tension, it would be in equilibrium with the isolated particle of ice in the 
cavity and would freeze at 0° C; however, in our present case, we must 
consider the pressure on the particle of ice in the cavity as remaining con
stant, whereas the pressure on the capillary water adjacent to the cavity 
has been decreased by 1 atmosphere. Thus, according to case 3, the ice-
particle-soil-moisture system in the cavity will be in equilibrium at 
— 0.0824° C, at which temperature that part of the soil moisture adjacent 
to the cavity which is under a tension of 1 atmosphere will begin to freeze. 
That is, the freezing point of the soil moisture which is under a tension of 
1 atmosphere is in the present case —0.0824° C, since the particle of ice is 
isolated from the water; and not +0.00748° C, as might at first have been 
expected if case 1 had inadvertently been applied under the assumption 
that the ice was attached to the water and both were under the same pres
sure. In general, if the soil capillaries are small enough and the cavity con
taining the isolated particle of ice is h centimeters above the water table, 
the freezing temperature of the moisture adjacent to the soil cavity is 

h ( — : ) degrees below 0° C. 
\76 X 13.6/ 

Freezing according to case 3 might also occur in the freezing of soils 
when the Beckmann technique is used at relatively high soil moisture 
contents. 

31. Dependence of the Free Energy of a Solvent Δ/ on the Amount of Dissolved 
Material as Measured by Its Freezing-Point Depression ΔΤ 

As will be recalled (eq. 151), the free energy Δ/ of a liquid having an 
osmotic pressure APo is given by 

Δ / = -vAPo, (206) 

where v denotes the specific volume of the pure solvent. Substituting 
equation 199 into 206, we have 

which expresses the free energy Δ/ of a solution with respect to that of the 
pure solvent due to the presence of dissolved material in it, in terms of its 
freezing-point depression AT. For water, let us use the more customary 
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symbol I in place of Ah for the latent heat of transition from one phase to 
the other; we then have 

Δ/ = - Δ Ϊ \ (207) 

Although for concreteness in the derivation we have considered the tran
sition between a water solution and ice, these equations are perfectly 
general and apply to any solution in equilibrium with another phase of 
one of its components in the pure state. 

Equation 189 for the free energy due to hydrostatic pressure resembles 
207 for the free energy due to osmotic pressure. Both express Δ/ in terms 
of the freezing-point depression AT; but 189 contains Δ^ and v, the ex
pansion of the liquid upon freezing and its specific volume respectively, 
whereas 207 contains neither. 

32. Dependence of the Free Energy of a Liquid Surface Possessing a Surface 
Tension σ on Its Area A 

As will be recalled from elementary physics, the surface tension σ of a 
liquid is defined as the tensional force in dynes per unit of length of the 
film measured, the tensional force being measured in a direction normal 
to the unit of length in the film. Thus if we increase the area of the film 
by an amount dA, the work done on the system composed of the vapor-
liquid interface of area A will have been ad A. As will be noticed, surface 
tension can be expressed either as dynes per centimeter or as ergs per 
square centimeter. In either case, the dimensions of surface tension will 
be seen to be the same. 

Now the mechanical work done on a system at constant temperature, 
excluding the work of expansion against a pressure P, has been found to 
equal the increase of the free energy of the system according to equation 
99. Thus the increase in the total free energy of a liquid surface A when its 
area is increased by the amount AA is given by 

AF = σΑΑ . (208) 

Since, however, by convention the free energy Δ/ should refer to the 
energy per gram of the water and since equation 208 as it stands refers to 
the total free energy AF of an element of surface ΔΑ, we must change the 
above equation. If we let r represent the thickness of the surface layer of 
water in which the properties are different from the main body of the 
liquid, then the average of free energy per gram throughout the liquid 
surface layer may be represented by 

Δ/ = ~ , (209) 
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where p represents the average density of the water in the layer of thick
ness r. 

As will be shown (art. 46), the total specific surface energy is always 
greater than the surface tension σ or the total free energy AF per unit 
area as given by equation 208. 

33. Dependence of the Free Energy of a Liquid on Its Surface Tension and 
Its Radius of Curvature 

As will be shown (eq. 272), we have for the vapor pressure p over a 
curved vapor-liquid interface whose radius of curvature is r, where the 
vapor pressure over the free water is p0 and where the surface tension is σ, 
the equation 

In?-= JL?5. (210) 
Po RT r 

From equation 159 we have then for the free energy of the vapor above, 
or of the liquid below the curved vapor-liquid interface 

Δ / = Β Γ 1 η £ - = — (211) 
Vo r 

where v, the specific volume, is unity for water in the c.g.s. system and 
where the sign of r is negative if the vapor-water interface is concave to 
the vapor as is true for soil moisture. If we are dealing with water drop
lets, r is positive, and equation 210 predicts an increase in the vapor 
pressure p over that of the vapor pressure p0 of the datum, which we have 
taken as free, pure water. 

34. Dependence of the Free Energy of the Solvent of a Solution on the Amount of 
Dissolved Material Present 

Raoult's law applies to the solvent in a dilute solution and states that 
its vapor pressure p is proportional to its mol fraction x. That is, 

p = ex, (212) 

where c is the constant of proportionality. We wish to express 212 in 
terms of free energy / rather than of vapor pressure p. 

Consider x and x0) two mol fractions of the solvent. These will deter
mine two different equations of the type 212. Dividing one of these by 
the other and taking the logarithm of both sides, we have 

InE = l n - . (213) 
Po Xo 



126 Hilgardia [Vol. 15, No. 2 

Multiplying both sides of equation 213 by RT, we have (eq. 159 and art. 
22) for the free energy Δ/ of the solvent at one mol fraction x, expressed 
in terms of its value at the other mol fraction x0, the equation 

Af = (f - fo) = RTln^- = RTln- , (214) 

where it is assumed that the behavior of the vapor of the solvent approxi
mates that of the ideal gas. Suppose that p0 refers to the vapor pressure 
of the pure solvent. Then x0 will be the mol fraction of the pure solvent. 
That is, by the usual definition of the mol fraction, x0 = 1 exactly. From 
equation 214 we can then write 

f = fo + RT\nx, (215) 

where /0 now equals the free energy of the free, pure solvent, which by 
our previous conventions is our datum, or zero point of free energy for a 
liquid. Since/o, the free energy of the datum, is a constant, equation 215 
becomes by differentiation, where p and T are held constant, 

(df\ = ^ F 
\dx/pT x 

(216) 

As we shall wish to distinguish between the mol fraction of the solvent 
and of the solute in later discussions, we shall let X\ represent the mol 
fraction of the solvent and x2 that of the solute. Hence in the equation 
above, x will be changed into Xi. Since, presumably, we are dealing with a 
dilute solution, the mol fraction Xi of the solvent must be very close to 
unity. We see this because if πΐγ is the number of mois of the solvent and 
ra2 the number of mois of the solute present in the solution, then the mol 
fraction X\ of the solvent is defined by 

Xl = -J*— (217) 
mi + ra2 

If the concentration of the solution is low, m2 must also be small in 
equation 217. The mol fraction Xi of the solvent is therefore equal ap
proximately to unity in a dilute solution. Such an approximation can be 
made in equation 216 without altering it appreciably; and 216 therefore 
becomes 

RT, (218) 
\dxJpT 

where the subscripts pT have been added merely #s a reminder that the 
temperature and external pressure are to be kept constant during all 
changes of concentration in these solutions. Equation 218 gives the de
pendence of the free energy of the solvent /i on its mol fraction X\. 

file:///dxJpT
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For future use, we shall also wish to express the changes in the free 
energy of the solvent /i in terms of changes in the mol fraction of the 
solute x2. To do this let us first recall that for a binary solution, 

mi 
Xi 

and 

therefore 

Differentiating 219, we find 

Inserting 220 into 218 

mi + m2 

m2 
x2 = ■ — ; 

mi + m2 

x1 + x2=l. (219) 

dx1 = -dx2. (220) 

(v.) _ 
\dx2/pT 

-RT. (221) 

Equations 218 and 221 are merely two other ways of stating Raoult's 
law in terms of free energy rather than vapor pressure. Equation 221 
states, by the way, that as the weight fraction x2 of the solute increases 
(that is, as the solution becomes more concentrated) the free energy fx 
of the solvent decreases. Equation 218, on the other hand, states that as 
the proportion of solvent Xi increases, the escaping tendency, or free 
energy fh of the solvent increases. These two expressions will become 
useful in later considerations. 

For finite changes equation 221 may be written 

Δ/ ι= -RTx2. (222) 

Equation 222 gives the free energy Δ/Ί of the solvent of a solution with 
respect to that of the free, pure solvent, which we have taken as the da
tum or zero point of free energy. As the amount of dissolved material x2 
continues to increase, the free energy of the solvent Δ/Ί continues to 
decrease. 

35. Dependence of the Osmotic Pressure of a Solution on the Amount of Solute 
Present—Van't Hoff's Law of Osmotic Pressure 

As has been shown (eq. 221), the absolute free energy/i of a solvent is 
always decreased by the addition of a solute at constant temperature 
and pressure. By the application of a pressure ΔΡ to the solution, how
ever, the free energy of the solvent can be restored to its value in the 
pure state. The hydrostatic pressure ΔΡ that must be applied to the solu
tion in order to place it in equilibrium with the pure solvent has been de
fined in article 24 as the osmotic pressure ΔΡ0 of the solution. 
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In general, since the absolute free energy /i of the solvent of a solution 
depends both on the hydrostatic pressure and on the mol fraction of so
lute present, and since dfi is a perfect differential (art. 1), we have 

d/i 1 = (dJl) dP + (d-l·) dx2y (223) 
\οΡ/χ*τ \dX2/PT 

where the temperature is assumed to remain constant. Suppose that as 
the mol fraction of solute x2 in the solution is varied, the hydrostatic 
pressure P on the solution is so adjusted as always to keep the absolute 
free energy /i of the solvent the same as that of the free, pure solvent. We 
then have dfi = 0 in equation 223, which now becomes 

(*L·) dP + (^) dx2 = 0 . (224) 
KdP/xtT \dxJPT 

Substituting equations 157 and 221 into 224, we have 
vdP -RTdx2 = 0 , 

or 

^ = ^ . (225) 
dx2 v 

If x2 represents the total mol fraction of all dissolved material of the 
solute present, this equation becomes 

AP-RT a* x2. 
V 

As was mentioned at the beginning of this article, the ΔΡ is equal to the 
osmotic pressure ΔΡ0; and we have, accordingly, 

ΔΡ 0 = ^ χ 2 . (226) 
v 

This is a statement of van't Hoff's law. Equation 226 thus gives the os
motic pressure AP0 of a dilute solution in terms of the amount of solute 
present, expressed in terms of its mol fraction #2. 

36. Dependence of the Vapor Pressure of the Solvent of a Solution on the 
Amount of Dissolved Material Present 

Let us assume that we start out with a free, pure solvent whose vapor 
pressure is p0. If we add an amount of dissolved material whose value is 
given by the mol fraction x2) the vapor pressure of the solvent will be 
lowered to p. By equation 159 and article 22, the free energy of the 
solvent of the solution expressed in terms of the vapor pressures is given 
by v 

Α/Ί = ΑΓ1η2 . ; (227) 
Po 

file:///dxJPT
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and in terms of the mol fraction of dissolved material x2 according to 
equation 222 it is 

Δ / ι= -RTx2. (228) 

Equating 227 and 228 and solving for the vapor pressure of the solvent of 
the solution, we have for dilute solutions 

V = Vo e"12 (229) 

showing the dependence of the vapor pressure p of the solvent of a dilute 
solution on the mol fraction of solute present x2 when the vapor pressure 
of the pure solvent is p0. 

l/apor pressure = p-c/p 

l/opor pressure *p 

or pressc/re of free 
water surface =p0 

Fig. 17.—Column of vapor in an 
attractive force field. 

37. Dependence of Atmospheric Pressure on Height 

Consider a vertical column of air of unit cross-sectional area and un
limited height in the earth's gravitational field. We wish to find the re
lation between the height y and the gas pressure p in the chamber of 
figure 17. Sometimes this relation is called Laplace's law of atmospheric 
pressure. I t applies equally well, however, to the variation of vapor pres
sure with height above a free liquid surface, as, for example, water, when 
the whole system has come to equilibrium at the same temperature, in a 
uniform gravitational field. We shall use the following notation: 

p = pressure in dynes per square centimeter at a distance y above the 
reference point, for example, the surface of the earth or a free 
water surface 

v = volume of the air 
p = density of air in grams per cubic centimeter 
g = 98Ô dynes per gram, the gravitational constant 
R = gas constant per gram defined by the well-known gas law, 

pv = RT 
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Transforming, we have 

and finally 
V 

P 

= ρΚΊ 

V 
RT 

(230) 

The pressure at A is greater than that at B by an amount equal to the 
weight of the section dy of the column of gas or vapor pgdy. That is, 
in going from A to B, the pressure changes by the amount —dp. This is 
our basic assumption in deriving Laplace's pressure law and is quanti-
tatively stated by -dp = Pgdy. (231) 

Eliminating p in equation 231 by means of equation 230 and rearranging, 
we have 

p RT 

Integrating from y — 0 at the surface of the free water, where p = po, to 
y = y, where p = p, we have 

I v 
\np 

RT* 

lilt = -J-y. (232) 
Po RTy 

Thus if we know the vapor pressure p0 at the free-water surface where 
y = 0, equation 232 determines the pressure p at a height y. Transform
ing 232 into a form that expresses p explicitly in terms of y and T, we 
have 

which is a statement of Laplace's law of atmospheric pressure. 

38. Dependence of the Freezing Point of a Dilute Solution on the Mol Fraction 
of Solute Present 

The free energy of the solvent of a dilute solution expressed in terms of 
the mol fraction of solute present x2 is (eq. 222) 

Δ/χ= -RTx2; (234) 

and in terms of the change in freezing point of the solution AT, it is 
(eq. 207) 

lAT 
Ah = ~ . (235) 
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Equating 234 to 235, we have 

AT = x2 

showing that the freezing point of the solution is lowered by an amount 
— AT by the mol fraction of dissolved material x2. 

39. A Datum for Free Energy and the Dependence of the Latter on Vapor Pressure 

As will later be evident (art. 73), the absolute free energy / of soil 
moisture is not zero except at 0° A. Generally, however, it is convenient 
to choose a body of pure water outside the influence of any adsorptive 
field as the zero point of reference or datum with respect to which the free 
energy of other bodies of water are measured. Thus any water under the 
conditions corresponding to the datum is said to have its free energy Δ/ 
equal to zero although its absolute free energy / is by no means equal to 
zero. 

Since we are interested in free-energy changes occurring at constant 
temperature, the temperature of the datum is usually taken to be the 
same as that of the soil moisture. Since the moisture is situated in a gravi
tational field, it has free energy due to its position. The free energy of 
any soil moisture due to its presence in the gravitational field is measured 
with respect to the level of the datum. Thus when the soil moisture is 
situated at the same level as the datum, its free energy due to its position 
in the gravitational field is zero. 

Under usual conditions the atmosphere exerts on the soil moisture a 
pressure either greater or less than 1 standard atmosphere. This pressure 
contributes to the total free energy of the soil moisture (art. 25). Since 
this pressure, being exerted on both the datum and the unknown, is com
mon to both, it is usually neglected. Thus we speak of the freezing point 
of pure water as 0° C with the understanding that it is under a pressure of 
1 atmosphere. If we could reduce the pressure to zero, we should actually 
have a freezing point of +0.0073° C (art. 30 and eq. 378). All pressures on 
soil moisture are therefore measured with respect to the pressure on the 
datum. If, for example, the atmospheric pressure on the datum is 0.9 
atmospheres and that on the soil moisture 1.1 atmospheres, the free 
energy Δ/ on the soil moisture due to hydrostatic pressure will be taken 
as that produced by only 0.2 of an atmosphere. 

Thus we shall always associate arbitrarily the following conditions with 
our datum, or zero point, for the free energy of soil moisture : 

1. It will usually have the same temperature as the water or soil 
moisture whose free energy we wish to determine. 
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2. Free energy of the datum due to its position in the gravitational 
field will be arbitrarily taken as zero, and the free energy of all other 
bodies due to their presence in a gravitational field will be measured 
with respect to the datum according to article 26. 

3. If, as is usually the case, there is a pressure exerted on the datum, 
this value will be arbitrarily taken as the zero point of pressure in cal
culating the free energy due to pressure. 

4. The datum is assumed to be free of all extraneous fields, such as 
adsorptive force fields surrounding soil particles, except gravitation, 
but is taken to include the usual surface forces next to a free flat water 
surface. 

Under these conditions, water which is taken as the datum will for 
brevity be called merely "free water." 

It frequently happens that we wish to determine the free energy of a 
substance in a particular state, such as solid or liquid, yet the conditions 
determining its free energy in the particular phase are so complicated that 
we cannot calculate its free energy directly. For example, the free energy 
of liquid soil moisture is, in general, determined by the amount of dis
solved material, by the hydrostatic pressure in the soil moisture, and by 
the strength and distribution of the adsorptive force field that surrounds 
the elementary soil particles and acts on the soil moisture. Often it is 
impossible to calculate directly the contribution of each of these factors 
to the total free energy and, consequently, to calculate the total free 
energy of the soil moisture. 

One way out of this difficulty is to use the results of article 22. We there 
found that when two or more phases of the same substance are in equi
librium with each other, then the specific free energies of all the phases are 
alike. Consequently, if we can find another phase whose free energy can 
be more easily calculated, and which is in equilibrium with the first 
phase, we can take the free energy of the second to be also that of the first. 
If, for example, we wish to ascertain the free energy of the soil moisture in 
a soil at a particular soil-moisture content, we have merely to determine 
the free energy of the vapor in equilibrium with it. 

The total specific free energy Δ/ of the vapor, assuming that it be
haves as an ideal gas, is given (eq. 159) by 

Δ / = Α Γ 1 η ? - , (236) 
Po 

where p denotes the vapor pressure of the soil moisture and p0 denotes the 
vapor pressure of our datum, or zero point, which for soil moisture we 
usually take as free, pure water at the same temperature as the vapor 
whose free energy we wish to determine. Thus, from the simple measure-
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ments of the vapor pressures, we can calculate by equation 236 the free 
energy of a complicated system of soil moisture, measured with respect to 
the free energy of free, pure water. This fact further emphasizes the 
general usefulness of the free-energy function in dealing with the energy 
states of soil moisture. 

40. Relation between the Hydrostatic Pressure and Osmotic Pressure of a Pure 
Solvent and a Solution When the Two Are at Equilibrium 

Suppose we have pure water in equilibriumwith a soil solution through 
a semipermeable membrane. Because of the presence of dissolved ma
terial in the soil solution, its vapor pressure as well as its free energy will 

Jo/7 so/υ) 

P/jfon —-»*. 

>Sem/permeo6/e 
memóreme 

'/on H Pure wo fe» 

f 
A 

m 

r 

-Δ'/> 

J W 
Fig. 18.—Equilibrium of a soil solution 

with pure water through a semipermeable 
membrane. 

be less than that of the free, pure water. If the proper tension could be 
placed on the pure water, its vapor pressure as well as free energy would 
become equal to that of the soil solution. For example, a tension t might 
be placed upon the piston in figure 18, such that the vapor pressure and 
free energy of the pure water would be reduced to those of the soil solu
tion. 

In other words, the pure water on the side W under a hydrostatic pres
sure — ΔΡ can be in equilibrium through a semipermeable membrane 
with a solution on the side S having an osmotic pressure + Δ Ρ . For this 
reason, past measurements of what has been called the "capillary poten
tial" of soil moisture, which depend upon balancing a column of pure 
water under tension against the pull of the soil moisture, are open to 
question. Sometimes, for example, a porous bulb connected to a manom
eter is immersed in a moist soil whose capillary potential is to be meas
ured. The tension recorded by the manometer is then taken as the capil
lary potential of the soil moisture, which always contains varying amounts 
of dissolved material. The concentration of solutes inside the bulb at the 
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time of measurement is less than the concentration of the soil solution. 
One wonders whether the tension usually recorded is not, therefore, a 
combination of the true capillary potential plus the osmotic potential, 
rather than just the capillary potential alone. Only when the water in 
the porous bulb immersed in the moist soil and that in the manometer 
contain the same concentration of dissolved material as the soil solution 
could the tension indicated by the manometer be considered an accurate 
measure of the so-called capillary potential in the soil. The establishment 
of this equality of concentration takes a long time since diffusion of 
solutes through porous material is extremely slow. The discrepancy be
tween the true capillary potential and what is actually measured de
creases as the salinity of the soil solution decreases. 

Let us now determine quantitatively the relation between the osmotic 
pressure AP0 of a solution in equilibrium with a body of pure water 
under a hydrostatic pressure APP. The hydrostatic pressure may be nega
tive, in which case it is often called a "tension." 

The free energy Af0 of a solution measured with respect to free, pure 
water taken as the datum is (eq. 151) 

Δ/ο = -vAPo 

where v is the specific volume of the solvent. The free energy due to 
hydrostatic pressure AfP, measured with respect to the same reference 
point or datum as for Δ/0, of a body of pure water under hydrostatic 
pressure APP is (eq. 156) 

Afp = VAPP. 

At equilibrium the free energies of the two bodies must be equal (art. 
22) ; and we have 

àfp = Afo ; 
therefore 

APP= -APo. (237) 

Now, a minus APP is to be interpreted as a tension. When, therefore, pure 
water is in equilibrium with a free solution through a semipermeable 
membrane, the osmotic pressure of the solution APo is numerically equal 
to the tension ( — APp) in the pure water. 

41. Dependence of the Vapor Pressure of a Liquid on the Hydrostatic 
Pressure in the Liquid 

Frequently the vapor pressure of a liquid has been considered with the 
liquid in contact with the vapor, so that the hydrostatic pressure in the 
liquid is just equal to the vapor pressure. A solid or a liquid can, however, 
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exist under a hydrostatic pressure very different from its own vapor pres
sure. Water, for example, may be held in capillaries under a considerable 
negative hydrostatic pressure (that is, under tension) ; yet its vapor pres
sure is a finite positive quantity. Also water and its vapor may be en
closed in a chamber containing considerable quantities of some inert in
soluble gas. The total hydrostatic pressure in 
the water is then the combined sum of its own 
vapor pressure and that of the inert gas. Cer
tainly it would seem that the normal vapor 
pressure of the liquid wOuld be changed by 
placing the liquid under a state of either tension 
or pressure. By the "normal vapor pressure of 
a liquid'' we mean its value when we consider 
a large, free, isolated body of the liquid and its 
vapor, unaffected by extraneous forces. 

We now wish to determine quantitatively 
how a change in vapor pressure Ap depends on 
the change of the hydrostatic pressure AP in 
the liquid. To fix our ideas, let us consider figure 
19. Water at the point A in the capillary tube 
is under a tension or negative hydrostatic 
pressure determined by the height h of the 
meniscus above the water level in C. In equilib
rium with the water at A is the water vapor 
enclosed in the chamber V. We wish to find how 
the vapor pressure in V is modified by changing 
the tension on the water at A—that is, by in
creasing or decreasing the length h of the capil
lary column. 

Suppose the system comes to equilibrium at constant temperature. 
Then the vapor pressure p will differ from the hydrostatic pressure P at A 
except in the limit where h equals zero. If the hydrostatic pressure of the 
liquid at A is decreased by increasing h, the escaping tendency of the 
liquid is also decreased. To re-establish equilibrium, therefore, the escap
ing tendency from the vapor phase must also be decreased by a like 
amount until its escaping tendency is the same as that from the liquid. 

The absolute free energy fL of the liquid and fv of the vapor are exact 
measures of their respective escaping tendencies. If the system is origi
nally in equilibrium, then/ L = fv (art. 22). If the hydrostatic pressure P 
is changed by an amount AP and if the system is again allowed to come 
to equilibrium, the vapor pressure p will change by an amount Δρ, and 
the free energies will spontaneously adjust themselves so that 

Fig. 19.—Equilibrium 
of a vapor with the li
quid through a curved 
vapor-liquid interface. 

Afv = Δ/χ,. 
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Now (eq. 156) A r 

and likewise A . A ~ 
Δ/L = ^χ,ΔΡ, 

where vv and #L are the specific volumes of the vapor and liquid respec
tively. Since the new state is also an equilibrium state, we may write in 
differential form 

vv dp = VL dP 
or 

^ = ^ . (238) 
dP w 

Since the changes of pressure have been assumed to take place so that 
the initial and final temperatures are the same, we should write for 238 

\dP/T w ' (239) 

The fraction — is, in general, very small. For example, if we consider 
Vv 

saturated water vapor and water at 0° C according to the critical tables, 
VL 

— = 5 X 10~~6. Thus if the hydrostatic pressure on water at 0° C were 
Vv 
changed so that ΔΡ = 20 atmospheres, equation 239 shows that the 
vapor pressure would change only by the amount Δρ = 10~4 atmos
pheres, approximately. We thus see that the effect of the hydrostatic 
pressure exerted by the vapor of a liquid on the liquid itself is negligible. 

Equation 239 holds not only when the hydrostatic pressure is positive 
but also when it is negative. If, as in the original case, the liquid is placed 
under tension, dP is negative. This means that the change in vapor pres
sure dp must also be negative. Thus, increases of hydrostatic pressure dP 
cause increases of the vapor pressure dp, while decreases of hydrostatic 
pressure ( — dP) cause decreases in the vapor pressure ( — dp). As will be 
recalled, in studies of soil moisture the term "hydrostatic pressure" is not 
confined to positive pressures, as in engineering, but includes negative 
pressures also. 

Suppose we wished to deal with the effect of very great changes of 
hydrostatic pressure ΔΡ on the changes of vapor pressure Ap or wished to 
determine the relation between p and P very accurately. Then, if we are 
dealing with water, for example, we may use Callendar's empirical equa
tion of state for water vapor, which is 

vy = 4 .548- - 26.3 (—\* + 1.0 , (240) 
P \ T / 
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where p is the vapor pressure in atmospheres, T the absolute tempera
ture, and vv the specific volume of the vapor. For liquid water we have, 
likewise, the empirical equation 

vL = 1.002(1 - 4.0 X 10"6P) (241) 

where vL is the specific volume of the liquid water and P is the hydro
static pressure. 

Of course equation 239 will give immediately the relation between 
changes of hydrostatic pressure ΔΡ and vapor pressure Δρ, especially 
when the changes are small. I t may be desirable, however, to deal with 
great changes of pressure—for example, several hundred atmospheres. In 
such a case one may modify the approach as follows by using the two 
equations 240 and 241 together with 239. We then have 

4.548 - - 26.3 Í — V + 1.0 > dp = 1.002(1 - 4.0 X 10"5 P)dP. (242) 

We shall assume that initially the vapor pressure is p0 and that this 
causes a hydrostatic pressure, also p0, in the liquid. Finally, the hydro
static pressure in the liquid is raised to an amount P, which is very great 
with respect to p0. We can therefore assume that the hydrostatic pressure 
finally is merely P . We shall then wish to calculate the resulting vapor 
pressure p caused by the hydrostatic pressure P according to equation 
242 above. Integrating 242 above and substituting the limits, we have 

4.5487Ίη^- + Γ ΐ - 2 6 . 3 ^ — ) T 1 (p-p 0 ) = 1.002P-2.004X10-5P2 

Po L V T / J ( 2 4 3 ) 

or, changing to common logarithms, we have 

10.46riog H. + fl—26.3 ( — JT1 (p-po) = 1.002P-2.004X10-<iP2. 
PO L V r / J (244 ) 

Equation 244 serves to determine the vapor pressure of water p for any 
hydrostatic pressure P , the normal vapor pressure p0 oí free water at the 
temperature T of course being known. For example, a solution of the 
equation above for P = 300 atmospheres and a temperature of 20° C 
gives an increase of the vapor pressure PJ above its normal value over a 
free water surface, of only 20 per cent. 

We may considerably simplify equation 243 by measuring p with re
spect to the normal vapor pressure p0) while sacrificing some accuracy. 
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Let us therefore express 243 in terms of Ap rather than p and p0. Let us 
place 

V = Vo + Ap - (245) 

The logarithmic term of equation 243 then becomes 

1η/Ρο + ΔΑ = 1ηΛ + Μ (246) 

The general series expansion of this logarithm, as obtained from any 
book of mathematical formulas, is 

/v»2 /y»3 /y»4 

In (1 + x) = * - - + - - -
2 3 4 

or 

V pJ \vJ 2\po/ 3\po/ 

As previously indicated, even at such great hydrostatic pressures as 300 
atmospheres Ap is only 20 per cent of p0. We are, therefore, in general, 
quite justified in dropping all but the first term in the series expansion 
above and accordingly have 

l n ( l + V ) = ^ . (247) 
V Po I Po 

Introducing equation 247 into 243, recalling that {p — po) equals Ap, 
and solving for Ap we have 

AP = i-0Q2(P - 2 x ιο-φ») _ ( 2 4 8 ) 

4.548 T 
Vo b-ΗΨη 

It is clear that the hydrostatic pressure P is applied to the liquid only, 
and not to the vapor. 

This equation gives the increase in vapor pressure of water Δρ, in 
atmospheres, corresponding to the application of a hydrostatic pressure 
of P atmospheres, the normal vapor pressure p0 of free water at the tem
perature T of course being known. It shows the same relation between 
hydrostatic pressure and vapor pressure as the more general equation 
239. Equation 248 is more useful for water, however, because the two 
specific volumes have been eliminated by expressing them in terms of the 
temperature and of the normal vapor pressure of water. Also, equation 
248 is more accurate because it takes into account the variation in the 
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specific volumes with change of hydrostatic pressure. For great hydro
static pressures it should be used; but for those usually encountered, 
equation 239 is probably preferable. 

Assuming that P = 20 atmospheres and that T = 27° C, which makes 
Po = 0.035 atmospheres, we have 

= 1.002(20 - 2 X IP"5 X 202) = 1.002X20 
V " 4.548 X 300 Π _ /373\γ°1 " 89,600 [-«©Ί 0.035 

= 0.00051 atmospheres. 

By the application, therefore, of a hydrostatic pressure of 20 atmospheres 
to the water at 27° C, the vapor pressure of the water is increased from 
0.035 to approximately 0.03551 atmospheres. 

If, on the other hand, a tension of 20 atmospheres is placed on the 
water, the vapor pressure of the water will be decreased by 0.00051 at
mospheres, so that the relative humidity will become 98.5 per cent with 
respect to a free water surface at the same temperature. This humidity 
is close to that corresponding to the permanent wilting percentage. 

Let us now consider several illustrations of the general usefulness and 
wide applicability of equation 239. Let us first develop the relation be
tween the free energy Δ/V of a vapor and its vapor pressure p as pre
viously given (eq. 159). Equation 239 may be changed to 

VLdP = wdp. (249) 

The specific volume of a liquid VL is in general approximately constant 
with change of pressure, but the specific volume vv of a vapor changes 
and may be assumed to follow approximately the ideal gas law 

pvv = RT. 
Equation 249 becomes then 

vLdP = RT^. (250) 
V 

Consider the change in going from one equilibrium state A to another 
equilibrium state B. Integrating equation 250 between the limits of 
hydrostatic pressure PA and PB and the vapor pressure between the 
limits pA and pB, and recalling that vLAP (eq. 156) gives the change in 
free energy Δ/of a liquid due to a change in hydrostatic pressure, we have 

VL(PB - PA) = VL ΔΡ = Δ/ = RT In Έ* . (251) 
PA 
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As the liquid and its vapor are assumed to be in equilibrium, their free 

energies must be the same (art. 22). Thus Δ/ = RT In — gives the free 
VA 

energy of both a liquid or a vapor in the state B with respect to that in 
the state A, expressed in terms of the vapor pressure. This agrees 
with article 39. 

Going further with equation 251, we can derive Laplace's law of at
mospheric pressure, which gives the variation in pressure p of a gas with 

fapor pressure p 

Hydros fa he pressure 
(neyaf/re) - ΔΡ-

y 

Vapor pressure - p 

^/iudrosfof/c pressure = O 

Fig. 20.—Equilibrium between vapor and 
liquid at different heights above a free wa
ter surface. 

altitude y. The gas is to be situated in a uniform attractive force field of 
amount g dynes per gram. The law to be derived is 

gy 
RT 

(252) 
PA = ΡΒβ ""· 

where PB is the vapor pressure at the height y = 0, PA that at the height 
y; and where R is the gas constant per gram. From equation 251 we have 

Δ/ = U - JB = vLAP = Α Γ Ι η ^ . 
VB 

(253) 

Consider figure 20. The chamber C encloses a long capillary tube of 
length y dipping into the free, pure water in the vessel V. Equilibrium 
has been established so that the vapor and the water are in equilibrium 
at all heights. In particular, the water under the meniscus A at the height 
y is in equilibrium with the vapor there. Also at the bottom B, the water 
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in the dish is in equilibrium with the vapor. Applying equation 253, we 
have for the hydrostatic pressure ΔΡ, just below the meniscus at the 
height?/, pT „ 

Ap = ÍLLln^, (254) 
VL VB 

The hydrostatic pressure ΔΡ just below A, with reference to that at B 
taken as zero, is equal to 

Δ Ρ = -ypg (255) 

(that is, the weight of a column of liquid of unit cross section, height y 
and density p). Combining equations 254 and 255, we have 

RT, pA 
— m — = — y P Q · 
vL VB y y 

Since 
1 

VL 
then 

VB RT 
or 

PA = VBe RT, 

which is recognized to be the same as equation 233 above and is therefore 
Laplace's law for the variation of vapor pressure with height in a uniform 
attractive field of force. 

The general usefulness and applicability of equation 239 can be fur
ther illustrated by using it as the basis for deriving the relation between 
the osmotic pressure of a solution and its vapor pressure. As will be re
called (art. 24), the osmotic pressure is defined as the pressure that must 
be applied to a solution to place it in equilibrium with the pure solvent 
through a semipermeable membrane. From equation 239 we have 

^ = ÏE (256) 
dp vL 

where now P will represent the osmotic pressure (that is, the hydrostatic 
pressure that must be applied to the solution to establish equilibrium 
with the pure solvent) and where p represents its associated vapor pres
sure. Equation 256 may be placed in the following form with the aid of 
the ideal gas law (art. 59) : 

dp = RT dp ( 2 5 7 ) 

vL pA 
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where vL is practically constant. Choosing the upper limit of integration 
of dP so that it is equal to the osmotic pressure APo and consequently so 
that the vapor pressure of the solution has been raised from the normal 
value p to that of the pure solvent p0, we have 

AP0=^\nL\ (258) 
VL V 

As this equation shows, the osmotic pressure APo is always positive, since 
Po of the pure solvent is always greater than p of the solution. 

The free energy of a solution due to the presence of dissolved material 
may be expressed immediately in terms of its vapor pressure as follows, 
after recalling equation 151 : 

Afo = -vLAP0 = -RT\n^. (259) 
V 

As this equation shows, the free energy Afo of a solution due to the pres-
sence of dissolved material is always negative. 

42. Dependence of the Hydrostatic Pressure in a Liquid on Its Surface Tension and 
Its Radius of Curvature 

As will be recalled from equation 156, the change in the free energy 
Δ/ of a liquid caused by its being placed under a hydrostatic pressure 
ΔΡ is given by 

Δ/ = vAP. 

Equation 211 expresses the same Δ/in terms of the radius of curvature r 
and surface tension σ. Combining both, we have 

AP = - . (260) 
r 

If the vapor-water interface is concave to the vapor, r is negative, and 
equation 260 predicts a state of tension in the water. This corresponds to 
the conditions in unsaturated soils and capillary tubes. If, on the other 
hand, the vapor-water interface is convex to the vapor, r is positive, and 
260 predicts a state of compression in the water. This corresponds to the 
conditions found in droplets of liquid. 

43. Effect of Surface Tension and Radius of Curvature of the Air-Water Interface 
on the Vapor Pressure of Soil Moisture 

We wish to derive the expression 
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for the vapor pressure p of the vapor over a curved vapor-water inter
face, expressed in terms of the surface tension of the water σ, the radius 
of curvature r of the vapor-water interface, and the vapor pressure over a 
free, flat water surface p0. The terms R, T, and v have their usual mean
ings; and the radius of curvature r of the curved vapor-water interface is 
taken as positive when the interface is convex, towards the vapor phase. 

In our present case, since the surface is concave towards the vapor 

Curi/ed wafer surface 
tv/f/?//7 a conicσ/ car/fy. 
f/yure ύ yreat/y mayn/f/ed. 

Fig. 21.—Flat water surface and a curved water surface in an enclosed chamber. 

phase, we shall always substitute a negative value for r. In the succeed
ing development we shall also make use of the following terms : 

Θ = Y2 the angle of the cone of water; 
h = height of the zone forming the curved water surface; 

A = 2 π rh = area of zone forming the curved vapor-water interface ; 
/, /o = specific free energy of the vapor over the curved and free water 

surface, respectively. 

To fix our ideas, consider figure 21, representing a wedge or cone of 
water whose vapor-water interface has a radius of curvature equal to r, 
and a vessel of free, pure water under its own vapor pressure, which we 
shall take to be the datum, or zero point, for free energy. The vapor 
pressure p0 over the free, flat water surface at the temperature T will be 
assumed to have reached equilibrium with the free water surface. Also 
the vapor pressure p over the curved water surface at the temperature T 
will be assumed to have reached equilibrium with the liquid water below 
the curved vapor-water interface. The two systems in the chamber will 
of course not be in equilibrium with each other. It follows (art. 22) that 
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the free energy/0 of the vapor at B equals the free energy of the water at 
W; and the free energy / of the vapor at D equals that of the water at C. 
Hence the difference in the free energy between the vapor at D and B 
equals the difference in free energy between the liquids at C and W. In 
deriving equation 261 we shall therefore equate the difference or change 
in free energy between C and W to that between D and B. 

The change in the free energy when dm grams of vapor are carried 
from B to D is (eq. 159) 

(/ -fo)dm = RT In ( V- ] dm. (262) 
\po/ 

Let us express dm in terms of the change in the radius of curvature dr of 
the interface. From any handbook of geometrical formulas giving the 
area of the zone of a sphere, we have for the area of the vapor-water 
interface 

A = 2*rh. (263) 

Also from the geometry of the figure, we have 

• Û r — h 
sin Θ = ; 

r 
that is, 

h = r(l - s i n o ) . (264) 
Inserting equation 264 into 263, we have 

A = 2ΤΓΤ·2(1 - s i n ö ) . (265) 

If dm grams of water are added to the curved surface of area A, a film of 
water of thickness dr is added to the curved surface. This corresponds to 
a volume 

Adr = 2 7rr2(l - sin 0)dr; 

and remembering that v is the specific volume, we have 

dm = é±=
2-r2V-s™Vdr. (266) 

V V 

Inserting equation 266 into 262, we have, for the total amount of free 
energy required to transfer dm grams of vapor from B to D, 

if - fo)dm = i 1 In— dr. (267) 
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Now let us also calculate the free energy required to carry dm grams of 
liquid from W to C. This, of course, equals (/ — /0) dm (art. 22). To do 
this, let us recall the following fundamental relation between free energy 
and surface tension σ: the increase in the total free energy of a vapor-
liquid interface when its surface area is increased by the amount dA is 
equal to ad A (eq. 208). Also let us recall the following fact: the increase 
in the free energy of a gram of water when the hydrostatic pressure on 
the water is changed from P0 to P is given by v(P — P0) (eq. 156). Thus 
in carrying water from W to C, two forms of free energy are involved. One 
is due to the increase of a surface area having a surface tension σ, and the 
other is due to the change of hydrostatic pressure. The first form of free 
energy is given by 

σάΑ = σ 4 π r( l - sin 0)dr (268) 

after differentiating A of equation 265 to get dA. The second form of free 
energy may be evaluated by carrying dm grams of water from W, where 
the hydrostatic pressure is p0 (produced by the vapor over W)> to C, 
where the hydrostatic pressure is p (produced by the vapor pressure p 
over C). This gives 

v(p - pQ)dm = v(p - po) 2 7 r r 2 ( 1 ~ S m ^ dr, (269) 
v 

making use of equations 156 and 266. The total change of free energy 
(/ ~~ /o) dm in carrying dm grams of water from W to C is therefore the 
sum of equations 268 and 269, or 

(J - fo)dm = 4ττ r σ(1 - sin 6)dr + 2π r2(p - p0) (1 - sin 0)dr. (270) 

Equating 267 to 270 and rearranging, we have 

In (^\ = 2συ + ^ "" Vo)v 

pj r RT RT 
or 

Po RTLr J 

Since the difference in vapor pressures (p — po) is ordinarily so small with 

respect to — , it is ordinarily neglected ; and we obtain the common form 
r 

»o \RTj r 
(272) 
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Where r is negative, the logarithm must also be negative. We see, there
fore, that the vapor pressure p over a concave surface is less than the 
vapor pressure p0 over a free water surface. Equation 272 can also imme
diately be placed in the form 

2v σ 

p = PoQRT r . 

Obviously, 272 also gives the vapor pressure outside of convex sur
faces. In this case, r will be positive, because of our convention at the 
beginning as to the sign of r. In practice this might correspond to the de
termination of the vapor pressure in a closed vessel containing droplets 
of water of radius r. Equation 272 shows quantitatively how much greater 
the vapor pressure p, in equilibrium with the droplets, is than the vapor 
pressure p0 over a free water surface. The importance of taking the proper 
sign for the radius of curvature is thus emphasized. 

44. Comparison of Free Energy with Other Thermodynamic Functions Having 
Properties Similar to Free Energy 

We shall begin by comparing the absolute free energy / with the ther
modynamic function called "maximum work," which we shall symbolize 
by the letter a. Free energy is defined by 

f=h-Ts = e- Ts + Pv. (273) 

Combining equations 48 and 70, we have 

Tds = de + dw (274) 

where dw represents the total work done by the system, including any 
expansion against an external pressure P. Combining equations 274 and 
273 after differentiation, we get 

-df = sdT + dw - P dv - vdP. 

If the temperature T is constant, this reduces to 

-df=dw - Pdv -vdP ; (275) 

and if the pressure is also constant 

* -df=dw-Pdv. (276) 

Let us, as in article 21, represent by dwm all the work done by the system 
(this may include electrical and light energy) except any expansion 
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against an external pressure P . We then have dwm = dw — P dv, and 
therefore equation 276 becomes 

-df=dwm. (277) 

That is, in any transformation of a system taking place at constant tem
perature and pressure, the decrease in the free energy of the system equals 
all the work done by the system such as that due to electrical- or light-
energy changes; but it does not include work of expansion against the 
pressure P. When we are dealing with transformations of a substance 
from one phase to another at a constant temperature and pressure, the 
only mechanical work ordinarily done is that of expansion or contraction 
against the pressure P. Now dwm does not include this work; hence, under 
these conditions, dwm = 0, and therefore 

-df=0 (278) 

in any isothermal transformation of a substance at constant pressure 
from one phase to another. That is (art. 22), all phases of a substance at 
the same temperature and pressure have the same free energy. This fact is 
one chief justification for introducing the free-energy function in the 
study of soil moisture. 

We shall find that the maximum-work function, a, is rather similar to / 
above. The main difference is that during any transformation of a sub
stance from one phase to another at constant temperature and pressure, 
the change, da, is not zero, but equals the work of expansion or contrac
tion against the external pressure P. Consequently, different phases of 
the same substance in equilibrium with each other do not have the same 
value for the maximum work a, as is true of the free energy /. In those 
cases where we wish to know the total work required to transform one 
phase of a substance into another, both in equilibrium with each other, 
we find that we should use the maximum-work function a. 

The maximum work a is defined by 

a = e - Ts . (279) 

Differentiating, we have 

-da = -de + T ds + s dT, 

and substituting for T ds from equation 274, 

— da = sdT + dw. (280) 
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If the temperature remains constant during the transformation, 

-da = dw. (281) 

That is, during any transformation of a system at constant temperature, 
the decrease of the maximum work (—da) equals all the work dw done by 
the system, including any expansion against an external pressure P. 
Now, as before, dw = dwm + Pdv; and we have 

— da = dwm + P dv. 

If we are considering isothermal transformations of a substance from one 
phase to another, dwm is ordinarily zero, as before, since there are no light-
or electrical-energy changes accompanying phase transitions. Conse
quently, 

-da = Pdv. (282) 

As will be noticed, our so-called system is, in this case, 1 gram of the sub
stance in one phase being transformed into 1 gram of another phase—for 
example, 1 gram of ice being transformed isothermally into 1 gram of 
water. Equation 282 shows, therefore, that two phases existing in equi
librium with each other do not have the same value for the maximum 
work a; their values differ by the work of expansion or contraction S P dv 
against the external pressure P . The maximum-work function a, is there
fore of great utility when we wish to calculate the total mechanical work 
required to transform isothermally a substance from one phase to another 
as, for example, in the transition of water from the liquid to the vapor 
state. The free-energy function / , on the other hand, has the advantage 
that when several phases are in equilibrium, they all have the same free 
energy; and the determination of the free energy in any one phase, such 
as the vapor phase, immediately gives the value of / for all the others. 

Another advantage in using the free-energy function when dealing with 
such a substance as soil moisture is that free energy explicitly gives the 
amount of energy stored in the water because of hydrostatic pressure. 
This of course is not true for the maximum-work function. Since 

dwm = dw — Pdv, 

we have, from equation 275, 

— df = dwm — vdP . 

If the system performs no work other than that of expansion, dwm will 
equal zero. Hence, 

df = vdP ; 



Feb. 1943] Edlefsen-Anderson : Thermodynamics of Soil Moisture 149 

and therefore an increase dP of the hydrostatic pressure in water, for 
example, will cause an increase in the free energy of the water equal to 
vdP, which is in agreement with equation 156. 

A word of caution is perhaps appropriate here regarding the divergent 
terminology used by various authors in connection with such functions 
as free energy and maximum work. 

Much confusion seems to have arisen since the thermodynamic func
t ions/and a (or F and A, if one is dealing with 1 mol rather than 1 gram 
of the substance) were first proposed. According to Gibbs, what we now 
call the "free energy F" was originally called, by him, "thermodynamic 
potential" and sympolized by f. Many European and some American 
physicists still use this terminology. Others, such as Haas, have used the 
symbol φ. On the other hand, what we have here called the "maximum 
work A" was originally called by Helmholtz the "free energy" and by 
Gibbs in 1875 the "characteristic function ψ." Most European and a few 
American physicists still use the symbol ψ; but Haas, for example, still 
uses the letter F, calling it the "free energy" in agreement with the ori
ginal work of Helmholtz. Since the original work by Helmholtz and 
Gibbs, some confusion has arisen among those working with the two 
functions: when supposedly dealing with what we now call the "maxî1 

mum-work function," they have actually been dealing with what we now 
call the "free-energy function." This confusion probably arose because, 
in many calculations, the numerical values of AF and ΔΑ will be found 
to be identical or to differ very little. Since in practice, generally, the 
function 

F = H - TS 

is more important than the function 

A = E - TS 

the term "free energy" is now generally no longer associated with the 
latter function. Lewis and Randall use the terms "free energy F" and 
"maximum work A," and we have followed this same terminology. They 
use the large letters F and A, because they are dealing with molal quan
tities; we use, however, the small letters / and a, since in studying soil 
moisture we always deal with specific quantities of the substance. 

Still other functions similar to the free-energy function F have been 
used. Massieu in 1869 used, for deducing the thermodynamic properties 
of a fluid, functions that are actually the negative of our present functions 

F and A divided by T; that is, Í J and Í J. 
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Planck, in his treatise on thermodynamics, does the same, finding that 

(which is what he calls the "characteristic function' ' ψ) is a much (-f) 
more convenient function than F itself for dealing in a generalized way 
with systems containing a number of independent constituents, when one 
wishes to study the dependency of the equilibrium upon the temperature, 
pressure, and masses of the independent constituents of the system. In 
agreement with the pioneer work by Helmholtz, Planck uses the term 
"free energy/' symbolized by F, to refer to the function we now call the 
"maximum work A." 

45. Thomson, or Gibbs-Helmholtz, Equation 

We can now derive one of the more fundamental equations of thermo
dynamics, which was discovered by Thomson in 1855. Later Gibbs, 
Helmholtz, van't Hoff, Nernst, and many others made numerous appli
cations. Often, therefore, it is called the "Gibbs-Helmholtz equation." 
The maximum work a has been defined (eq. 279) 

a = e - Ts. 

From equations 280 and 93 we have 

da = —sdT — dw — —sdT — Pdv — dwm 

so that if no work dw is done, 
' Ar, \ 

(283) (£L-
and therefore, by substituting this into the equation above, we obtain 
the Gibbs-Helmholtz equation, 

\dT/ a = e + T \ ^ ) ( 2 8 4 ) 

\Ol /V,Wm 

Often we deal with changes Δα and Ae in a process rather than with 
a and e themselves. I t is desirable, therefore, to restate 284 in terms of 
Δα and Ae rather than of a and e. If any reaction or transformation of a 
system takes place in such a manner that the maximum work a and the 
internal energy e change by the amount Δα and Ae, respectively, we 
have from a = e — Ts, 

Aa = Ae - TAs (285) 

for a change taking place at a constant temperature. Now since equation 
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283 applies to the system both before and after the change in the system 
has taken place, we have 

\0 1 / V ,Wm 

ída2\ = 

\ d l / V,Wm 

" « I , 

-82 

where the subscripts 1 and 2 refer to the initial and final states, respec
tively, and therefore 

p ^ i --<.-o 
L Öl Jv,Wm 

or 
/dAa\ 

As. 
/dAa\ 
\ ÔT /V,Wm 

Substituting this into equation 285, we have 

Aa = Ae + T(^) , (286) 
\ Ol /V,Wm 

showing the relation between changes in the maximum work Δα and the 
internal energy Ae of a S3 ŝtem during an isothermal change or trans
formation. 

If, instead of dealing with the maximum work a, we deal with the free 
energy/, we obtain a set of equations similar to those above. Briefly, we 
have (eq. 92) 

f=h-Ts. 

From equation 97 we have the differential of the above 

df= - sdT + vdP - dwm 

so that 

(%-) = s. (287) 

Substituting this into equation 92, we have 

which is similar in form to equation 284. Likewise, if we are dealing with 
changes Δ/and Ah of/and h, we have for an isothermal change 

Δ/ = Ah- T As. (289) 
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And, as previously, since equation 287 applies to the system both before 
and after the change has taken place, we have 

(dfA 
\dT/p,wa 

(d4) --*: 
\dT/P,wm 

L dT Jp,wm 

( - ' ) = - * · 
\dT JP,Wm 

Substituting this into equation 289, we have 

Af-AÄ + rf^O , 
\dT/P,wJ 

giving the relation between changes of / and h in a system undergoing an 
isothermal change. Here, of course, we are dealing with changes of the 
heat content Ah rather than of the internal energy Ae as in equation 286; 
here the partial differentiation is with the pressure rather than the vol
ume constant, while wm is held constant for both differentiations. 

46. Relation between Surface Tension, Total Surface Energy per Unit Area, 
and Temperature 

As a result of molecular attraction, the molecules of the surface of a 
liquid substance are acted upon by a force at right angles to the surface 
and directed toward the interior of the liquid. This force of attraction is 
produced by the molecules of the liquid adjacent to the surface and is also 
the source of the tangential tension over the vapor-liquid interface that 
we call "surface tension." When the area of such an interface is increased, 
additional molecules must be pulled from the interior of the liquid into 
the interface against the force of attraction of the molecules making up 
the body of the liquid. Work, consequently, must be expended to increase 
the area of the interface; and the behavior of the interface therefore some
what resembles a stretched elastic membrane. 

The velocities of the molecules are distributed among the different 
molecules of the liquid according to the Maxwell distribution law (art. 

consequently 

or 
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54). Thus the kinetic energies of the different molecules will vary widely. 
Some molecules will have sufficient kinetic energy to carry them beyond 
the range of the attractive force of the liquid and into the vapor phase, 
whereas others will be able to get only part way into the vapor phase. 
For this reason, there exists a transition layer between liquid and vapor, 
in which the density grades from that of the liquid to that of the vapor. 
The formation of this layer of intermediate densities furnishes the basis 
for explaining the fact that a cooling generally occurs when the area of 
the interface is increased. Clearly, an adiabatic expansion of the liquid 
against the force of molecular attraction takes place in the formation of 

the transition layer, since part of the liquid moves into the transition 
layer where the density is lower. Thus, as with the adiabatic expansion 
of a gas when no external work is done, cooling occurs according to the 
Joule-Thomson effect, in addition to the slight amount of work done in 
the expansion against atmospheric pressure. To form a fresh surface 
isothermally, therefore, work must be done against surface tension, and 
heat must be added to prevent cooling. 

Assume that an area A (fig. 22) is increased to A + dA. The quantity 
(σ dA) of article 32 does not represent the total energy expended when a 
fresh interface of area dA is formed. When such an increase in area at the 
interface takes place adiabatically, it is shown below that a quantity of 

heat ( — T — ) per unit area is absorbed from the interior, which is there-

fore cooled. 
Let us now derive the relation between this heat, the surface tension σ, 

and the total surface energy eA per unit area, the energy eA being localized 
in the surface layer of thickness r taken up in article 32. The work done 
by the surroundings on the liquid at constant temperature because of 
surface tension is, according to equations 101 and 208, 

— Awm = f(fjd£)dr. (290) 



154 Hilgardia [Vol. 15, No. 2 

The negative sign indicates that work is actually done on the liquid by 
the surroundings in creating the element of surface (dldr). Since the tem
perature is constant (eq. 281), we may write 

Aa= f (adl)dr = σΑΑ . (291) 

There is no appreciable expansion against atmospheric pressure in the 
formation of a new surface. It follows, therefore, that Aa = Δ/ in this 
case since the term Pdv of equation 276 is approximately zero. That is, 

Aa = Af = σΑΑ . 

The term Aa will, however, be most convenient for the immediate pur
pose. (If we were to follow strictly the conventions of article 10 as to 
symbols, we should use capital letters here instead of /, w, a, and e. The 
use of capital letters here might lead to confusion because other meanings 
have already been assigned to such letters as A. If it be remembered that 
the symbols /, w, a, and e in this paragraph refer not to 1 gram of 
water but rather to unit area of the surface, the reasoning and conclu
sions will in no way be altered.) The increase in total surface energy is 

Ae = eAAA , (292) 

where eA is the total surface energy per unit area. As lately shown (art. 
45), the Gibbs-Helmholtz equation (286) is 

Aa = Ae + τί—") . (293) 

Inserting equations 291 and 292 into 293, we have 

σΔΑ = eAAA + 

or 

σ = eA + 

or 
XdT/v 

θ(σΔΑ)~| 

(294) 

eA = a-T(^-) . (295) 
T /V,Wm 

Equation 295 relates the surface tension σ to the total surface energy per 
unit area eA and the temperature of the surface T. 

In using equation 295 it is necessary to evaluate ( — 1. This has been (-Y 
\dT/ 
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done by several investigators. The expressions obtained are largely em
pirical. For water, probably the most commonly accepted relation that 
may be used for evaluating the differential coefficient is the empirical 
relation given by equation 434. There is also the Ramsay-Shields equa
tion : 2 

σ(Μυ)* = k(Tc -6-T) (296) 

where M is the molecular weight, Tc the critical temperature of the liquid, 
T the temperature of the liquid surface, v the specific volume, and k a con
stant for the given liquid. The value of k is approximately the same for all 

Fig. 23.—Relation between surface tension, surface 
energy, and temperature of a surface. 

liquids that exist as simple undissociated molecules, such as benzene, 
carbon tetrachloride, and carbon disulfide. For these liquids, k is equal 
to approximately 2.12 when surface energy is expressed as ergs per square 
centimeter. For liquids whose molecules are associated in the liquid state 
into double or more complex molecules, such as water, methyl and ethyl 
alcohols, and acetic acid, k has a smaller value than 2.12 and varies with 
the liquid. 

The general form of the linear decrease in the surface tension σ with 
rise in temperature T (eq. 434 and 296) is shown in figure 23. As the graph 
shows, σ approaches zero at a temperature approximately 6 degrees 
below the critical temperature. The critical temperature Tc for water, at 
which the liquid and vapor become identical, is 647° A. 

According to equation 295, since Í — j is negative, the curve repre

senting eA always falls above the curve representing σ. Also, since ( — ) 
Γ /oVYl ^dT' 

is nearly constant, — T Í — 1 is positive and of such a magnitude that 
it represents approximately the difference between σ at 0° A and σ at the 
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temperature in question. Thus when this value is added to σ to get e¿ 
(eq. 295 and fig. 23), we find ΘΑ remaining nearly constant with change 
of temperature until the critical temperature is neared, at which e¿ be
comes zero, since ( — ] and σ become zero there. 

By comparing equation 295 and the statement of the First Law of 

thermodynamics (eq. 47), we note that — T ( — j represents the heat 

Aq required for isothermal formation of unit surface area, since e¿ cor
responds to Ae and since (—σ) corresponds to Aw. As will be recalled, Aw 
is the work done by the liquid surface on its surroundings during the iso
thermal formation of the liquid surface. Consequently, if the extension 
of the liquid surface were carried out adiabatically, a quantity of heat 

would be absorbed from the interior of the liquid, whose [-'(£)] 
temperature would consequently drop. When the new surface is created 
isothermally, this quantity of heat is added by the surroundings to the 
surface layer to compensate for the cooling effect; it may be called the 
latent heat of surface formation. 



KINETIC THEORY OF SOIL MOISTURE 

47. Dependence of the Properties of Soil Moisture on the Velocities and Energies 
of the Individual Molecules 

In dealing with a substance such as soil moisture, we may generally 
assume that any one molecule has the same properties and is in the same 
condition as any one of those adjacent to it. We know that any single 
water molecule in soil moisture has the same structure as any other. Pre
sumably, too, within any sufficiently small region of soil moisture, all 
the molecules are acted upon by the same forces, while the temperature 
and the hydrostatic pressure in the water are the same throughout. 

T 
SO/L MO/JWfiE CONTENT >-

Fig. 24.—Dependence of the vapor pressure of soil 
moisture on the soil moisture content. 

Likewise, in considering the vapor phase at equilibrium, we assume the 
vapor pressure and the temperature to be the same throughout. 

Certain physical phenomena lead one, however, to suspect that 
although the elementary water molecules may be chemically alike, each 
one may carry properties or characteristics widely different from those of 
its neighbors. A single molecule in a large group possesses characteristics 
(such as velocity of translation, momentum, kinetic energy, and the 
energy of vibration of the atoms composing it, as well as their potential 
energy) widely different from the properties of the adjacent molecule. 

Let us consider how these facts affect the explanation for the shape of 
the curve showing the relation between the soil moisture content and the 
vapor pressure of the soil moisture at low moisture contents. Experi
mentally (fig. 24) we know that as the soil moisture content is decreased, 
the vapor pressure decreases (part A of the curve). The vapor pressure is 

[157] 
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never zero, no matter how small the moisture content, since the curve 
bends over along the part B. As has been shown by Kelley, Jenny, and 
Brown (95), the B part of the curve is irregular because of water of 
crystallization. 

Actually, one would expect the vapor pressure of the soil moisture to 
become zero for some finite soil moisture content if all the water molecules 
had the same velocity and kinetic energy. Consider figure 25. As the soil 
moisture content decreases (in other words, as the interface I moves in 
towards the soil particle), the water molecules at the interface are more 
and more influenced by the adsorptive force of the soil particle. At the 
same time, consequently, more and more work is required to free a water 

' * ' , ' » · * . · . * » " * . Yopor V , * · " . * * . v · .** 

Fig. 25.—Thin layer of soil moisture in the adsorptive 
force field. 

molecule completely from the liquid and to carry it into the free vapor 
state. A water molecule in the interface / will always be able to escape 
into the free-vapor state as long as the component of its velocity normal 
to the soil surface gives it a kinetic energy greater than the work required 
to carry the molecule out of the interface into the free vapor state as 
shown in article 55. As the soil moisture content decreases (and, therefore, 
as the work required for the removal of a water molecule into the vapor 
phase increases), we shall reach a point corresponding to a finite soil 
moisture content where the vertical component of the kinetic energy of 
the molecule can no longer carry the molecule out from the interface / 
into the free vapor state. At this moisture content and at all those less 
than this, the molecule will remain bound to the liquid layer. Evidently, 
then, if all the water molecules of a body of soil moisture had the same 
velocity and, therefore, the same kinetic energy, we should expect to find 
the vapor pressure of a moist soil zero over the lowermost range of soil 
moisture contents. Here there is a close analogy between the vertical 
component of the velocity that a rocket must have in order to escape per
manently from the surface of the earth, and the velocity that a molecule 
in the soil moisture must have in order to escape permanently into the 
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vapor phase. If the rocket has not enough kinetic energy, it will not 
escape permanently. 

If, on the other hand, the velocities of the different molecules varied 
widely, we should not expect the vapor pressure of the soil moisture to 
become zero abruptly at some finite soil moisture content. As the soil 
moisture content is decreased, the work required to remove a molecule 
from the soil moisture always increases, and consequently the minimum 
velocity that a molecule may have and still escape is also increased. As 
the soil moisture content is decreased, accordingly, more and more mole
cules find themselves bound because of insufficient velocity or kinetic 
energy. The fastest molecules always escape, but the number that can 
escape is diminished gradually as the soil moisture content is decreased. 
We should, therefore, expect to observe a gradual rather than an abrupt 
decrease of the vapor pressure with a decrease of soil moisture content if 
the velocities of the water molecules vary widely. Experimentally {2, 39, 
1$, Iß, 153, 154) we always find a gradual decrease, never an abrupt de
crease, of the vapor pressure with a decrease of soil moisture content. 

The effect of increasing the temperature is always to increase the mo-
mentums and velocities of all the molecules and consequently their ability 
to escape. We therefore always find an increase of the vapor pressure of 
soil moisture with a rise of temperature. 

Since, in the subject of soil moisture, the solution of many problems 
will, in the future, depend upon an accurate knowledge of how the indi
vidual molecules of a substance are distributed among the different pos
sible velocity and kinetic-energy states, we shall now take up the basic 
theory for solving such problems. An analogy to the situation above, in 
which we considered the distribution of molecules among different ve
locity or energy states, is represented by the distribution of the popula
tion of a country according to yearly income. Some in the population 
have a very small income; some very large; but the majority are clustered 
about the "most probable income." The incomes (or velocities by anal
ogy) vary from one individual to the next, and a distribution curve 
would show how the different individuals are distributed among the 
different intervals or brackets of income. The distribution of incomes 
among the different individuals is then bound by the condition that if 
one multiplies the number of individuals belonging to each interval, or 
"bracket," of income by the value of the income for that interval and 
then takes the sum of these products over all intervals, the result will 
give the total annual income of the population. The distribution is bound 
also by the condition that the total number of individuals of the popula
tion shall remain the same during the determination. In fact, the mathe
matical treatment is exactly like the one to be followed for molecules. 
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48. Meanings of Terms to Be Used in the Statistical Analysis of Molecular 
Velocities and Energies 

Let us consider the meaning associated with several terms. We must 
distinguish between the macroscopic and microscopic states of a sub
stance. A "macroscopic" state is one determined by quantities such as 
temperature and pressure, which can be measured by ordinary methods. 
For example, the macroscopic state of an ideal gas at equilibrium is 
entirely determined by only two variables, such as pressure and tempera
ture. The "microscopic" state, on the other hand, requires, for its speci
fication, that the position and motion of all parts of the substance be 
determined in detail. For example, the microscopic state of an ideal gas 
at equilibrium is not determined merely by two variables such as pres
sure and temperature; for its specification one must know the positions 
and velocities of all the molecules composing the gas. Relatively speak
ing, a knowledge of the macroscopic state of a substance at equilibrium 
is a rather superficial bird's-eye sort of information, whereas knowledge 
of the microscopic state of a substance is a complete and detailed descrip
tion of the parts and their interrelations. 

Evidently, then, for the same macroscopic state of a substance, there 
may be numerous microscopic states. Let us consider a volume of water 
vapor sufficient to hold 1 mol under standard conditions of temperature 
and pressure. Its macroscopic equilibrium state is determined by any two 
of such quantities as p, v, T, / , or s. Its momentary microscopic state, on 
the other hand, requires for its specification both the position and motion 
of each of the molecules in the vessel; and there are 6.06 X 1023 of them! 
The molecules all have different positions in the vessel, and their veloc
ities vary widely. Suppose now we interchange two of them with respect 
to their instantaneous location. Obviously, the T, p, v, / , and so forth of 
the gas will not be affected; that is, the macroscopic state of the water 
vapor will remain the same. Its microscopic state, on the other hand, is 
not the same; instead, we have actually created a new microscopic state. 
The same holds true if we interchange the velocities associated with two 
different molecules. The macroscopic state remains the same, but the mi
croscopic state is new. Such quantities as internal energy, temperature, 
pressure, and consequently the macroscopic state of the substance all re
main the same in all interchanges of position and motion of the molecules. 
Meanwhile, the microscopic state does not remain the same ; each inter
change of the velocity or position of two molecules creates a new one. 
Since the volume of vapor we have been considering contains 6.06 X 1023 

molecules, evidently we could create innumerable different microscopic 
states, corresponding to the one macroscopic state, by making all possible 
interchanges of the velocities and positions among the molecules. 
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Often in statistical mechanics, one encounters the term "complexion." 
This is completely synonymous with "microscopic state." Each new 
microscopic state corresponds to a different complexion; and for each 
macroscopic state there are many complexions. Since the two terms have 
the same meaning, we will use "complexión" in place of microscopic state 
to avoid an annoying similarity in spelling and pronunciation. 

At equilibrium the molecules of water vapor are in continuous motion 
and are continually colliding, changing their positions and velocities. 
The complexion of the vapor is therefore continually changing with 
lapse of time, although the macroscopic state of the vapor and the quan
tities that determine it remain the same. The quantities determining the 
macroscopic state are averages over all the molecules in the given volume 
for a finite interval of time; they remain constant within the limits of 
sensitivity of our ordinary instruments of observation. 

Why, then, one might ask, is the complexion of a substance at equi
librium always changing even though the macroscopic state remains 
apparently the same? The answer must be that all or most of the different 
complexions in which the substance exists from time to time, correspond 
to the same or nearly the same macroscopic quantities such as p, v, T, 
that define the equilibrium macroscopic state. Consequently, there must 
be extremely few and short-lived complexions of the substance whose 
macroscopic quantities differ widely from those of the average, normal, or 
most probable macroscopic state. Any that do arise disappear almost im
mediately. Thus the number of complexions associated with any macro
scopic state appreciably different from the equilibrium macroscopic state 
must be negligible when compared with the entire number of possible 
complexions in which the substance may exist over a long period. 

If the substance is not in equilibrium throughout, it will be in some 
nonequilibrium macroscopic state (depending upon the temperature and 
pressure throughout), with which are also associated several different 
complexions. But in this case the number of different possible complexions 
is relatively small as compared with the total number of different com
plexions by which the equilibrium macroscopic state can be realized. The 
equilibrium state of a substance corresponding to a given temperature 
and pressure is therefore that macroscopic state (of all those conceivable 
at the particular temperature and pressure) which has associated with it 
the greatest number of different complexions and can therefore be realized 
in the most ways. A substance not in equilibrium throughout is continu
ally changing from a macroscopic state having few complexions to one 
having many. The equilibrium macroscopic state is, therefore, the one 
associated with a maximum number of complexions ; that is, the equilib
rium state is the most probable, since it can be realized in the most ways. 
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Our problem now, therefore, will be to obtain a quantitative expression 
for the probability of occurrence (that is, the total number of microscopic 
states) of a particular macroscopic state of a substance and to find out 
under what conditions the probability is a maximum. These conditions 
will then serve to describe completely the equilibrium state of the sub
stance, since they define or determine the most probable state. Our prob
lem for the present, accordingly, is mainly one of statistics. 

49. Molecular Statistics 
Consider, for example, an assembly of molecules having a mass of 1 

gram. Suppose we wish to study and determine the speeds of each indi-
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Fig. 26.—Distribution of molecules in velocity space. 

vidual molecule when the entire system is in a state of equilibrium. To do 
this let us divide the total range of possible speeds that a molecule might 
possess into a series of equal intervals of amount du. This gives us a 
plurality or series of different speed states in which a given molecule 
might exist and enables us to classify the different molecules on the basis 
of their speed. 

We then ask how, under a given set of conditions, the different mole
cules are distributed among the different speed states. Take, for example, 
the hypothetical case of 12 molecules and divide the total range of pos
sible speeds that a molecule might possess into six equal intervals of 
amount du (fig. 26). Any molecule happening to be in interval 3 has 3 du 
units of speed; in interval 5, 5 du units of speed, and so on. The figure 
shows one particular complexion of a definite macroscopic state in which 
3 molecules are in the first and fifth interval, 5 in the third, and 1 in the 
sixth. By interchanging, for example, molecules 10 and 2, which are in 
different compartments, we obtain another complexion; but the macro
scopic state remains unchanged. If, on the other hand, we interchange 
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two molecules in the same speed state, we change neither the macroscopic 
state nor the number of complexions. Different complexions are formed, 
therefore, only by interchanging molecules that are in different and dis
tinct states or intervals. Evidently we can obtain many other com
plexions, all having the same macroscopic state, by interchanging differ
ent molecules between different states or intervals. Only by changing the 
total number of molecules in each compartment or interval can we change 
the macroscopic state. 

As stated in the previous section, the equilibrium state of a substance, 
at a given temperature and pressure, is the most probable macroscopic 
state; it is the one, at the given temperature and pressure, out of which 
can be formed the greatest number of different possible complexions. 

Let us define the "thermodynamic probability" W of a given macro
scopic state as the number of different complexions that will produce that 
state. It cannot be too strongly emphasized that we use synonymously 
the three terms "thermodynamic probability" W, "number of micro
scopic states" W, and "number of complexions" W. The term "proba
bility" originated in pure mathematics; the terms "complexion" and 
"microscopic state" in the field of physics. Figure 26 shows one com
plexion of a particular macroscopic state. Let us, for example, determine 
the total number of possible complexions which will produce the same 
macroscopic state shown in the figure—that is, in which any 3 molecules 
are in the first interval, 0 in the second, 5 in the third, 0 in the fourth, 3 in 
the fifth, and 1 in the sixth. The total number of possible complexions is 
given by the well-known permutation formula for a totality of N objects, 
which are divided into groups of Nh N2, Nz, The thermo
dynamic probability W is equal to the number of complexions corre
sponding to the one macroscopic state in which Ni molecules have a speed 
du, N2 a speed 2du, and so on, up to the last velocity interval i in which 
Ni molecules each has a speed idu. Thus 

ΛΠ 
W = — . (297) 

Ni\N2l..Nnl..Ni\ 

This formula becomes self-evident if one considers that if all the N 
molecules possessed different speeds (that is, fell in different speed inter
vals so that there would be N different speed intervals), the number of 
different possible complexions would equal the number of permutations 
of the N different molecules, each permutation containing all the mole
cules; that is, N ! = (N) (N - 1) (N - 2) (3) (2) (1) complexions. 
Now when iVi of the N molecules are identical (that is, iVi molecules fall 
in the same speed interval), let the number of different complexions or 
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permutations be Y. If, however, the N\ identical molecules were each 
given a different speed, factorial iVi (iV\ !) different complexions or per
mutations could be formed from each of the Y complexions. Therefore 

YN^^Nl 
because of the well-known theorem that if one situation can happen in a 
ways and another in b ways, then the compound situation composed of 
both of them can happen in ab different ways. In like manner it is shown 
that when the molecules are divided into several groups containing Nh 
Νζ,Νχ, . . . . , identical molecules (the speed of each molecule in a given 
group being the same), the number of permutations or complexions cor
responding to the given macroscopic state equals the expression for W 
given by equation 297. 

To bring out more concretely the meaning of equation 297, let us apply 
it to the calculation of the total number of possible complexions corre
sponding to the macroscopic state shown. Recalling from elementary 
algebra that 0 ! = 1, we have 

12 T 
W = = 110,880 complexions. 

3 ! 0 ! 5 ! 0 ! 3 ! 1 ! 
That is, the given macroscopic state can be realized in 110,880 different 
ways. 

Let us digress for a moment to generalize this treatment so that it may 
be applied to an actual substance such as water vapor. Above, for pur
poses of illustration, we have considered essentially only a one-dimen
sional array of velocity states in which the representative point of any 
one molecule is given by but one value of velocity. We have thus, in the 
above, confined our attention to only one of the three components of ve
locity of a molecule. Actually a molecule has, in general, three compo
nents of translational velocity, ux, uyy and uz, along three coordinate axes, 
associated with the three translational degrees of freedom. Besides the 
translational degrees of freedom, or movements, a polyatomic molecule 
may have rotational and internal movements or degrees of freedom that 
arise because of the relative motions of the atoms with respect to each 
other within the molecule. Each of these degrees of freedom will have 
energy associated with it. 

In general, therefore, when we consider a substance such as water 
vapor, whose molecules are all alike, we shall assume that each molecule 
has d degrees of freedom, not merely 1, as in the elementary example 
used. The state of any one molecule is then defined at any moment by 
the d generalized coordinates of position of the molecule in space as well 
as the d generalized coordinates of velocity (associated with the d coördi-
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nates of position) necessary to describe completely the whole movement 
of the molecule (both translational and interatomic). Thus 2d indepen
dent variables are required to specify the state of the molecule. This 
means that the state of a molecule is fixed only when both its position 
and movements are fixed. Let us use these 2d variables as coordinates in 
a 2d dimensional space that we shall call, for short, the "phase space" or 
"state space." The state of each molecule is then specified by a point 
(henceforth called the "representative point" of the molecule) in this 
space. There will be as many representative points in the space as mole
cules in the substance. Since the molecules are always moving, the repre
sentative points in the phase space will also be in continuous motion de
scribing what may be called "phase paths." If the vapor, for example, is 
composed of N molecules, the instantaneous complexion of the substance 
is specified at any moment by the location of all the N representative 
points in the phase space. 

Let us divide this 2d dimensional phase space into small compart
ments, boxes, or cells, all of equal size g. Then the instantaneous com
plexion of the substance is completely defined when we know in which 
cell each individual representative point lies, in the same manner as we 
previously knew the instantaneous state of our hypothetical vapor when 
we knew in which cell or interval of our one-dimensional velocity space 
each individual representative point fell. 

Our definition of the term "complexion" also remains the same. When 
we interchange molecules between two different cells in the phase space, 
we keep the macroscopic state of the system the same but create a new 
complexion. 

At first it may seem strange to speak of cells and compartments that 
have more than three dimensions. Although it seems impossible to visu
alize more than three, we are not handicapped by any such limitations in 
mathematics, where we can deal with a space of as many dimensions as 
we please. Since these multidimensional spaces have properties analogous 
to the three-dimensional spaces of ordinary experience, we often apply 
many of the terms associated with the latter to the former. 

After this digression, we are now able to treat statistically the case of 
an actual substance and the behavior of its molecules. 

We recall that since we are interested in the state of thermodynamic 
equilibrium, we are interested in that macroscopic state whose thermo
dynamic probability W is a maximum; that is, we want that distribution 
Niy N2, . . . . Ni of the molecules among the different compartments in 
phase space which will make W a maximum. Before we can determine this 
mathematically according to equation 297, we must simplify the expres
sion for the statistical probability W to a form that may be handled more 
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easily. To do this, we must use an easily derivable mathematical formula 
of approximation for iV! given by equation 304. We shall derive this 
now. Making use of the identities, 

IniV! = In 1 + ln2 + ln3 + + IniV (298) 
and 

IniV" = IniV + IniV + IniV + + IniV. (299) 

Consequently, since the difference between the logarithms of two 
numbers is always equal to the logarithm of their quotient—that is 

(log a — log b) = log- —we have (eq. 298 and 299) 
b 

ΛΜ 1 2 N 
I n — = I n - + I n - + + I n - . (300) 

NN N N N 

Equation 300 may be graphically represented by an area as in figure 27. 

If we multiply equation 300 by—, a little consideration of the right side 
N 
1 NT 

of the equation will show that — log — is equal to the area between the 
H N NN 

1 N 
curve and the vertical axis, between the limits — and —. Strictly speak-

N N 
ing, the shaded areas should be included; but if N is large, as always 
when we are dealing with vapors, these may be neglected. To find this 

N\ area and consequently the value of log — let us set 

dx = —. 
N 

Equation 300 then becomes, after multiplying both sides by — = dx, 
N 

_L in — = In (dx)dx + In (2dx)dx + . . . . + In (N dx)dx. (301) 
N NN 

From this equation and from the very definition of an integral, it follows 
that 

1 iVT Γ1 

_ L l n _ = / l nxdx , (302) 
N NN J o 
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where it is evident, as in figure 27, that the limits of integration of x are 0 
and + 1 . Integrating, we have 

Consequently 

or 

/ In x dx = \ x In x — x\ ■ 1 , 

Iln *-'=-! 
N N» 

¿V' I n — = -N. 
NN 

¿<y>0'¿of /- ¿op NdxJ*i^ 

Fig. 27— Log (^Λ plotted as a function of ί ^ \ , 

(303) 

But according to the definition of the natural logarithm whose base is e, 
we have In eN = N. Equation 303 then becomes 

AM 
I n — = - l n e " . 

Rearranging, we have 

or 
1η(ΛΠ) -lnNN = - l n e " 

In (N !) = I n — = In I — ) 
e* \ e / 
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so that 

j\n = (-Y (304) 

enabling us to replace factorial N by the iVth power of 
( ! ) ■ 

Making use of equation 304, we may now simplify the expression for 
the thermodynamic probability W—that is, the number of different com
plexions corresponding to a given macroscopic state (eq. 297). We have 

W 
(?)" 

(ϊ)"(ΐΠ*Γ·-θΓ-<ΐΓ 
J V ^ 

~ JVi** N2
N* N3

N'.... Nn
Nn.... NiNi 

since N = (Ni + N2 + ). Consequently 

In W = In NN - In (N^1 N2
m N3

N°.... Nn
N".... NiNi) 

= NlnN - NilaNi- JV2lniV2- N3lnN3 - . .. -Nn\nNn.. . 
-N ¡In Ni 

n=i 
= N\nN- ΣΝηΙτιΝη. (305) 

n = l 

Let us now put 

Ni N2 Nn N¡ ,ono. 
Wl = Ñ~'W2 = W 'Wn = W ' 'Wi = W (306) 

and consequently 

wi + w2 + w3 + +wn + + Wi = 1 (307) 

since N = (ΛΓι + N2 + . . . . + Ni). That is, wn represents the fraction of 
the total number of molecules N whose representative points fall in the 
nth compartment or cell of phase space. All the molecules whose repre
sentative points fall in the same cell of phase space are in the same state 
in every respect, within the limits imposed by the finite but small di
mensions of an individual cell. We will also call wn the mathematical 
probability that a given molecule is in the state corresponding to the nth 
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compartment or cell in phase space. Applying equation 306 to 305, we 
have 

In W = N In N — Nwi In Nwx — Nw2 In Nw2 — — Nw{ In Nw* 

= NlnN - {(Nw1\nN + Nw2\nN + + Nw{lnN) 
+ (Nwi In Wi + Nw2 In w2 + . . . + Nwi In Wi)} 

= NlnN - {(w! + ... .+Wi)NInN+Niw^nw^. .+Wilnwi)\ . 

With equation 307 this becomes 

In W = —N(wi In Wi + w2 In w2 + . . . . + w» In Wi) 

n=i 

= -N^WnlnWn (308) 
n = l 

where the letter n denotes any of the numbers from 1 to i. Equation 308 
gives the thermodynamic probability—that is, the number of different 
possible complexions W corresponding to the given macroscopic state in 
which a fraction W\ of the N molecules have their representative points 
falling in the first compartment of phase space, a fraction w2 have their 
representative points falling in the second compartment of phase space, 
and so on. 

We now shall determine that distribution, wh w2,. . . . wi} of the repre
sentative points of the molecules among the different compartments of 
phase space that will make W a maximum. This will determine that 
macroscopic state having the greatest number of complexions and conse
quently having the maximum thermodynamic probability. I t will there
fore be the equilibrium state of the substance. Necessarily, when W is a 
maximum, bW = 0 for small changes of the variables (wi . . . . Wi), in 
accordance with the mathematical principles pointed out in article 4. 
Since it is more convenient to calculate with the logarithm of W than with 
W itself, we shall express the condition for the maximum (8W = 0) by 
δ(1η W) = 0. Consequently (eq. 308), since N is a constant, we have 

n=i n=i 

δ(1η W) = -N X) In wnbwn -N^5wn = 0. 
n = l n= l 

Now by 307 the last sum vanishes; hence our condition becomes 

Y^lnwnown = 0. (309) 
n=l 
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Besides δ(1η W) = 0, we must introduce two other subordinate condi
tions for determining the equilibrium distribution of the molecules. The 
first is that the total number N of molecules in our system is to remain 
constant; that is, bN = 0. This may be placed in more usable form: 

bN = i(Ni + N2 + . . . . + Ni) = 0 , 
or 

\N N N ) 
and 

b(w1 + w2 + + Wi) = 0 

bw\ + bw2 + . . . . + bWi = 0 . 
Hence 

£ ) t o n = 0 . (310) 
n = l 

The second subordinate condition is that the total internal energy e of 
the system is to remain constant. That is (art. 4) be = 0 for any changes 
the system might be made to undergo. This may be placed in more usable 
form if one lets ei, e2} e3, e» represent the total energy of each 
molecule in the (1, 2, . . . ., i) compartments in the phase space, respec
tively. The energy en associated with a molecule in the nth phase cell is 
the sum of its kinetic energy of translation and the interatomic and sub
atomic energies of the molecule. If we are dealing with a monatomic 
substance, there will be no interatomic energies, and en will represent the 
total kinetic energy of translation of the molecule. We have, then, for the 
total energy of all the molecules of our substance, 

e = Nt6! + N2€2 + . . . + Nnen + . . . + Niti 

since the ¿V's represent the number of molecules in the corresponding 
cells of phase space. Dividing through by the total number of molecules 
N and recalling the definition of the w's (eq. 306) 

e = N(wi €1 + w2 €2 + . . . . + Wi e»). (311) 

Recalling that TV is a constant, our condition that be = 0 becomes 

be = N(ei bWi + e2bw2 + . . . + eibWi) = 0. 

Consequently our third condition becomes finally 

X)£„5w„ = 0 . (312) 
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Our three conditions for determining equilibrium are then 

n = i 

y ^ In wn δ wn = 0 
n = l 

n=i 
J2enBwn = 0 ^ (313) 
n = l 

n = t 
^ δ Wn = 0 . 
n = l 

We shall now solve this set of three equations simultaneously for wn 
by the method of Lagrange, whose proof and explanation are given in 
article 5, the standard way of solving such a set of equations. Multiply 
the second equation by the undetermined constant ß and the third by λ. 
We have 

n=i n=i n=i 

Σ I» Wn δ Wn + β Σ *η δ Wn + λ ^ 5 Wn = 0 . 
n=l n=l n= l 

Combining like terms, we have 

Σ (In wn + ßen + \)ôwn = 0. (314) 
n=l 

By introducing the two undetermined multipliers ß and λ, we have 
enabled all the variations bwn to be carried out independently of each 
other in any arbitrary manner; the justification for this statement will be 
found in article 5. Since the variations bwn can be carried out indepen
dently of each other in any arbitrary manner, the only way equation 314 
can remain satisfied at all times and remain equal to zero is for the coeffi
cient of each of the ôw's to vanish. We see, then, that in order to permit 
any arbitrary changes in the ôw's we must adjust the auxiliary variables 
β and λ so that the quantity in parentheses will vanish, and consequently 
equation 314 will remain satisfied at all times. That is, 

lnwn + ßen + \ = 0 
or 

wn = e
( -* n - x ) = e- x e-* n . 

If the constant e ~λ is simplified and set equal to a, we have 

Wn = o e - * \ (315) 
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Both a and ß are constants, obviously independent of n, and are therefore 
the same for all the values of wn = wh w2, w3, They are constants to 
be determined by the conditions of the particular problem to which 
equation 315 is applied. If the constant ß is positive, as will later be shown 
to be the case, equation 315 indicates that the fraction or the probability 
wn (that the representative point of a molecule lies in a compartment of 
the phase space having a large energy en) is less than the probability that 
the representative point lies in a compartment of the phase space having 
a small energy e„. 

The equilibrium distribution of the molecules among the different pos
sible molecular energy states en is consequently determined by 

wn = ae-ß€n (316) 

with the subordinate condition according to equation 307 for the sum of 
all the w's 

n=i n=i 

Σ wn = a £ e"*· = 1 (317) 
n=l n = l 

and also with equation 311 for the total sum e of all the energies of the 
molecules, 

n=i n=i 
e = Nj2^wn = NaJ2 en e"*· (318) 

n=l n= l 

since a is a constant for all the w's. 
From equation 318 by substituting for a from 317 we obtain, for the 

average energy — per molecule, the following expression, which includes 
N 

the interatomic, the subatomic, and the kinetic energy of translation : 

Σ «r*· 
£ = £S · (319) 

n = l 

Before we can determine quantitatively the velocities of the different 
molecules of a vapor in a state of equilibrium at a temperature Ty we must 
ascertain the relation between the thermodynamic probability W (that 
is, the number of possible complexions W of the given state) and the 
entropy of the vapor s. By means of this relation we can evaluate the 
constants a and β of equation 316, both of which will be found to involve 
the temperature T. 
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50. Relation between the Entropy s and the Thermodynamic Probability W 

We wish now to determine the relation between the entropy s of a 
given macroscopic state and the number of different complexions W asso
ciated with that state. According to the previous article, W is also re
ferred to as the thermodynamic probability associated with the given 
macroscopic state. 

From the point of view of probability, the state of equilibrium of a 
system is its most probable state; or it is that macroscopic state whose 
thermodynamic probability W is a maximum. Furthermore, when W is a 
maximum at a given temperature and pressure, the substance is in the 
macroscopic state that can be realized by the greatest number of different 
complexions. 

From the point of view of thermodynamics, on the other hand, the 
state of equilibrium of a substance at a given temperature and pressure 
is the one whose entropy s has reached a maximum. Thus the entropy 
s is closely similar to the thermodynamic probability W. As a system ap
proaches equilibrium, both the thermodynamic probability W and the 
entropy s approach a maximum. Consequently (art. 4), when s and W 
have reached a maximum, 8s = 0 and bW = 0 for small changes in the 
variables determining the state of the system. 

Let us next consider two different substances or independent systems 
having entropies sh s2, and thermodynamic probabilities W\, W2, respec
tively. We wish to determine the relation between the total entropy s of 
the two combined systems and the total thermodynamic probability W 
of the combination. As will be recalled (art. 19), the total entropy of a 
system equals the sum of the entropies of its parts; hence 

s = Sl + s2. (320) 

On the other hand, the total thermodynamic probability W of the simul
taneous existence of specified macroscopic states of two different sub
stances equals the product of the probabilities of the individual macro
scopic states; that is, 

W = W1W2. (321) 

This is merely the statement of a well-known elementary theorem of 
probability, found in any college algebra text and given in a different 
form in article 49, which states that the total probability W (that both of 
two independent events will happen together) is the product of their 
separate probabilities Wi and W<¿. 

By taking the logarithm of both sides, we have 

In W = In Wi + In W*. (322) 
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Comparing equation 322 with 320 one sees that the entropies, as well as 
the logarithms of the thermodynamic probabilities of the* separate sys
tems, are additive. Also, as has been pointed out, both functions are a 
maximum when the systems are in equilibrium. Consequently, since the 
entropy s of a system is proportional to and behaves like the logarithm 
of thermodynamic probability W of the system, the following relation 
appears to exist between the entropy s of a single system in a particular 
macroscopic state and the thermodynamic probability W of that state : 

s = klnW, (323) 

where k is a universal constant, later shown to be equal to the gas con
stant for one molecule. 

A somewhat more rigorous derivation of the relation (eq. 323) be
tween the entropy and the thermodynamic probability of any system 
composed of atoms or molecules may be made as follows. At the start 
we shall merely assume that the entropy s is some function f (W) of the 
thermodynamic probability W. In other words, we assume only that 
there exists some relation between s and W. What it is, will be our prob
lem to determine. We have then 

s = f (ΪΓ). (324) 

It must be noticed that f here denotes not free energy but rather some 
function î(W) that depends on W. We wish now to determine the form 
of i(W). Suppose we have two entirely independent and separate sys
tems whose entropies are Si and s2 and whose thermodynamic probabili
ties are Wi and W2. It then follows for the first and second system, re
spectively, that Λ/τττ v \ 

8i = í(Wi), I 
\ (325) 

52 = f (W2) . J 
Let us now combine the two systems. The total thermodynamic proba
bility W of the two systems taken together as a single unit is the product 
(W1W2). This follows because to each of the W\ complexions of the first 
system, there are W2 of the second. Consequently, the total number of 
complexions of the two independent systems, taken together as one, must 
be (ΤΓ1ΤΓ2). The same result follows from the theorem of probability just 
previously mentioned. 

Now the total entropy s of the two systems combined equals the sum 
of the entropies si and s2 of the separate ones. From equations 320, 324, 
and 321, we have then 

s = Sl + s2 = {(W) = f(W1W2) ; (326) 
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and from equations 325 and 326, using the second and fourth member of 
326, 

f(Wi) + f(W2) = KW1W2). 

Differentiating this equation with respect to Wh we have 

di(TTQ df(ΤΓ,) _ dî(W1W2) 
dWi dWi dWi 

From a well-known theorem on differentiation, we may write for the last 
term of equation 327 

df(W1W2) = dîjWiW*) d(W1W2) = djWiWi) dîÇWiWt) ^ ψ df(WiW*) . 
dWi d(W1W2) dWi dWi d(WiWt) * d(WiW*) ' 

and since f (W2) is independent of Wi, the first system being independent 
of the other, the second term of 327 is zero, so that equation 327 becomes 
with the above 

dTFi d(WiW,) 

Differentiating the same equation in like manner, but with respect to 
Wi, we have, corresponding to equation 328, 

dî(Wt) = w dijWJV,) 
dW2 ' d(WiWt) " 

Multiplying equations 328 and 329 by Wi and W%, respectively, we find 
that their right-hand members are identical. Hence 

djwA = wjmA = Wlw*w*. (330) 
dWi dW2 d(WiW*) 

Since the two systems were assumed to be entirely separate and indepen
dent of each other, any variation of Wi can be carried out independently, 
with no relation to the changes in W2. Now the first member of equation 
330 is a function of Wi only and is therefore completely unaffected by 
changes of W2, whereas the second or middle member is a function of W2 
only and is completely unaffected by changes of Wi. The only way for 
such a state of affairs to exist, where both members of the equation are 
always equal to each other yet depend on entirely different variables, is 
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for both members of the equation to equal one and the same constant, 
which we shall here call k. Thus 

dWi 
and 

dW2 

For the type of systems with which we are dealing, k is a universal con
stant, the same for all systems, no matter of what type. Obviously it is 
immaterial which of these equations we integrate. Both will yield an 
integral of the same final form. Let us therefore drop the subscripts 1 
and 2. We have 

dW 
df(W) = fc — . 

W 

Integrating, we now obtain the exact form of the originally unknown 
function i(W). It is 

i(W) =/clnTF + C. (331) 

Recalling from 324 that s was assumed to be a function of W, we find 
that equation 331 becomes 

s = k\nW + C (332) 

To evaluate C let us note the conditions at absolute zero where there is 
no motion of the molecules and where all molecules are therefore in the 
same cell in the phase space where the energy of each molecule is zero. 
Then W, the number of complexions of the system, has a value of 1 at 
absolute zero, and therefore In W = 0 at absolute zero. Since (eq. 90) s is 
also zero at this temperature, C must be equal to zero ; and therefore we 
may write 

s = k\nW. (333) 

This equation, the same we found previously by a less rigorous approach, 
determines the desired relation between the entropy s and the thermo-
dynamic probability W, where k is a universal constant because it is the 
same for all systems. The only two assumptions made in obtaining 333 
were, first, the idea that the total entropy s of a system was equal to the 
sum of the entropies sh s 2 , . . . . of its parts; and, second, the fundamental 
theorem of probability previously given in connection with equation 321. 
Both these assumptions are substantiated by all available evidence. 
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51. Relation between the Entropy s of a System at Equilibrium and the Internal 
Energy en of the Different Molecules 

We can now show how the entropy s of the system depends on the dis
tribution wn of the molecules among the different possible energy states en 
in which a molecule of the system might find itself. From equation 308, 
we had 

n=i n=i 

In W = —N ^2 w±m Wi + w*In w2 + . . . . = — N J*] wnlnwn. 
n=*=l n = l 

Inserting this in equation 333 above, we have 
n=i 

s= -kN^2wnlnwn. (334) 
n = l 

But from equation 316 
wn = ae~ßen; 

hence 
\nwn = (—jfcn + In a) = —(ßen - In a) . 

Therefore 334 becomes 
n=» 

s = kN 2 wn(ßen — In a) 
n=l 

or 

s = kN Σ (ßwnen — wn In a ) . 
n - 1 

Splitting this into the two series and recalling from the statements made 
in connection with equation 315 that ß and a are constants independent 
of n, 

n=i n=i 

s = kNß 2^ wn^n — kN In a ¿2 Wn · 
n—l n = l 

From equations 307 and 311 we had, respectively, that 
n=i 

Σ Wn = 1 , 
n = l 

and 
n—i 

N Σ w^n = e 

where e denotes the total internal energy of the system. Hence the ex
pression for the entropy s becomes 

s = k ße — kN In a . 
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Again from equation 317 we had 

n=i 

n = \ 

or 
1 

a = : 
n=i 

Σ s"*" 
n = l 

so that 
n=i 

l n a = - l n ^ e - * » . 
71 = 1 

With this, the expression for s becomes 
n=i 

s = kße + kN\n^2 e~*n. (335) 
71 = 1 

52. Relation of the Temperature to the Distribution tvn of the Molecules among the 
Different Possible Energy States ert 

A statement of the First Law of thermodynamics is given by equation 
47 as 

de = dq — dw . (336) 

Now if the only work w done is that of expansion against an external 
pressure, equation 336 becomes 

de = dq — pdv . (337) 

For reversible processes the Second Law (eq. 70) permits us to write 
equation 337 in the following form : 

de= Tds-pdv. (338) 

Solving equation 338 for ds, we have 

ds = (-\de + (^Jdv. (339) 

Let us now obtain another expression for ds. As already pointed out 
(art. 2), the state of a simple system is determined by two variables, and 
these might be any such pairs as either T and v, or e and v. Let us use 
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the pair e and v to describe the state of the system. Then the entropy s 
of the system is a function of these two variables. Purely as a mathe
matical consequence (art. 1 and 2), we have 

ds = (-) de + (-) dv. (340) 
\de/v \dv/e 

Equations 339 and 340 are merely two ways of stating the same depen
dence of ds upon de and dv. Hence, equating the coefficients of de and dv 
in equations 339 and 340, we have 

and 
( - ) — 

\de/v T 

(Hi) =Έ 
\dv/e T ' 

(341) 

We shall now use these general thermodynamic expressions for evalu
ating ß in the distribution function wn of equation 316; but first we must 
transform equation 335, which was 

s = kße + kN\n( V e"*" ) , (342) 

into a form such that we can substitute the result for — in the first of equa-
T 

tions 341. Remembering that k, N, and the energy en associated with a 
molecule in the nth compartment of phase space are constants, indepen
dent of all changes made in the system itself so long as the total number 
of molecules N in the system remains the same; and remembering fur
ther that the internal energy e depends on ß, according to equation 319, 
we find upon differentiating equation 342 with respect to ß, 

n=i 

( ^ s ) =ke + kß (*°) - -^=1 . (343) 

Σ^ 
From equation 319 it will be recalled that 

-/Sen 

Σ« η β 
e = N-

e~ß*n 
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Substituting this for the summation expressions in equation 343, we have 

(*Λ =kß(^). (344) 

Now, by a mathematical theorem on partial differentiation proved in 
article 6, 

(*l) = _ i _ 
\dß/· /dß\ 

\de/v 
Equation 344 therefore becomes 

\dß/v\de/v 

It was shown (art. 7) that we may write 

(**) (*Ê\ = (à*) 
\dß/v\de/v \de/v' 

so that the preceding equation becomes 

from which (by eq. 341) we get 

kß = - , or ß = —. (345) 
T kT 

We can now express the distribution function wn of equation 316 in 
terms of the universal constant k, often called Boltzman's constant— 
that is, the gas constant per molecule (art. 59)—and of the temperature 
T. From equation 316 we had 

which now becomes 
wn = ae ßen, 

fn 
wn = ae kT. (346) 

Equation 346 gives the fraction wn of the total number of molecules N 
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of the system that have an energy en when the whole system is at the uni
form temperature T throughout. Thus, though the system is at the tem
perature T throughout, the energy of the individual molecules en varies 
widely among the different molecules. 

53. Relation of the Entropy s and the Maximum Work a, of the System, to the 
Energies en of the Individual Molecules of the System 

From equation 335 we have for the entropy s of the system 

s = k ß e + kN In ( ¿ e~ßA , 

which by equation 345 becomes 

s = ^ + kNlnC^e-%r) (347) 

and defines the specific entropy s of the system composed of N molecules 
in terms of the energies of the individual molecules en, the total internal 
energy e, and the temperature T of the system. 

As will be recalled (eq. 279), the maximum work, a, was defined by 

a = e- Ts. 

Introducing the value of s from this into equation 347, we find, upon 
solving for a, 

a = -kNTln ( Y) e " ^ , (348) 

showing, in the same manner as equation 335 for the entropy, the de
pendence of the maximum work a on the energies en of the individual 
molecules of the system. 

Now, to demonstrate the consistency of the expressions developed in 
this section on kinetic theory, including the relation between s and W 
given by equation 333, we will show that the Gibbs-Helmholtz equation, 
a fundamental equation of thermodynamics, can be derived from equa
tion 348 for the maximum work function a. The Gibbs-Helmholtz equa
tion (eq. 284) is 

e = a — Ί [ — ) 
\dT/V, Wm 
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Differentiating a in equation 348, while maintaining all the other vari
ables except T constant, we have 

Έ(-) e kT 

^ = -kNln f f e-ii) - kNT^ 
dT V " = 1 J ¿e-*T 

n = l 
Simplifying the last term, 

da , , r 
— = —kN 
dT Kg ·■*)-? f 

e n e ¿r 

e ¿r 
n = \ 

Multiplying through by T, 
n = i 

ne~kf 
/n=i v 

Σ e ¿r 

The first term on the right side of the equation is immediately recognized 
to be nothing but the maximum work, a, according to equation 348; and 
the second is, according to equation 319 as modified by equation 345, 
the negative of the total internal energy e of the system. The whole then 
simplifies down to 

T— = a — e , 
dT 

which, rearranged, gives us directly the desired Gibbs-Helmholtz ex
pression 

e = a- T - . (349) 
dT 

54. Maxwell Distribution of Molecular Velocities 

We shall use equation 315 in determining the speeds of translation 
possessed by the different molecules of a gas or vapor. Actually we shall 
determine the expression for the fraction wn of the total number of 
molecules N having a given specified speed. This expression will be used 
later in discussing the speeds of the different molecules moving normally 
to the air-water interface of soil moisture. 

Let us express the total energy en of a molecule of an ideal gas as the 



Feb. 1943] Edlefsen-Anderson : Thermodynamics of Soil Moisture 183 

sum of its kinetic energy of translation en' and its internal energy en" so 
that 

€n
 = = 6 n ~T" € n 

Then the fraction wn of the total number of molecules whose representa
tive points fall in the nth compartment or cell of the multidimensional 
phase space is given by equation 315, together with 345, 

wn = ae~kf~kf · (350) 

As pointed out earlier (art. 49), if the molecule has d degrees of free
dom, the phase space has 2d dimensions. The first d dimensions describe 
the instantaneous position of the center of mass of the molecule, which 
we represent by x, y, and z, as well as the position of the parts of the 
molecule with respect to its center of mass, which we represent by xh x2l 
z3, . . . . Xd-z. The other d dimensions describe the velocity of translation 
of the center of mass, which we represent by ux, uy, and uz, as well as the 
movements of the parts of the molecule with respect to its center of mass, 
which we represent by uh u2, u3, . . . . wd_3. Let us divide the phase space 
into compartments, all of equal volume, whose amount we shall call g. 
We then have 

g = (dx dy dz dxi dx2. . . . dxd-s) (dux duy duz dui du2.... durf_3). (351) 

It may seem strange at first to speak of the multidimensional element g 
as an element of volume. Although ordinarily it seems impossible to 
visualize a volume of more than three dimensions, we are, as previously 
mentioned, not handicapped by any such limitation in mathematics, 
where we can deal with a space of as many dimensions as we please. 
Since these multidimensional spaces have properties analogous to the 
three-dimensional spaces of ordinary experience, we often apply many 
of the terms associated with the latter to the former. 

Multiplying the denominator and numerator of equation 350 by g and 
its equivalent, respectively, according to equation 351, and recalling that 
the kinetic energy of translation is en' = V2 ™U<1 where 

u2 = ux
2 + Uy2 + uz

2, 
we have 

€n" mil* 
wn = - e kT e 2kT {dx dy dz dxi dx2..) (dux duy duz dui du2. . .) . 

g 

This equation may be restated as 
_en* mu* 

wn= - e kT (dxi dx2.. άΐίλ du^..) (dx dy dz) e 2kT (dux duy duz) . (352) 
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As already mentioned (eq. 306), wn gives the fraction of the total number 
of molecules having an energy en whose representative points fall in the 
nth compartment or cell of phase space having the volume g. 

What we are now really seeking is an expression for the fraction wn', of 
the total number of molecules, having a translational velocity u, whose 
components lie between ux and ux + dux, uy and uy + duy, and uz and 
uz + duz, no matter what their internal energies en" might be. Since the 
internal energies are entirely independent of the velocities of translation 
ux, Uy, uZ) we may integrate or sum the first exponential of equation 352 
(entirely independently of the second) over all dimensions in the phase 
space except those corresponding to ux, uyy uz. We then obtain 

[a C —— "1 mui 

- I e kT (dxi dx2.. dui dw¿..) (dx dy dz) e 2kT dux duy duz. 
Denoting the constant within the brackets, obtained after the integra
tion, by a' and recalling that u2 = ux

2 + uy
2 + uz

2, we have 

wn' = α' e-^f W+^2+^2) dux duy du,. (353) 

We may determine a' by recalling (eq. 307) the condition that 
n—i 

Σ>η'=1. 
n = l 

We have 
n = i / · « _ mux* / · » _ muy2 /*<*> _ mu** 
Y^wn' = o! I e 2kTdux I e 2ΛΓ duy I e 2kT duz = 1, 
n=l 

since components of velocity may be either positive or negative. Using 
the formula for the definite integral given by equation 37, this reduces 
after integration so that we have 

\ m / 
and therefore 

\2kTirJ 

Then, upon recalling the definition of wn', equation 353 becomes, with 
the above and equation 306, 

, Nn ( m \ | _ÜLÜ2 . , , 
Wn = — = 1 I2 e 2kT dux duy duz. 

N \2ΤΓ kT/ 

file:///2kTirJ
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From this we obtain immediately Maxwell's law giving the number of 
molecules Nn (which we shall now denote by dN) having components of 
velocity lying between ux and ux + duZ) uy and uy + duy, uz and uz+ duz. 
Substituting dN for Nn in the equation above and solving for dN, we have 

dN 
\2TkT/ 

e 2hT 
(Mx2+V+U*2) dux duy duz (354) 

Suppose we now consider only one of the components of velocity of the 
molecules, such as ux along the x axis, and ask how dN depends on the 
velocity ux. That is, we wish to find out how many molecules dN have 

ΈZement of orea = dNf 

'Element of oreo=dN¿ 

^.ΧΆ'χνχ^κχχ 

Ye/oc/fu of the rno/ecu/e 

Fig. 28.—Distribution of the components of the velocities of the molecules along 
any one direction in space. Area under curve between any two abscissas ux\ and uxi 
gives the number of molecules having velocities between uxX and ux2. 

a value for the x component of their velocity falling between ux and 
ux + dux. To answer this, we shall integrate equation 354 over all mole
cules with respect to uy and uz : 

dN = Ae~2kTu* dux (355) 

where A is the constant obtained after the integration has been per
formed. If we plot the coefficient of dux of equation 355 against ux (fig. 
28), we get the well-known Gaussian form of distribution curve. This is 
symmetrical; that is, as many molecules dN in the vapor have a given 
velocity +ux in one direction as have a velocity — ux in the opposite. Also, 
very few molecules have great velocity; and many have no x component 
of velocity at all. The expressions for the distribution of velocities along 
the y and z axes have the same form as equation 355. 

55. Velocities of Molecules Normal to Vapor-Liquid Interface 
as Related to Vapor Pressure 

Equation 355 applies directly to the problem, considered to some 
extent in article 47, of the outward emission of water molecules from the 
liquid films surrounding soil particles. In this case we are interested only 
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in half of the curve—that is, only in the molecules moving outward from 
the film. If no adsorptive forces surrounded the soil particle, all the mole
cules of the (+ux) part of the curve (fig. 28) would leave the moisture 
film. Since, however, there are adsorptive forces, the water molecules 
must possess a certain definite minimum kinetic energy in order to 
escape into the vapor phase. This will entail a minimum velocity ux\. All 
molecules in the layer having a velocity less than ux\ will be held back in 
the liquid surface, but all those having a velocity greater will escape; 
that is, the faster molecules escape, while the slower ones are held behind. 

As the moisture content of the soil is decreased, the vapor-liquid inter
face comes more and more under the influence of the adsorptive forces 
surrounding the soil particle, so that the molecule must possess more and 
more kinetic energy in order to escape. Consequently, the minimum ve
locity required will be increased to some other velocity (for example, 
ux2) ; and only those molecules in the liquid layer having velocities greater 
than this will escape. 

The curve (fig. 28) should be so constructed that the area under it be
tween two velocities such as ux\ and ux2 gives the total number of mole
cules having velocities within the velocity interval (ux2 — uxi). Also the 
area under the curve to the right of some velocity value such as ux\ and 
extending out to infinity gives the total number of molecules having a 
velocity greater than uxi. 

Figure 28, based on the Maxwell distribution law, is the basis for pre
dicting how changes of moisture content will affect the vapor pressure of 
soil moisture. When the soil is saturated, all the molecules whose num
bers are represented by the area of the positive half of the figure escape 
into the vapor phase, being beyond the influences of the soil forces. When 
the soil-moisture content is decreased from a state of saturation the mole
cules begin to require, in order to escape into the vapor phase, a certain 
minimum amount of kinetic energy which depends upon the moisture 
content. If the moisture content has been decreased so that an amount of 
kinetic energy y% w^*i2 is necessary for escape, then all the molecules 
whose number is represented by the entire area under the curve to the 
right of uxi will escape into the vapor phase, and all the rest will remain in 
the liquid. If the soil moisture content is further decreased so that at 
least an amount of kinetic energy Y¿ ^^x22 is required for the escape, then 
only those molecules whose number is represented by the entire area 
under the curve to the right of ux2 will escape into the vapor phase, and 
this area is seen to be less than that corresponding to a higher moisture 
content. Thus as the soil moisture content is decreased, more and more 
molecules having positive ux components of velocity are held back in the 
liquid, and fewer and fewer can go into the vapor phase. 
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No matter how dry the soil or how tightly the soil moisture is bound to 
the soil particle, there will always be a few molecules with a high enough 
velocity and therefore with sufficient kinetic energy to escape. As the 
soil moisture content approaches zero, the vapor pressure of the soil 
moisture thus decreases gradually; but it cannot become zero until the 
soil moisture content is also zero. 

The Maxwell distribution law also explains why a moist surface placed 
in an atmosphere whose humidity is below 100 per cent tends to cool off. 
Experimentally we find that the lower the humidity and the greater the 
wind movement, the greater is the cooling effect. The explanation is that 

T 
Fig. 29.—Element of volume in phase space. 

the temperature of an object is determined entirely by the mean kinetic 
energy of all the molecules composing it. As this energy is decreased, the 
temperature also decreases. Now, as was just shown, only the fastest-
moving molecules can escape from the liquid and be carried away by the 
air currents. Thus those remaining behind have a smaller average ve
locity, a smaller mean kinetic energy, and therefore a lower temperature. 
Hence evaporation from a moist surface tends to cool it off. 

If the space above the liquid is saturated, just as many fast molecules 
move out of the liquid in a given time as move into it. In this latter case, 
accordingly, there is no cooling effect. 

56. Number of Molecules Having Speeds within Certain Limits 

In article 54 we considered the number of molecules dN having com
ponents of velocity ux in any single direction within the velocity interval 
between ux and ux + dux. We considered the same also for the y and z 
axes. Now, going a bit further, we shall determine the number of mole
cules dN having speeds within the interval between u and u + du without 
regard to direction of movement of the molecule. Thus the three compo-
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nents of velocity may vary in any arbitrary manner so long as they satisfy 
the equation 

u2 = u2 + u2 + uz\ 

and u lies within the velocity interval between u and u + du. Thus the 
element of volume dux, duy, duz in the velocity space as given by equation 
354 may be replaced by the volume included between the two concentric 
spheres of radii u and u + du, an octant of which is shown in figure 29. 
This is possible, since all the molecules whose representative points fall 
within the same spherical shell have the same speed u and therefore the 
same value for the total kinetic energy y¿mu2 in the exponential of the 

JP£ED OF MOLECULES 
Fig. 30.—Speed distribution of molecules. 

distribution function, even though their components of velocity (Λ/χ, My. Ulj¡ 

may be widely different. The volume of the spherical shell included be
tween the concentric spheres of radii u and u + du is immediately seen to 
be 4:TU2du. We shall therefore replace the cubical volume element of 
integration dux, duy, duz by this spherical shell. Equation 354 then 
becomes 

dN = 4wN ( ——Yu2 e'üT du . 
\2T1CTJ 

To simplify this, let us set = h. Obviously, h is the same for all 
Δ lei 

molecules and is independent of u. We have then 

dN = 4ττ N (—^ u2 e~ w du. (356) 

Let us plot the coefficient of du of equation 356 against u as shown in 
figure 30. The area under any segment of the curve equals the number of 
molecules having speeds whose values lie between those represented by 

file:///2t1cTJ
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the abscissas of the limits of the segment. Thus, for example, the number 
of water-vapor molecules, in a container at a temperature T, whose 
speeds lie between UA and UB} is given by the shaded area under the seg
ment AB. There is no negative half of the curve, since we are here inter
ested only in the absolute magnitudes of the velocities, not in their di
rection. Also the distribution curve will be found to extend asympto
tically out to u = + oo ; but since the area under the portion of the curve 
representing high velocities is negligible, the number of molecules having 
these high speeds must also be negligible. This curve for the distribution 
of speeds u contrasts greatly with figure 28, for the distribution of veloci
ties of one of the three components of u. In figure 28 the curve is sym
metrical with respect to the vertical axis ; in figure 30, it is not. 

57. Dependence of Temperature on the Root-Mean-Square Speeds of Molecules 

As mentioned previously, the temperature of a substance is deter
mined entirely by the kinetic energy of the molecules; and the kinetic 
energy of a molecule equals }/%mu2. Since the molecules of a substance 
have widely different velocities, we see that in order to express the tem
perature or the internal energy of the gas in terms of the kinetic energy 
of the individual molecules we must find the average of the squares of the 
velocities (which we shall denote by u2) of all the molecules. The formula 
for the average of all the u2's associated with the different molecules is, 
according to the definition of u2 

jy '■dN 

N 

which with equation 356 becomes 
3 / 

M4e-Am"!dw. -fflfi 
Integrating this by means of the expression given for the definite integral 
in equation 40, we have for the average of the squares of the velocities of 
all the molecules 

u2 = = , 
2hm m 

since h was set equal to . From this we have for the average kinetic 
Δ tCl 

energy of a molecule, 

— = -kT. (357) 
2 2 
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This shows that as the average kinetic energy of the molecules of a sub
stance increases, the temperature T of the substance must also increase, 
since k is a universal constant which, as will be shown (art. 59), is the 
well-known gas constant per molecule. The position of the root-mean-
square speed -y/ü* with respect to the maximum M of the distribution 
curve is shown in figure 30. As shown, the root-mean-square speed Λ / Ϊ ^ 
is greater than the most probable velocity uM. 

58. Average Speed of Molecules 

We have just been considering the root-mean-square speed of the 
molecules denoted b y \ / ^ · We shall now determine their average speed, 
which we shall denote by ü. By definition it is 

/ ; udN 
- ,1« u = 

N 
and with 356 it becomes 

(358) 

m? 4πΝ(—ψ / u3e~hmu'du 

N 
or 

= 2 x ( — ) ^ W W du\ 

putting u2 = x in order to transform it into the familiar integral form 

which can be found in any table of integrals and works out to be 

- o ßm\l 1 2 0 ¡2kf , o c n , 
u = 2π ( )2 = = 2 Λ/ . (359) 

\ 7Γ / Qtm)2 \/irhm \ irm 
The position of the mean or average speed ü with respect to the root-
mean-square Λ / Ι ? and the maximum M of the distribution curve is 
shown in figure 30. 

59. Equation of State of an Ideal Gas and the Gas Constant k per Molecule 

In the previous articles, on a purely statistical foundation based upon 
considerations of probability, we have arrived at several expressions de
scribing the energy relations among the individuals of an assemblage of 
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molecules. No experimental data were used. On the basis of these expres
sions there was derived, in article 54, the Maxwell distribution law for 
molecular velocities, whose validity has been thoroughly substantiated 
by experiment. We shall now show that the ideal gas law also follows as a 
natural consequence from these statistical considerations. In so doing we 
shall make use of 

V = - ( ? ) , (360) 
\dv/T 

which is obtained from equation 280 when the only work done is that of 
expansion against an external pressure, so that dw = pdv, and equation 
348, which is 

n=i 
a= -kNT In ^ e ~ ^ . (361) 

n = l 

Let us consider an ideal polyatomic gas. Each molecule will then 
possess not only three degrees of freedom in translation, but also certain 
others often called internal degrees of freedom, such as vibration and ro
tation of the parts of the molecule. Let en', as before, denote the kinetic 
energy of translation of a molecule whose representative point lies in the 
nth compartment of the phase space; and let en" be its corresponding 
internal energy. Then the total energy of the molecule, as pointed out 
previously, is 

€n = €n' + €n" . (362) 

As previously pointed out (art. 49), if the molecule has d degrees of 
freedom, the corresponding phase space will have 2d dimensions : one set 
of d dimensions describes the instantaneous position of the parts of the 
molecule, while the other set of d dimensions describes the movements of 
the corresponding parts. The phase space is then divided up into com
partments, all of equal volume, whose amount we shall call g (eq. 351). 
If ux, Uy, uz represent the components of the velocity of translation of the 
molecule whose instantaneous coordinates of position are x, y, z and if 
Uif u2, and Xi, x2, . . . . represent in like manner the movements 
and coordinates of position associated with the internal degrees of free
dom of the molecule, we have, for the volume of each compartment or 
cell of phase space, 

g = (dux duy duz dx dy dz) (du\ du^.... ; dx\ dx<¿....). 

There are, of course, d dimensions of the type (ux uy uz; Ui U2. . . .), and d 
of the type (xyz; X\ x2.. . . ) , making 2d dimensions in all. The coordinates 
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ux uy uz; xyz determine en', and the coordinates Ui u2 . . . .; X\ x2 . . . . 
determine en". 

Let us now proceed to evaluate the summation found in equation 361. 
According to 362 the summation becomes 

n = i
 β / Λη 

e kT kT . 
n = l 

This summation is to be carried out over all the i cells or small compart
ments, whose volume is g, of phase space. The summation may most 
easily be carried out by converting it into an integration over all the 
i cells, as follows : 

n=i * ' * " 
e~kf~kf = 

n = l 

- 11...Ie~kfduxduyduzdxdydzlI...I eTkfduidu^.. dxidx2... (363) 

We shall now evaluate the first integral. Since we are dealing with an 
ideal polyatomic gas in which there are no forces between the molecules, 
the translational energy en' of a molecule may be represented by 

en
f = — O*2 + uy

2 + uz
2) , 

Δ 
so that 

- / / . . . / e~kf dux duy duz dx dy dz 

1 /* oo mux2 / · œ muy2 /* « muz2 ΓΓΓ 
= i I e " 2kT dux I e" 2kT duy I e~ 2kT duz ¡II dx dy dz . 

Integrating the first three integrals on the right-hand side by equation 37, 
it reduces to 

The triple integral in the equation above is the total volume v occupied 
by all the molecules of the gas, since x, y, z extend over all the possible 
coordinates of position that a molecule might take on. Hence we find that 
the right side of the equation above further reduces to 

g V m } 
(364) 
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Thus equation 363 becomes 

m 

Inserting equation 365 in 361, we have 

3 r r /"«-I' 
/ ekT dui dita... ; dx\ dx2.... (365) 

(366) 

a = - f c i V T I n | - ^ ? ^ - ^ J 2 I -kNTlnl ff..fe-Jïdu1du2... ; dxidxù-

The second term on the right is not a function of the volume v, since 
Xi, X2... refer only to the coordinates of the internal degrees of freedom of 
a molecule measured with respect to a fixed point in that molecule. Con
sequently when we take the partial differential of equation 366 with 
respect to v, we have, according to equation 360, 

= - ( - ) = 
\dv/T 

kNT 

or 
pv = kNT, 1 

or \ (367) 
pv = RT, J 

where R is set equal to k N. 
Equations 367 are recognized immediately as the familiar ideal gas law. 

Since v and N refer to 1 gram of the substance, R is obviously the. gas 
constant per gram, and k the gas constant per molecule. As will be re
called, k appeared first as a constant of proportionality in equation 332, 
relating entropy with the probability of the state of the system. No other 
physical significance was, at that time, attached to it. 

A relation connecting the specific heat at constant volume cv with the 
specific heat at constant pressure cp will now be developed. Recalling 
equation 51, 

de = cvdT, 
and equation 49, 

dq = de + pdv, 
we have 

dq = cvdT + pdv. (368) 

Now, differentiating equation 367 and dividing the result by equation 
367, we have 

^ + Í y = ^ . (369) 
V v T 
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Solving equation 369 for pdv and substituting this into 368, we have 

A ΛΦ . (dT dV\ 
do = cvdT + pv I — — — ). 

\T p) 

Introducing R from equation 367, this becomes 

dq = CvdT + RdT - vdp . 

If the pressure is kept constant, dp = 0; and we have 

dq = cvdT + RdT. 

Since the pressure is constant, this last equation becomes (by eq. 52) 

cpdT = cvdT + RdT 
or 

cp- cv = R. (370) 

As equation 370 shows, there is always a constant difference between 
the specific heat of a gas at constant pressure and at constant volume; 
and this difference is the familiar gas constant per gram R. 



THE APPLICATION OF THERMODYNAMICS TO THE QUAN
TITATIVE DESCRIPTION OF THE STATE 

OF SOIL MOISTURE 

60. Useful Concepts in the Interpretation of Soil-Moisture Phenomena 

In some conceptions of the distribution of water in unsaturated soils, 
the water is thought of as spread over the soil-particle surface as films 
and water rings. Its behavior in the soil is accounted for solely on the 
basis that the water has surface tension, in virtue of which it distributes 
itself in a definite way throughout the soil, depending upon the shape of 
the pore space and upon the moisture content. 

On the basis of this interplay of pore space, moisture content, and the 
surface-tension effects of water, explanations have been given for the 
experimental observations made in soil-moisture studies. Some apparent 
inconsistencies are revealed, however, by a review of the thermodynamic 
and hydrodynamic aspects of some of the studies made by vapor pressure, 
freezing point, dilatometer, centrifuge, and suction methods. By studying 
certain basic relations, we may uncover some of these difficulties. 

The present equations in soil literature, relating vapor pressure over a 
water surface to the radius of curvature of that surface, are based on the 
assumption that the body of the liquid is outside the field of force exerted 
by the soil particles. This assumption is questionable at low moisture 
content, as is evident from the very fact that the presence of a field of 
force surrounding a solid surface must be assumed in explaining all capil
lary phenomena. Obviously, an attraction must exist between the solid 
material and the water in the region of the liquid-solid interface in order 
for the surface to be wetted and for the water to adhere to the solid sur
face; otherwise the vapor-water interface could not be concave to the 
vapor phase. 

In addition, the literature shows that certain factors have not been in
cluded in dealing with the thermodynamics relating freezing-point de
pression of soil moisture to the free energy of the moisture. The treat
ment of the freezing-point depression of relatively moist soils has been 
partly taken up under case 3 of article 30; that of relatively dry soils, 
where the adsorptive force field comes into play, will be taken up in the 
following articles. 

The latter treatment will incorporate the effect of the strong attractive 
forces exerted by the soil particles on the soil moisture in the region ad
jacent to the surfaces of the particles, as well as the osmotic effect of the 
solutes dissolved in the soil moisture. It will relate the freezing-point de
pression of soil moisture to its free energy and vapor pressure, with 
particular reference to measurements made by the dilatometer. 

[195] 
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61. Need for Introducing the Concept of an Adsorptive Force Field in 
Dealing with Soil-Moisture Phenomena 

The assumption of an adsorptive force in the region adjacent to the 
soil-particle surface is important in accounting for the behavior of mois
ture in soils. Without this assumption, the results observed are hard to 
explain, particularly for relatively dry soils. As was pointed out earlier, 
some of these difficulties become evident when we try to interpret the 
results of vapor-pressure studies. Further evidence for the necessity of 
introducing the concept of a force field surrounding the soil particle is 
furnished by studies of the freezing point of soil moisture. 

A dsorptive-Force-Field Indications from Vapor-Pressure Studies.—Equa
tion 271 indicates the relation between the soil moisture content and its 
associated vapor pressure if no adsorptive field is assumed. It is 

ln-^- = h (p - Po) — (371) 
po r RT ^ y RT 

and purports to determine the vapor pressure p immediately above a 
water surface whose radius of curvature r is given. All the other quantities 
in the equation are constants and can be obtained from a set of physical 
tables. 

We are thus led to conclude that this equation should describe the rela
tion between vapor pressure and moisture content in a soil, since r is a 
measure of moisture content. When r is large, the moisture content of the 
soil is high; when it is small, the moisture content is also small. Hence if 
we wish to find the behavior, more or less qualitatively, of the vapor 
pressure p with respect to moisture content at low moisture contents, we 
have merely to study the variation of the vapor pressure p in this equa
tion with respect to the radius of curvature r of the air-water interface. 

As mentioned above, however, this relation was developed by using an 
assumption that seems unjustifiable at low soil moisture contents. In 
developing equation 371 it was assumed that the soil particles do not at
tract the water molecules lying in the vapor-liquid interface and there
fore do not affect their vapor pressure outside the interface. Curiously 
enough, we apparently cannot get interfaces concave towards the vapor 
phase without assuming that water adheres to the surface of the solid. 
Necessarily, therefore, the soil must have an adsorptive force field that 
attracts the water molecules. At low moisture contents this adsorptive 
field surrounding the soil particle must affect the vapor pressure and 
cause a deviation from equation 371. The vapor pressure of water in 
small capillaries has been found to be much smaller {145) than equation 
371 would predict. 
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The idea of an adsorptive force field surrounding solid surfaces is not 
radical, since practically all explanations of adsorptive phenomena use 
some such concept. I t involves the idea of a force being transmitted 
through space. Such forces are also called "field forces," "body forces," 
and "adhesive, attractive, or repulsive forces." Reference to some con
siderations and results bearing on this point is of interest. A considera
tion, for example, of the shape of the experimental curve (fig. 31) showing 

MO/SWßE COUTENT 
Fig. 31.—Vapor pressure of soil moisture as a function of moisture content. 

the relation between vapor pressure and soil moisture content makes the 
introduction of the concept of an adsorptive field of force appear neces
sary. 

If we postulate that the decrease of the vapor pressure of soil moisture, 
as the soil dries out, is caused entirely by the increase in the concentration 
of ionizable solutes in the soil solution, we should expect to have a greater 
slope of the curve between the moisture equivalent M and the permanent 
wilting percentage P than between the permanent wilting percentage P 
and the point T. In other words, for a given increase in concentration, 
we should expect a greater rate of decrease in vapor pressure at low con
centrations (high soil moisture content) than at higher concentrations 
(lower soil moisture content), because the salt molecules are more disso
ciated at low concentrations. We should therefore expect the curve, as 
the soil is dried out, to continue in the direction A, whereas it actually 
turns sharply toward T. Some factors other than the presence of dis-
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solved material seem therefore to come into play. One of these is the 
adsorptive force field surrounding the soil particle. I t probably plays a 
minor role at the higher moisture contents. But this force becomes in
creasingly effective as the moisture content is decreased to the neighbor
hood of the permanent wilting percentage and increases very rapidly as 
the moisture content is further decreased. 

We shall now point out the importance of the Maxwell distribution 
law at the lowermost soil moisture contents. The close approach of the 
curve (fig. 31) to the abscissa near T7, at an appreciable moisture content, 
can be explained if we assume that this strong adsorptive field of force 
acts on the water molecules, inhibiting their outward movement into the 
vapor phase sufficiently to give a very small vapor pressure at appreciable 
soil moisture contents. That the curve does not actually strike the axis at 
T has been accounted for (art. 47 and 55) on the basis of the kinetic 
theory of matter, by the fact that molecules of the water film have widely 
different velocities. According to the Maxwell distribution law, some 
molecules move very rapidly, some move very slowly, but only the faster 
group can escape against the adsorptive force field. If all the molecules, 
on the other hand, had the same velocity, one would expect the vapor 
pressure to become zero at some appreciable moisture content T. At 
moisture contents below T none of the molecules would, on the basis of 
the latter assumption, have sufficient kinetic energy to pass beyond the 
adsorptive force field exerted by the soil particles; and we should have 
zero vapor pressure. Since, however, the water molecules have velocities 
as determined by the Maxwell distribution law, we may expect that no 
matter how strong the adsorptive field, some molecules will have energy 
enough to escape into the vapor phase and thus produce a small but 
appreciable vapor pressure. 

The vapor-pressure curves reported by Edlefsen (4.6) and by Thomas 
(153) show this general trend, in that the vapor-pressure curves change 
their slope markedly at soil moisture contents where plants wilt; if the 
curve is extrapolated to zero vapor pressure, it intercepts the moisture-
content axis at appreciable soil moisture contents. Apparently, therefore, 
the soil would have a zero vapor pressure at appreciable moisture con
tents if all molecules had the same speed. From his studies, Edlefsen 
concluded (42, 46) that adsorptive forces probably played an important 
role in soil moisture at moisture contents lower than the permanent 
wilting percentage. 

In our considerations here, as in most soil-moisture literature, the 
state reached after prolonged drying of the soil at 110° C will be regarded 
as zero soil moisture content. As the temperature is raised to higher 
values, more water will of course be driven off; and, as pointed out by 
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Kelley, Jenny, and Brown {95), the steplike shape of their curves at 
extremely low moisture contents indicates that this moisture is chem
ically combined. 

Adsorptive-Force-Field Indications from Plant Behavior and Freezing-
Point Data.—As every student of soil moisture knows, the freezing point 
of soil moisture is less than 0° C ; the amount of the depression increases 
as the moisture content decreases. Though the theoretical interpretation 
of such data will be given later, it is now pertinent to recall some qualita
tive facts that seem to require the concept of a field of force. 

One cannot get sufficient concentrations of salts in soil moisture, hav
ing the ordinary proportions of nutrient elements for plant growth, to 
account alone for the observed freezing-point depressions of soil moisture 
at moisture contents in the vicinity of the permanent wilting percentage. 
In the first place, some of the nutrients will precipitate long before 
sufficient concentration can be reached to account alone for the observed 
freezing-point depression in the neighborhood of the permanent wilting 
percentage. By the time such a concentration is reached, the proportions 
of the nutrients will be seriously unbalanced. If this precipitation of 
necessary nutrients took place one might expect to find plants showing 
certain nutritional deficiencies in the neighborhood of the permanent 
wilting percentage. Such nutritional deficiencies are seldom if ever evi
dent. 

In the second place, the soil solution would be highly toxic to plants if 
the concentration of the soil solution were sufficiently high to account 
alone for the observed freezing-point depression in the neighborhood 
of the permanent wilting percentage. But it is a well-demonstrated fact 
that plants grow normally for all moisture contents above the permanent 
wilting percentage. As the transpiration rate over this range of moisture 
content is practically independent of moisture content, concentration of 
solute in the soil solution plays only a minor role in affecting the availa
bility of soil moisture to plants. 

And in the third place the freezing-point depression of soil moisture at 
the permanent wilting percentage is many times what it is at field capa
city. To explain this enormous change in the freezing-point depression 
(as the moisture content is progressively decreased) on the basis of con
centration of dissolved materials alone, one must assume that the con
centration of solutes in the soil solution has increased many times more 
rapidly than the moisture content has decreased. This seems inconceiv
able, however, for apparently the concentrations should, to a first approx
imation, vary inversely as the moisture content. 

Another phenomenon difficult to explain without the introduction of 
an adsorptive force field is that at the permanent wilting percentage the 
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rate of transpiration decreases abruptly. If the change in the difficulty of 
removing water from soil as the moisture content is decreased were 
caused entirely by dissolved materials, one would expect this difficulty to 
increase gradually as the moisture content becomes smaller. There should 
therefore be no sudden increase in the difficulty of removing water from 
the soil in the neighborhood of the permanent wilting percentage. As 
Edlefsen (42) has pointed out, this abrupt increase in the difficulty ex
perienced by plants in obtaining water at the permanent wilting per
centage indicates that as the moisture films get thin, other forces acting 
on soil moisture are brought into play. Apparently, therefore, we can 
explain this abrupt change by assuming that an adsorptive force field 
surrounds the soil particles and that the magnitude of this field increases 
very rapidly as the soil-particle surface is approached. 

These notions agree with those of Parker {115) when he says : 
At moisture contents below the water-holding capacity of the soil, the water is held 
to the soil by an a t t rac t ive force commonly called adhesion. As the moisture con
tent of the soil gradually decreases, the force with which the remaining water is 
held continually increases. This causes an increase in the freezing-point depression 
of the soil water, a decrease in the rate of evaporation and a decrease in the vapor 
pressure of the soil water as the moisture content is reduced. This force is great 
enough to prevent par t of the soil water from being frozen a t low temperatures. 

Some, including Parker (114) y believe that aside from dissolved ma
terial present, colloidal material produces a freezing-point depression not 
because it is in solution, but because it is surrounded by an adsorptive 
force field that compresses the capillary water films and that therefore 
increases the freezing-point depression. 

Apparently, then, there are several reasons why the vapor-pressure 
depression, the freezing-point depression of soil moisture, and the behav
ior of plants in extracting soil moisture, cannot be explained on the basis 
of dissolved materials alone and thus why it seems necessary to introduce 
the idea of an adsorptive force field surrounding the soil particles, which 
in turn, creates a hydrostatic pressure in the soil solution. 

62. The Use of the Free-Energy Concept in Interpreting Soil-Moisture Phenomena 

In past quantitative studies of the energy relations of a soil-moisture 
system, a mathematical function known as "capillary potential," "total 
potential/' or merely "potential" has been used (20, 80, 45, 46, 55, 57, 
58, 59, 81, 91, 103, 104, Uly 125, 126, 138, 153, 154, 159). The total po
tential of soil moisture has been defined as Φ = ψ + ω + λ. Here ψ is the 
capillary, or pressure, potential, existing because the water is under a 
tension or pressure; ω is the gravitational potential, as used in the past, 
but may include all potentials that exist by virtue of an adsorptive force 
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field acting on soil moisture (for example, the adsorptive field exerted by 
soil particles on moisture) ; and λ represents the osmotic potential that 
the moisture has by virtue of the material dissolved in it. The idea of 
potentials has also long been used in the study of electricity, magnetism, 
and mechanics. In thermodynamics and physical chemistry, an analo
gous function called "free energy" or "thermodynamic potential" has 
been introduced. 

Just as one must, considering a gravitational field, refer the potential 
to some datum, often taken at sea level, so in dealing with soil-moisture 
energy relations one must also choose some datum, or reference point. 
This datum, for soil-moisture energy, was usually taken as free, pure 
water. Capillary potential, often called "pressure potential," is therefore 
defined by different investigators as the work done, per unit mass of 
water, against the capillary field forces in moving water from the free, 
pure water, the datum, to the point where the potential is to be evaluated. 

Capillary potential as thus defined is a mechanical potential measuring 
the energy of compression or tension in the water. Gravitational as well 
as osmotic potentials are defined similarly, the free, pure water surface 
being always used as the datum of potential. Students of soil moisture 
have usually been interested only in the liquid state of water. They have 
defined the potential of soil moisture in such a way that its magnitude is 
calculated with respect to a datum at the same temperature. In other 
words, they have considered the soil moisture and the free, pure water 
(used as the datum) to be at the same temperature. In the past, they have 
not inquired whether or not the potential of the reference point changed 
with temperature. 

As pointed out (art. 21), when one must consider all three phases of 
water existing in equilibrium with each other, together with the effects of 
adsorptive force fields and temperature on the energy relations of soil 
moisture, one may conveniently introduce a more comprehensive thermo
dynamic function called "free energy." This function, as already men
tioned, has had its most extensive use in the field of physical chemistry, 
where the investigator is interested in all phases of a substance rather 
than in the liquid phase only. This quantity /, free energy, is defined 
according to article 21 by the equation 

f=h-Ts, (372) 

where h represents the heat content, T the absolute temperature, and s 
the entropy of the system. At this point we are interested mainly in the 
characteristics of the function / . This, as well as the other terms appear
ing in equation 372, has been more completely discussed in previous 
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articles. As is usually pointed out in texts on thermodynamics, a change 
in free energy Δ/ of a system from one value to another represents the 
maximum useful work obtainable from the given process when it occurs 
at a constant temperature and pressure. Curiously enough, almost all 
the major changes in soil moisture take place under the conditions of 
constant temperature and pressure. This function seems, therefore, pe
culiarly adapted to soil-moisture studies. Free energy, because of the 
more generalized meaning given to it, is a more appropriate function for 
our purpose than is potential. 

At this point we may well discuss certain characteristics of this function 
which are a consequence of the facts outlined in articles 21, 22, and 39 
and which will be used in describing the energy states and energy changes 
of soil moisture. Where we speak of a change in free energy without any 
qualification, we assume that the process is carried out isothermally. 

1. The absolute, or total, value of free energy as defined above cannot 
be measured. We must content ourselves with measuring changes in the 
function, just as in the case of the gravitational potential, where we 
always measure not the absolute value but rather its difference measured 
with respect to some datum, usually taken as sea level (art. 39). 

2. When a substance exists in several different states in equilibrium 
with each other, the specific free energy of that substance is the same in 
all of the states (art. 22). For example, when water in a salt solution is 
in equilibrium with its vapor and ice, the specific free energy is the same 
in all three states—ice, water, and vapor. 

3. The change of free energy in any transformation of a system in going 
from a state A to a state B equals (eq. 101) the mechanical work required 
to go from A to B at constant temperature, neglecting the work of 
expansion against constant pressure. 

4. The increase in the total free energy of a system, where the surface 
area of the air-water interface is increased by an amount equal to dA, is 
equal to σ dA, where σ equals the surface tension of water (eq. 208). 

5. The increase in free energy of a system containing v cubic centi
meters of water, where the pressure on the water is changed from Pi to 
P2, equals v(P2 — Pi) = v AP (eq. 156). This relation is the same as used 
by soil-moisture investigators to express changes in pressure or capillary 
potential ψ caused by changes in hydrostatic pressure. 

6. The difference in specific free energy between vapor at a pressure p2 

and at pi (eq. 236) is Δ/ = f2 — / i = RT In —, where R equals the gas con-
Pi 

stant per gram and T equals the temperature of the vapor. A measure of 
the maximum capacity of the system for performing useful work is — Δ/. 
This equation expressing changes of free energy in terms of changes in 
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vapor pressure of a liquid is identical with equations used by soil-moisture 
investigators for expressing the potential of water as a function of vapor 
pressure {20, 46, 104,139,154). 

7. The thermodynamic relations are available for determining the de
pendence of free energy on temperature. These have been discussed in 
articles 21 and 23, and their application to soil moisture will be further 
considered in articles 72 to 81. The potentials as previously defined in soils 
did not lend themselves to such a determination, since the equations did 
not contain the temperature explicitly. The temperature was, of course, 
involved implicitly; but the mere knowledge of the potential at one tem
perature did not enable one to calculate it at some other temperature. In 
other words, it had to be determined by experiment at each temperature. 
Clearly, free energy defined by equation 372 as / = h — Ts contains the 
temperature explicitly. 

The choice of terms in this connection is not easy. "Free energy" 
would appear to be a more appropriate term than "potential" when one 
is dealing with systems that contain all three of the phases. The word is 
equivalent, furthermore, to "potential" as applied previously in the soil 
literature that deals with the liquid phase. For these reasons it has been 
adopted here. The term "molal free energy" appears often in the litera
ture of physical chemistry. In the present discussion, however, we are 
not especially concerned with the molal free energy of water; rather, 
we are interested in the change in free energy per unit mass, or in the 
specific free energy. For the sake of brevity, however, we shall use the 
general term "free energy," with the understanding that it refers to the 
free energy per unit mass. 

The specific quantities of a substance are obtained immediately from 
the molal by merely dividing the latter by the molecular weight of the 
substance. Obviously, according to the discussion above, the total poten
tial, as used previously in literature on soil moisture, and the specific free 
energy, as here defined, are somewhat analogous functions both dimen-
sionally and quantitatively except for the more generalized meaning asso
ciated with the latter. Since, as pointed out before, the total potential 
equals the sum of the osmotic pressure and the adsorptive-force-field 
potentials, then the specific free energy of the substance in any state also 
equals the sum of the osmotic pressure and the adsorptive-force-field po
tentials in the liquid state. 

Other factors may contribute to the total free energy of the soil mois
ture. For example, the presence of the water molecule in the adsorptive 
force field surrounding the soil particles may give rise to an orientation 
of the molecules. This orientation is one form of potential energy that 
the water may possess. 
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63. The Role of the Adsorptive-Force-Field Concept in the Interpretation 
of Soil-Moisture Properties 

To illustrate the usefulness of the function called "free energy" when 
applied to the description of the energy relations existing in soil moisture, 
and to show its relation to the other potentials found in the literature and 
just previously described, let us consider the system A shown in figure 32, 

Fig. 32.—Hypothetical effect of an adsorptive force field. 

consisting of a glass tube sealed at the top to the open end of an inverted 
porous vessel, here in the shape of a cone. The system is filled with pure 
water, the lower end of the tube being placed in the vessel at point a; and 
the entire system is exposed to atmospheric pressure. At point a we have 
free, pure water, which we shall use as our datum both for gravitational 
potential and for pressure potential. Assuming that we have pure water, 
the osmotic potential is zero throughout. It should be recalled that the 
total specific free energy equals the sum of all the potentials. When water 
in this system is in equilibrium, the specific free energy is the same 
throughout ; and therefore no energy will be required to move water from 
a to any other point in the liquid. This follows from the second and third 
characteristics of free energy (art. 62). 

The sum of the pressure, or capillary, potential and the gravitational 
potential is constant and equal to zero for all points in the liquid since the 
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total potential is zero at point a. At any point, therefore, the capillary 
potential and the gravitational potential are equal in magnitude but op
posite in sign. At the point b, for example, 76 X 13.6 = 1,033 centimeters 
above a, the gravitational potential will have increased by an amount 
1,033 gram-centimeters per gram, whereas the capillary or pressure po
tential will have decreased by the same amount, leaving the total poten
tial or free energy unchanged. At a point to the right or left of b, for ex
ample, the water has a hydrostatic pressure of —1,033 grams per square 
centimeter with respect to point a except when it is close to the wall of 
the glass tube, where adsorptive forces become effective. These forces 
will now be discussed. 

Consider in detail a pore (fig. 32, B) in the porous material at d of 
figure 32, A. Water at thej)oint k in the center of the pore might actually 
be under tension, whereas water at s near the wall of the pore might be 
under compression because of an adsorptive force field surrounding the 
clay surface whose range of influence reaches out as far as the dotted 
lines / . Clearly, therefore, water under tension might be in equilibrium 
with water under pressure; that is, the water might have the same total 
potential or the same specific free energy throughout, although the par
tial potentials vary considerably under the widely different conditions of 
pressure and position found in the water mass. 

Figure 32, C, shows a hypothetical picture of two soil particles sur
rounded by a film of water, held on by an adsorptive force field extending 
out from the particle as far as the dotted line / . The cross-hatched area 
represents the film of water. At a point t the water is under a negatively 
curved surface and might therefore be expected to be under a tension, 
whereas the water at w is under a positively curved surface as well as 
inside the adsorptive force field. Both these effects would tend to produce 
a positive pressure at w. Here, again, we have an example, comparing 
points t and w, of an equilibrium condition where water under pressure is 
in equilibrium with water under tension, since we know that water actu
ally distributes itself approximately as shown in the figure when two 
soil particles are brought into contact and that there is no tendency for 
any preferential movement of the water when the equilibrium distribu
tion of soil moisture has been established. 

The fact that in the same mass of soil moisture, one region may be in a 
state of tension and another under great compression, although the whole 
mass of soil moisture is at equilibrium, is rather important in our inter
pretation of the so-called "capillary-potential measurements" frequently 
made on soil moisture. The capillary potential is usually determined b}r 

placing in the soil a porous clay bulb, filled with water and connected to 
a mercury manometer. The water in the manometer is adjusted until the 
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water in the porous bulb is in equilibrium with the soil moisture. That is, 
the water in the bulb and manometer is in such a state of tension that it 
balances the pull exerted by the moisture in the soil. 

On the basis of such evidence, seeming to indicate a state of tension 
throughout the soil moisture, attempts are made to explain such proper
ties of soil moisture as the variation of vapor-pressure depression with 
decrease in moisture content as well as the distribution of moisture with
in the soil, it being assumed that the water is held in the form of water 
wedges at the points of contact of soil particles. 

Actually, even though the water in the manometer and bulb is in a 
state of tension, much of the water in the soil is probably far from being 
so, except at relatively high moisture contents. If a moisture film is acted 
upon by an adsorptive force field, it might be expected to be under posi
tive hydrostatic pressure. If so, it can be in equilibrium with a body of 
pure water only if the latter is placed in the proper state of tension. This 
follows because an adsorptive force field reduces the escaping tendency of 
the water molecules of the soil moisture. This reduces the vapor pressure 
and consequently gives the soil moisture a negative value of free energy. 
For a body of pure water to be in equilibrium with the soil moisture, its 
free energy must also be lowered to the same negative value (art. 22). 
This can be accomplished by placing it under tension. 

To attain vapor pressure and free energy corresponding to soil moisture 
at the permanent wilting percentage, the soil moisture would have to be 
under a tension of approximately 16 atmospheres. According to a well-
known fact, only with special experimental precautions can water be 
made to withstand tensions much greater than 1 atmosphere, and this 
only after most of the dissolved air has been carefully removed. At the 
lower moisture contents, therefore, tension is unlikely to be an important 
contributing factor to the value of the free energy of soil moisture. 

If free, pure water is to be in equilibrium with soil moisture, it must be 
placed under tension. This fact indicates that the moisture adjacent to 
the soil particle must be under the influence of an adsorptive force exerted 
by the soil particles. Otherwise, the soil moisture will not adhere to the 
soil particles when a tension exists at some other point in the soil mois
ture. 

If an attractive force is exerted by the soil particles on the soil mois
ture, it must act through a finite distance. Thus a positive hydrostatic 
pressure is produced. Consequently, the water molecules contained with
in a layer adjacent to the soil-particle surface will be attracted towards 
the surface. The molecules farthestaway will be attracted and will press 
on the adjacent ones closer to the soil surface, which will, in turn, press on 
those still closer to the soil-particle surface. Thus a hydrostatic pressure 
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is built up in the layer adjacent to the soil-particle surface, increasing as 
the soil surface is approached. A rough analogy is found in the increase of 
hydrostatic pressure in a reservoir of water as one descends towards the 
bottom. In both cases an adsorptive force field acts on the water pro
ducing the pressure. In the former case, the force is probably electrical; 
in the latter, gravitational. 

Thus, judging from the factors that determine equilibrium of soil mois
ture and from the properties of the thermodynamic function called "free 
energy," an appreciable amount of the soil moisture is not under tension 
even at the high moisture contents. Rather, it is under an adsorptive 
force field surrounding the soil particle, which entails a hydrostatic pres
sure increasing as the surface of the soil particle is approached. Dissolved 
material, which doubtlessly increases in concentration as the surface of 
the soil particles is approached, further augments the effects produced by 
the adsorptive field. At higher moisture contents, some of the soil mois
ture is under tension because of the negative curvature of the air-water 
interface, and the effect of this might well be, according to case 3 of ar
ticle 30, to lower the freezing point of the soil moisture. This freezing-
point depression would be in addition to that caused by osmotic pressure. 

Let us now consider briefly the effects of the positive hydrostatic pres
sure on the freezing point of soil moisture in the vicinity of the soil-
particle surface. Also, we shall assume that the ice separating out, as more 
and more of the soil moisture is frozen, continues to be attracted towards 
the soil-particle surface, in contrast to what was considered under case 3 
of article 30. 

To learn how pressure and tension affect the freezing point of soil 
moisture, we may refer, first, to Le Châtelier's theorem which states that 
when any isolated system is acted upon by an influence, a change will 
occur within the system, making the effect of the influence less than if the 
change had not occurred. 

To understand the consequence of this theorem when applied to the 
problem of the change in freezing point of soil moisture, consider a sys
tem composed of pure water and ice at 0° C in a closed system. According 
to the theorem, if pressure is applied to this system, the volume will de
crease and will thereby tend to relieve the applied pressure. Obviously, 
the only way this can occur is for ice to melt, since the volume of water is 
less than the volume of ice. Conversely, if a tension is applied to the water 
(that is, if the pressure is decreased) a volume change will occur that will 
tend to relieve the tension. This, obviously, can happen only if the 
volume increases, which means that some of the water will change to ice. 
Clearly, therefore, pressure decreases the freezing point of water, whereas 
tension tends to increase it. 
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Le Châtelier's theorem is useful in reasoning qualitatively on various 
phenomena. It does not, however, enable us to get quantitative results. 
For this purpose, as applied to the problem at hand, we must resort to 
the thermodynamic relation known as the Clausius-Clapeyron equation 
(eq. 186). This will be recognized as case 1 of article 30. 

A consideration of this equation, when applied to such a system as that 
above, leads one to inquire why, if soil moisture is under tension, we do 
not observe a freezing point in it higher than 0° C. The Clausius-Clapey
ron equation is 

AP _ I 
AT TAv ' 

Here Av equals the volume contraction of ice per unit mass upon melting; 
I is the heat absorbed by ice upon melting and is really a positive quan
tity in this particular case since heat is actually absorbed when ice melts ; 
and T is the absolute temperature at which the transformation occurs. 
Thus, if we place water under tension, AP is negative. The right-hand 
member of the equation is already negative because I is of opposite sign 
from Av. Hence AT must be positive. By placing water under tension we 
are therefore led to the conclusion that we raise its freezing point. 

So far as we are aware, no one has ever observed the freezing point of 
soil moisture to be higher than 0° C. And yet, as mentioned before, water 
in soils is sometimes thought to be in a state of tension. There are three 
reasons why we probably do not observe any elevation of the freezing 
point above 0° C as would be predicted from our previous considerations. 
First, the Clausius-Clapeyron equation shows that the freezing point 
changes very slowly with changes in pressure; one could probably never 
get water in soils under sufficient tension to raise its freezing point a 
measurable amount, since (according to the Clausius-Clapeyron equa
tion) a tension of 133 atmospheres is required to increase the freezing 
point 1 degree. Second, there are always salts present that tend to depress 
the freezing point in soils. Third, when the water content of the soil has 
been reduced until the water should actually be under an appreciable 
tension, due to film curvature according to article 42, the water films 
are thin enough so that they are probably under the influence of an 
adsorptive force field exerted by the soil particles themselves, which 
tends to compress the w^ter and thus lower its freezing point. 

To show more clearly how the adsorptive force surrounding the soil 
particles affects the properties of soil moisture, let us consider an analo
gous situation more familiar than that found in soils. Consider an adsorp
tive force field acting on pure water. If we have a column of water in a 
vertical position on the earth's surface, every particle of water through-
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out will be acted upon by the earth's gravitational field, and a definite 
pressure will be produced at the bottom of the column. If the height is 
doubled, the hydrostatic pressure will be doubled. Also, measurement of 
the hydrostatic pressure at different distances below the upper surface of 
the water will show that the pressure increases at a constant rate with 
respect to changes in height. Obviously, neither this doubling of the 
hydrostatic pressure by doubling the height of the column, nor the uni
formity in the rate of increase of pressure as one descends in the column, 
would hold true if the length of the column were of the same order of 

Pressure = O 

Pressure sAP-f^ 

¡temperature of co/umn =ΔΓ °óe/ow O°C 
Fig. 33.—Position of water-ice interface 

at depth y below the surface when the 
column is subjected to AT degrees below 
0 ° C . 

magnitude as the radius of the earth, since the gravitational field of force 
is known to obey the inverse square law. In other words, the weight of 
unit mass of water varies inversely as the square of its distance from the 
center of the earth. If, therefore, we were dealing with a water column of 
a height comparable with the radius of the earth, we should find a sig
nificant increase in the weight (gravitational constant) of unit mass of 
water as we descend in the column. Thus hydrostatic pressure, in such a 
case, is not proportional to the depth below the free water surface, but 
instead increases much more rapidly as determined according to New
ton's inverse-square law. On the other hand, in a reservoir whose depth 
is small as compared with the earth's radius, the weight of a unit mass 
of water at the top and bottom is practically the same, and consequently 
the hydrostatic pressure is nearly proportional to the depth. 

Let us now consider how freezing temperatures affect this column of 
water. If we choose some hydrostatic pressure ΔΡ corresponding to that 
at some depth y of figure 33 in the column and if we lower the entire 

f-¿r _L 
Water 
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column to a temperature AT degrees below 0° C such that ΔΡ and AT 
are related by the Clausius-Clapeyron equation, 

ΔΡ = J_ 
AT TAv ' 

all the water above the depth y will be frozen; that below, unfrozen. The 
temperature of the column AT degrees below 0° C, and the hydrostatic 
pressure ΔΡ at the water-ice interface will always be related according 
to the equation above. Thus the thickness of the ice on a pond would 
depend only on the temperature if there were no convection and if suffici
ent time and heat were available to establish equilibrium conditions. 

64. Effect of an Adsorptive Force Field Surrounding Soil Particles on the 
Freezing Point of Soil Moisture 

The situation described above, relating the adsorptive force acting on 
the soil moisture to its freezing-point depression and to the amount of 
water frozen out, seems analogous to that found in the soil-moisture film 
surrounding and immediately adjacent to a soil particle, the additive 
effect of surface tension and osmotic pressure being neglected for the 
present. 

Since the postulated fields of force are assumed by various investiga
tors to be anywhere from the inverse-square law to an inverse fifth law, 
clearly the force of attraction on a particle of water increases very rapidly 
as it approaches the soil-particle surface. The hydrostatic pressure in 
water, therefore, increases very rapidly as the surface of a soil particle is 
approached. As was mentioned earlier, a measurement of the hydrostatic 
pressure enables one to calculate easily the partial free energy due to 
hydrostatic pressure, since the latter is numerically equal to the hydro
static pressure in the c.g.s. system. This follows according to equation 156 
because the free energy 

Af = — = vAPp 
P 

where p and v are the density and specific volume of water respectively, 
and where each is approximately equal to unity. Here APP represents 
the hydrostatic pressure. 

Now consider figure 34, J5, which consists of a layer of soil covered with 
a layer of pure water over which is a layer of ice, both the ice and the 
water being acted upon by an attractive force that increases in magni
tude very rapidly as one approaches the soil-particle surface. The figure 
represents a small radial section through the soil particle; since we are 
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considering only a small element of soil-water interface, it can be repre
sented by a straight line. (The following considerations would not be 
altered if the section of the surface were curved.) Figure 34, A, drawn 
to the same scale as 34, B, represents the trend, within the water and ice 
layers, of the hydrostatic pressure resulting from the adsorptive forces 
exerted by the soil particle. 

The water-ice interface is the locus of points where the two phases, 
ice and water, are at equilibrium under the existing temperature and 
hydrostatic pressure. Points above this locus have too low a pressure for 

Fig. 34.—Relation of the adsorptive force field to the amount of frozen and un
frozen water in soils at a given temperature below zero where AfP is the partial free 
energy due to pressure; t is the thickness of the unfrozen layer of water; I is the spe
cific heat of fusion; Av is the change in specific volume when water freezes; T is 
the temperature of soil moisture; AT is the number of degrees below 0° C, of the 
soil moisture; and ΔΡ is the hydrostatic pressure at the water-ice interface by 
virtue of the soil adsorptive force field. 

water to exist at the given temperature, whereas points below have too 
high a pressure for ice to exist. At the interface, therefore, the hydrostatic 
pressure must be ΔΡ (as determined by the Clausius-Clapeyron equa
tion) if the whole system is subjected to a temperature AT degrees below 
0° C, since both phases are in equilibrium at the interface. 

In every respect, the present case of a partially frozen soil-moisture 
film is analogous to th& case of a partially frozen reservoir of water con
sidered in the previous article. By means of the Clausius-Clapeyron equa
tion of article 27 or of case 1 in article 30, the pressure and therefore the 
free energy at the water-ice interface can be calculated for any freezing-
point depression AT degrees. Here, of course, we are dealing only with the 
contribution of the hydrostatic pressure to the free energy of soil mois-
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ture. The hydrostatic pressure, in this case, exists because of the field or 
adsorptive forces that the soil particles exert on the water. 

Measurements of the amount of unfrozen water remaining at different 
freezing-point depressions, where different amounts of ice are frozen out, 
together with a knowledge of the total area of the water-soil interface, 
would furnish sufficient information to construct the curve shown in 
figure 34, A, showing how the free energy due to hydrostatic pressure in 
the soil moisture at a given point is related to the distance of that point 
from the soil surface. The amount of unfrozen water divided by the area 
of the interface gives the average thickness of the film of unfrozen water. 

In constructing such a curve, one should remember that the total free 
energy, which is the same throughout the soil moisture, is equal at any 
given point to the sum of the partial free energy due to hydrostatic pres
sure and that due to the adsorptive force field at that point. The total free 
energy may also be obtained (eq. 236) from such measurements as vapor 
pressure. The partial free energy due to the field is found, therefore, im
mediately from the difference between the total free energy and the par
tial free energy due to hydrostatic pressure. I t is the gradient of this 
partial free energy, due to the adsorptive field at any point, which gives 
the magnitude of the force exerted by the soil on a water particle located 
at that point. 

Clearly, then, the presence of an adsorptive force surrounding the soil 
particles increases the magnitude of the component of the free energy 
due to hydrostatic pressure as well as the freezing-point depression of 
soil moisture. 

This effect of the adsorptive force field in producing hydrostatic pres
sure and therefore changing the free energy of the soil moisture is distinct 
from, and should not be confused with, the change in the free energy of 
the soil moisture caused by the mere presence of the soil moisture in the 
adsorptive force field surrounding the soil particle (art. 26). In the pres
ence of an adsorptive force field, the partial free energy of the moisture 
(due to the position of the moisture in the field) decreases as the partial 
free energy (due to the hydrostatic pressure caused by the field) increases. 
A detailed consideration of these relations is taken up in article 69. 

65. Effect of Dissolved Material and Hydrostatic Pressure on the Freezing Point 
and the Free Energy of Soil Moisture ^ 

Considerations of the effect of dissolved material and hydrostatic pres
sure on the freezing point and the free energy apply especially to soil 
moisture in the vicinity of the soil-particle surface. Let us first consider 
how dissolved material contributes to the freezing-point depression of 
soil moisture. This effect of dissolved material is superimposed upon the 
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effect of the adsorptive force field discussed in the previous article. The 
condition we wish to discuss is represented in figure 35 as part of a radial 
section of a soil particle covered by a layer of soil solution over which is a 
layer of pure ice. As the temperature is lowered, the water-ice interface 
moves in toward the soil solution, concentrating it. The free energy of the 
water just inside the water-ice interface, expressed in terms of the osmotic 
pressure AP0, can be calculated by the well-known equation 148 

Δ / = -vAPo. 

According to equation 187, an increase in the hydrostatic pressure, as 

. '. '· / · '. ; Wafer vapor · ; . ; · ' . · 

So// so/uf/on of osmof/c 

pressure Δ/% - η-γ af 
I I I I I I I I I I I I I I I I I I \Ίλ 

\Surface of so// parf/c/ef\ 

Fig. 35.—Part of a radial section through a soil particle covered by a layer of 
soil solution over which is a layer of pure ice; here t is the thickness of the unfrozen 
layer of water containing dissolved salt ; I is the la tent heat of fusion; v is the spe
cific volume of water; T is the temperature of soil moisture; AT is the number of 
degrees the whole system is below 0° C; Afo is the free energy due to osmotic 
pressure of soil solution a t the liquid-ice interface; and AP0 is the osmotic pressure 
of the soil solution a t the liquid-ice interface. Since Afo = — vAPo = — APo and v 
= 1 in the c. g. s. system, we have i^T 

Afo = - APo = ττρ- , 
according to article 29. 

well as an increase in the osmotic pressure or salt concentration (eq. 200), 
lowers the freezing point of water. Since both these factors are present in 
soil moisture in the vicinity of the soil-particle surface, the total freezing-
point depression is the sum of the depressions produced by each factor 
separately. Stated quantitatively, 

AT = ATP + ATo . (373) 

Here ATP represents the depression of the freezing point due to hydro
static pressure, ATo represents the freezing-point depression due to dis
solved material, and AT represents the total observed depression. But 
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increases in hydrostatic pressure cause increases in free energy (eq. 156), 
whereas increases in concentration of dissolved material cause decreases 
in free energy of the water (eq. 151 and 222). These facts will be amplified 
in the following discussion. 

As shown in article 25, the AfP due to the presence of hydrostatic pres
sure is given by Afp = vAPp, where the subscript P connotes hydro
static pressure. Also, according to article 24, Afo due to the presence of 
dissolved material causing the osmotic pressure APo is given by Af0 
= — v APo, where the subscript connotes osmotic pressure. Clearly, 
therefore, the total change in free energy Δ/ due to combined changes in 
concentration of dissolved material, as well as hydrostatic pressure, is 
given by the equation 

Δ/ = AfP + Afo = v APp -vAPo. (374) 

Experimentally it is often hard to measure APP and AP0 . It is there
fore convenient to substitute, for these terms, quantities more easily de
termined experimentally. We can do this by referring to equation 187, 
from which we see that 

APP = l ^ . 
TAv 

Here, it will be recalled, Av is always negative, since ice contracts upon 
melting. By referring to equation 200, we see that 

Tv 

Substituting these in equation 374, we have 

ν.<£+ψ. (375) 
Here Δ/ has been expressed in terms of ATP and AT0 and other quan
tities that can be obtained from any table of physical constants. The first 
term on the right of equation 375 is inherently positive when the hydro
static pressure is increased, since both the freezing-point change ATP and 
the change of volume Av are negative. The second term, on the other 
hand, is inherently negative, since the change in the freezing point AT o 
of the solution is negative when soluble material is added. Thus the two 
terms on the right of equation 375 are of opposite sign. 

It is sometimes thought that because both positive hydrostatic pressure and 
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dissolved material decrease the freezing point of a solution, these two factors 
should be additive in producing changes in the total specific free energy of 
the solution. As can be seen from both equations 874 and #75, however, this 
is not the case, since the changes in the free energy produced by hydrostatic 
pressure and osmotic pressure are of opposite sign. 

Thus, for example, the concentration and hydrostatic pressure in the 
soil solution might be such that ATp and AT o would be so related that 
the total change in specific free energy Δ/in equation 375 would be zero. 
In this case, the partial specific free energies produced by hydrostatic 
pressure and dissolved material are equal in magnitude but of opposite 
sign. 

Clearly, then, one of the most important problems related to the analy
sis of freezing-point data on soils involves the separation of the observed 
freezing-point depression into its two components—namely, that due to 
dissolved material and that due to hydrostatic pressure. 

The free energy of moist soil is then the sum of the free energies due to 
osmotic pressure and hydrostatic pressure, as well as the free energy due 
to the presence of the water in the adsorptive force field surrounding the 
soil particle. The latter has been considered in detail (art. 26) and will be 
considered later (art. 68 and 69). Only the former two factors would 
be expected to produce a freezing-point depression of soil moisture. 

A quantitative thermodynamic treatment will be given in article 69 
incorporating the factors mentioned above, for determining the free 
energy of soil moisture from measurements made with the dilatometer. 

66. Methods of Making Freezing-Point Measurements on Soils 

Two methods are commonly used in making cryoscopical measure
ments on soils or other materials. In one (often called the Beckmann 
technique, since the procedure followed is largely that used by Beck
mann in determining the freezing points of solutions) the soil sample is 
prepared at a certain moisture content and is placed in a vessel in which 
is inserted a sensitive thermometer or other temperature-measuring de
vice. Then the temperature of the moist sample of soil is lowered until 
freezing of the moist soil is just initiated. This temperature is then 
noted. A series of such measurements of the freezing point made on 
several separate soil samples, each at a different moisture content, fur
nishes the data necessary to construct a curve showing the dependence 
of the freezing point of soil moisture on the soil moisture content. 

In the other (often called the dilatometer method) whose thermody
namic treatment will be taken up in article 69, the sample of soil to be 
studied is placed in a closed vessel on top of which is attached a long ver
tical capillary tube. More than enough water is added to saturate the 
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soil, the amount of which is carefully determined. On top of the saturated 
soil is added some light oil (for example, kerosene) to fill completely all 
remaining space in the vessel, as well as a small part of the lower end of 
the capillary tube. The temperature of the vessel and of its contents is 
lowered until ice is formed within the saturated soil. A change from water 
to ice causes the contents of the vessel to expand. This expansion, due to 
the formation of ice, forces the oil up the capillary tube, which is cali
brated so that the exact amount of expansion can be calculated and 
therefore the amount of water changed to ice. Knowing the amount of 
ice formed, one can calculate the amount of water remaining unfrozen, 
since the total amount of water in the soil is known. Thus by determining 
the amount of unfrozen moisture in the more-than-saturated soil sample, 
for a series of temperatures below 0° C, we can, as with the Beckmann 
method, plot a curve showing the dependence of the amount of unfrozen 
moisture in the soil on the corresponding soil temperature. In contrast to 
the Beckmann method, we here obtain the entire curve from but one 
soil sample. 

67. Previous Quantitative Interpretation of Freezing-Point Data 

Data are available on the freezing point of moist soils {23, 24, 52, 77, 
114)· Some authors have made no attempt to interpret their findings in 
terms of thermodynamic equations. Although certain others have con
sidered this aspect of the problem, further analysis appears necessary. 

The effects of hydrostatic and osmotic pressure of the solution on the 
depression of the freezing point have been discussed earlier. In analyzing 
freezing-point data, no one seems to have made any quantitative use of 
the hydrostatic pressure caused by the presence of an adsorptive field 
surrounding soil particles, although Bouyoucos {23) considered it quali
tatively and concluded that it did not play a role in what he called "free 
water." Bouyoucos' work on the freezing point of soil solutions seems to 
indicate that he was convinced that the freezing point was largely de
termined by the concentration of dissolved material; for he said, "All 
evidences, both direct and indirect, point overwhelmingly to the fact 
that these high depressions of the freezing point are produced by, and 
represent actual concentrations." He apparently had certain doubts, 
nevertheless, for he made the following statement: "The foregoing 
hypothesis, however, does not explain why the lowering of the freezing 
point increases in a geometric progression while the moisture content de
creases in an arithmetical progression, and [does] not follow a direct in
verse proportionality ratio (approximately) as might be expected." As if 
he felt called upon to introduce another hypothesis, he remarked, "The 
hypothesis is also offered that some of the water contained by the soil 
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might be either loosely chemically combined or physically adsorbed, or 
b o t h . . . . " 

Schofield (138) interprets the freezing-point data secured with the 
Beckmann method on unsaturated soils by means of an equation, pre
sumably meant to be equivalent to equation 200, giving the relation be
tween the freezing-point depression and the osmotic pressure of the soil 
moisture. Although he does not specifically make the statement, we may 
logically conclude, in view of this similarity in the equations after sus
pected typographical errors are corrected, that he attributed the depres
sion of the freezing point of soil solution entirely to dissolved material. 
On the other hand, since his expression is similar to equation 205 ob
tained under case 3 of the generalized Clausius-Clapeyron equation, it 
may be that he assumed the water, at the water-ice interface, to be 
under a different pressure from that in the ice. That is, as the water under 
tension freezes out, it separates out to the higher pressure of one atmos
phere. This inequality of hydrostatic pressures at the water-ice interface, 
when the soil moisture is under tension, seems plausible, but more experi
mental work is necessary to substantiate it. 

A quantitative interpretation of the behavior of the freezing-point 
depression of saturated soils is given in articles 64, 65, and 69. 

68. Effect of an Adsorptive Force Field on the Freezing Point of Soil Moisture as 
Measured by the Beckmann Method 

When the freezing point of soil moisture is being determined by the 
Beckmann technique, the soil might be far from saturated, and very 
little if any of the water would then be expected to be under tension, so 
that case 3 of article 29 probably does not apply. In consequence, the 
adsorptive force field surrounding the soil particle will extend beyond 
the vapor-liquid interface of the moisture films. Figure 36, A, represents 
a radial section through the water-soil interface. The adsorptive force 
field is assumed to extend out to the dotted line F. Figure 36, B, shows a 
similar section through a body of free water unaffected by any soil par
ticle or other extraneous force field except that due to the body of water. 

Consider the surface layer of water of thickness Ath which is part of 
the whole water film of thickness h on the soil particle. Let us inquire how 
the average hydrostatic pressure in Ah compares with that in a similar 
layer At2 on free water, and how this difference in hydrostatic pressure 
influences their respective freezing points. If the average hydrostatic 
pressure in Ati is greater than in At2, the freezing point of Ati should be 
expected to be the lower, according to the Clausius-Clapeyron equation, 
187. It will be noticed that we are assuming that the hydrostatic pres
sure at the liquid-ice interface is the same in both phases and that, there-
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fore, the type of freezing considered by case 1 of article 30 applies. 
Since Ati is within the sphere of influence of the adsorptive force field sur
rounding the soil particle, its hydrostatic pressure will be greater and will 
increase progressively as the surface of the soil particle is approached 
(art. 63) and thus will have a finite freezing-point depression by virtue of 
the hydrostatic pressure arising from the presence of an adsorptive force 
field. This is, of course, in addition to the usual freezing-point depression 
caused by dissolved material, which we are, for the present, neglecting. 
The freezing-point depression should also be expected to increase as more 

Outer boundary of odsorpf/Ve 
force f/e/d produced ¿>y 
JO/7 porf/c/e 

F 

Fig. 36.—A, A radial section through a water-soil 
interface; B, a radial section through free, pure 
water. 

and more soil moisture is frozen, because the hydrostatic pressure at the 
liquid-ice interface increases as the interface moves closer to the soil 
particle. This agrees qualitatively with the usual observations made in 
determining the freezing point of moist soil by the Beckmann method. 

One might increase the hydrostatic pressure in At2 (by a piston, for 
example, or by any other external means) to the value found in Ati and 
consequently secure the same freezing-point depression for the two layers. 
Despite this equality of freezing-point depressions, the vapor pressures 
over the two layers would be quite different. The hydrostatic pressure 
produced by the piston on AU will increase the vapor pressure (art. 41), 
which originally was already greater than that over Ati because of the 
presence of the adsorptive field surrounding the soil particle. Thus two 
layers of ice, Ati and Δ22, may have the same freezing-point depression 
and yet possess widely different vapor pressures and consequently widely 
different free energies. The presence of the adsorptive force field sur
rounding the soil particle seems to account for this discrepancy of the 
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vapor pressures, although the freezing point of the water is the same in 
the two cases. 

Because of the·presence of the adsorptive force field, the escaping ten
dency of the water molecules from the soil moisture is reduced; conse
quently more work is required to carry a water molecule outward into 
the vapor phase against the adsorptive field of the soil, which is stronger 
than that of the free water. The velocities of the water molecules are 
distributed among the molecules according to the Maxwell distribution 
law (art. 54 and 55). Because of the adsorptive force field, those molecules 
having their velocities in the lower range of the Maxwell distribution are 
prevented from escaping into the vapor phase. The stronger the adsorp
tive force field, the larger the proportion of the slower molecules that are 
prevented from escaping. Not only will fewer molecules of the soil mois
ture be able to make the trip into the vapor phase, but those that do will 
be more inclined to return to the soil moisture because of the greater 
attractive influence exerted on them than when they are over free water. 
Thus, at equilibrium, there will be a smaller density of molecules over the 
moist soil than over the free-water surface. Since the average velocity is 
determined by temperature, which is the same for both Ati and Δ£2, then 
the vapor pressure will be higher over the free-water layer At2. 

We are led in consequence to the following considerations of the Beck
mann method when used in determining the freezing point of soil mois
ture at relatively low moisture contents where there is relatively little 
water under tension. 

The thicker the layer At of soil moisture we freeze out, the greater the 
hydrostatic pressure at the liquid-ice interface and consequently the 
greater the observed freezing-point depression (art. 63). When we deter
mine the freezing point of soil moisture by the Beckmann method, we 
therefore should try to freeze as thin a layer of soil moisture At as possible, 
for we wish to find the freezing point of the moisture that is most loosely 
bound. It is the freezing point of the outermost layer of infinitesimal thick
ness that we are seeking when we wish to determine the freezing point 
of a body of soil moisture by the Beckmann method. It is always the first 
layer to freeze. We should therefore supercool the soil moisture only as 
much as is absolutely necessary before freezing is initiated ; otherwise we 
shall obtain an erroneous value for the freezing-point depression, which 
is too low in proportion to the thickness of the layer frozen out. The freez
ing-point depression caused by the dissolved material is, of course, super
imposed upon the depression just discussed. 

At least three serious difficulties arise when one uses the Beckmann 
method for determining the freezing point of soil moisture at low moisture 
contents. Since the total thickness of the moisture film is small at the 
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lower moisture contents, the minimum thickness of the layer that can be 
frozen out in determining the freezing point of the soil moisture must be a 
large fraction of the total thickness of the layer of soil moisture. Thus the 
measured freezing-point depression is proportionately greater than that 
of the true value and really corresponds to a proportionately lower soil-
moisture content than the true one. The discrepancies are further mag
nified because the intensity of the adsorptive force field increases very 
rapidly as the surface of the soil particle is approached, which causes very 
significant changes in the hydrostatic pressure within thin moisture films 
when their thickness is changed but slightly. Attempts, of course, are 
made to correct for the amount of ice frozen out. The corrections usually 
applied are probably inadequate, since they do not consider the effect of 
the ice on the hydrostatic pressure in the liquid next to the soil particle. 
The presence of the ice layer (art. 63) would be expected to lower the 
freezing point of the remaining unfrozen liquid below what it would be 
for the same amount of liquid if the^ice were not present. 

A second difficulty at the lower moisture contents arises because the 
freezing out of the thin layer of water At reduces the amount of solvent 
liquid water to a relatively great extent and therefore concentrates the 
soil-moisture solutes in the same proportion, so that the observed 
freezing-point depression becomes still lower than the true value. 

The third difficulty with the Beckmann method at the lower moisture 
contents is that when we supercool the soil moisture as little as possible 
in order subsequently to freeze out as thin a layer of ice At as possible, 
the total latent heat of fusion required to melt the thin layer of ice is very 
small; and the soil moisture consequently may not hold the equilibrium 
temperature long enough to permit a dependable reading of the ther
mometer. 

69. Calculation of the Free Energy of Soil Moisture with Special Reference to the 
Interpretation of Dilatometer Measurements 

There are several ways of measuring the free energy of soil moisture in 
relation to water retentiveness. The dilatometer method, however, seems 
to lend itself to a detailed analysis of the factors contributing to the total 
free energy of soil moisture, since we have developed a theory that 
enables us to consider the effect of each separate factor, such as dissolved 
material, adsorptive force field, and hydrostatic pressure. 

As there is always an excess of water in the dilatometer, the freezing-
point measurements made under these saturated conditions (where none 
of the water is under tension) must be interpreted in terms of the actual 
conditions found in the field or laboratory, where the soil is unsaturated. 
For this purpose, reference is made to figure 37. Part A of figure 37 
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represents a moist soil at some particular moisture content where the 
average thickness of the water film is L We shall deal with a small enough 
radial section of moist soil so that the surface of the soil particle may be 
considered as flat. The figure at the right represents the same soil particle 
when placed in the dilatometer under conditions such that there is more 
than enough water to saturate the soil. The horizontal dotted line b 
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Fig. 37.—Comparison of conditions in moist soil 

outside and inside the dilatometer when the amount 
of unfrozen water in the dilatometer is the same as the 
actual soil moisture content in the soil outside the 
dilatometer. 

crossing both figures represents schematically the outer boundary of the 
adsorptive force field, which, we postulate, surrounds the soil particles. 
We are here assuming that the temperature of the dilatometer containing 
the saturated soil (fig. 37, B) is at such a temperature AT degrees below 
0° C that the amount of water remaining unfrozen just equals the 
moisture content of the moist soil represented in figure 37, A. In other 
words, the thickness t of the liquid water film covering the soil surface is 
the same in the two diagrams. 

The customary standard of zero soil moisture content (which is usually 
regarded as the state of the soil reached after prolonged drying at 110° C) 
should probably not be used here in determining the amount of water in 
the film. It is found that as the temperature is raised to higher values 
than 110° C (95) more adsorbed water is driven off. Here, we are con
cerned with all of the adsorbed water. 
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We seek now to represent the free energy of the soil moisture shown in 
figure 37, A, in terms of measurements of the total free energy of the un
frozen water in the dilatometer (fig. 37, B). To do this we shall first 
express the free energy Afs of the soil moisture in figure 37, A, in terms of 
its component free energies. We shall then represent the free energy AfD 
of the unfrozen water in figure 37, B, also in terms of its component free 
energies. Finally, we shall combine these two equations in such a way as 
to express the free energy of the soil moisture Afs in terms of the equiva
lent amount of unfrozen water and its freezing point in the dilatometer. 
We shall, in the future, represent this freezing point as AT degrees be
low 0° C. Often the freezing-point depression AT is spoken of as the 
freezing point AT. 

Free Energy Afs of Soil Moisture in Terms of Its Components.—Starting 
now by considering figure 37, A, let Afs represent the total specific free 
energy of water. This is the same and a constant throughout both phases 
when the soil-moisture system has been allowed to reach equilibrium. 
Expressed in terms of vapor pressure, Afs may be represented (art. 39) by 

Afs = RT\n^. (376) 
Vo 

This gives the free energy of the water in the soil-moisture system with 
reference to free, pure water at the same level as the moist soil, where ps 
is the vapor pressure of the soil moisture, and po is the vapor pressure over 
a free water surface used as the datum. In other words, Afs, as expressed 
above, represents the work per gram of water that must be expended in a 
reversible process by some exterior agency in carrying a particle of water 
from free, pure water (the datum) whose vapor pressure is p0 to the mois
ture in the soil whose vapor pressure is ps. 

If Afs proves to be negative, energy or work is released to the exterior 
agency in the process of carrying water from free, pure water to any point 
in the soil moisture. That is, a gram of water as soil moisture would 
possess less energy than a gram of free, pure water, and therefore the free, 
pure water would spontaneously tend to pass into or flow into the moist 
soil. 

The total free energy Afs of the soil moisture at any point in the liquid 
or vapor phase may be considered as a sum of several component free 
energies. Even though the soil moisture is in equilibrium and Afs is a 
constant throughout, the components of Afs may vary enormously from 
point to point in the soil moisture. Let us consider, for example, what 
these components of the free energy might be at the point ah immediately 
below the vapor-water interface (fig. 37, A). Three components must be 
considered. 
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A. Soil moisture has free energy áfPS due to the hydrostatic pressure 
exerted on it by the combined action of the atmosphere and any other 
external forces that might be transmitted to the air-water interface. The 
value of this pressure will be constant throughout the fluid, since such a 
pressure is transmitted uniformly throughout a liquid according to 
Pascal's law. In addition, the soil moisture at any point may have hydro
static pressure because of the adsorptive field surrounding the soil par
ticles. The field pulls the superincumbent water lying above the point in 
question towards the soil surface, and thereby produces a pressure similar 
to the hydrostatic pressure created in a body of water on the surface of 
the earth by the presence of the earth's gravitational field. At the point 
ai under consideration (fig. 37, A), the compression produced by the field 
willjDe assumed to be zero, since there is no liquid farther out from the 
soil S to press against the liquid layer W and compress it. 

The water at the air-water interface at the point ah for example, is 
under a hydrostatic pressure APPS because of the pressure exerted by the 
atmosphere. The value of the free energy AfPS due to this pressure is 
given by AfPS = v APPS (eq. 156), where v equals the specific volume of 
water (which in the c.g.s. system equals unity approximately) and where 
àPps equals the total pressure acting on the water at the point in ques
tion. We then have 

AfPS = 1 X APPS . (377) 

That is, the component of the free energy due to pressure is numerically 
equal to the hydrostatic pressure. 

At the point a\ under consideration, APPS is only 1 atmosphere, and 
no other external forces are acting upon the interface. If there were any, 
Afps would be augmented by the additional amount. When, therefore, 
the soil moisture exists under the usual conditions, the pressure APPS 
exerted on the water surface D is 1 atmosphere, and consequently 

APPS = 0.1 X 107 dynes per sq. cm. 
So that 

Afps = 1 X APps = 0.1 X 107 ergs per gram of water. 

But according to the conventions presented in article 39, we must take 

Afps = 0, (378) 

since only 1 atmosphere is acting on the air-water interface of the moist 
soil. This follows because of the peculiar conditions involved in the cus-
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tomary definition of the freezing point of pure water and what we have 
taken as our datum (art. 39). To support this statement, we must recall 
that one external condition defining the freezing point of pure water, 
0° C, is that the water is at a pressure of 1 atmosphere while freezing. 
Actually, if pure water could be frozen without any external force or 
pressure acting on it, its freezing point would be +0.0073° C, according 
to equation 187. 

B. The free energy of soil moisture has another component, Afos, be
cause it contains dissolved material. This component has, in previous 
literature {20, 103, 104) y been called the "osmotic potential"; but for 
reasons mentioned earlier, the term "free energy" will be adhered to in 
this discussion. 

If the osmotic pressure is APos at ax (fig. 37, A), then (art. 24) 

Afos = -vAPos· 

In the c.g.s. system the specific volume of water v is approximately equal 
to unity, and therefore 

Afos = - l X APos. 

We notice that the zero point of the osmotic component of the specific 
free energy is taken as pure water, containing no dissolved material. 
Under this condition the osmotic pressure APo equals zero. Also, we 
notice that unlike a positive hydrostatic pressure APp (which increases 
the free energy of water), an osmotic pressure AP0 decreases the poten
tial of the water, as is indicated by the minus sign in the equation above, 
as well as by article 65. That is, dissolved material decreases, whereas 
positive hydrostatic pressure increases, the specific free energy of soil 
moisture. 

The osmotic component of the free energy Afos of the water at the 
point ah which later will be shown to equal that at a2, may be expressed 
in terms of the freezing-point depression AT0s produced by the dissolved 
material, the osmotic pressure of which is AP0s- By equation 200, 

Δ Ρ θ Α = _ ^ = _ ^ , (379) 
vT T 

since v = 1, approximately, for water. Therefore (eq. 148), the osmotic 
component 

A/os — -\ —— . 
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Thus if the freezing-point depression of a soil solution AT o s due to 
osmotic pressure or dissolved material is determined, the osmotic com
ponent of the specific free energy of the soil moisture Afos can be found 
immediately. 

C. Soil moisture possesses free energy also because it is situated in a 
field of force. The component of the free energy due to this cause will be 
designated by AfFs and will be called the component of the free energy 
due to the force field. 

The component AfFs (art. 26), is roughly analogous to the gravita
tional potential of a particle above the earth's surface. As the particle is 
moved upwards against the earth's gravitational field, its gravitational 
potential increases. Upon its return to its original position, its potential 
energy is released. If it is allowed to fall freely, its gravitational potential 
will be transformed into kinetic energy; if suddenly stopped, it will be 
transformed into heat. The symbols AfFS represent the component of the 
free energy possessed, for example, by water at α,γ (fig. 37, A) by virtue 
of its position in the force field surrounding the soil particle. This might 
be due to any force field which may surround the soil particle and which 
acts on the water molecules, such as electric, magnetic, or gravitational. 
This would include any free energy due to orientation which the water 
molecules surrounding the soil particle may have. 

For soil moisture we shall take, as in the past, for the datum of the free 
energy due to the field, any point P in free, pure water beyond the in
fluence of the force field surrounding the soil particle. The outer range of 
influence of the force field surrounding the soil particle is schematically 
represented by the line bb in figure 37. The free energy of the soil moisture 
Afps at the point ax is then the work required per gram to carry water 
from free, pure water to α,χ. Because the water particles tend to move 
towards the soil surface and because mechanical energy is released in 
doing so, AfFS is always negative for soils except at the datum, where it 
is zero. 

We have considered in detail three of the most important components 
of free energy Afs of soil moisture. Let us now combine them so as to 
obtain the resultant. The free energy Afs of the soil moisture is the sum 
of the component free energies 

Afs = AfPS + Afos + AfFS. (380) 

Since the soil moisture is in equilibrium, Afs is a constant and the same 
at all points throughout the liquid and vapor phases (art. 22) as long as 
the moisture content remains the same, which in figure 37, A, means 
that the thickness t of the liquid layer remains constant. This follows 
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directly from the thermodynamic properties of free energy (art. 22). On 
the other hand, the three partial or component free energies may change 
enormously from point to point in the soil moisture. For example, if we 
assume that Afos is constant throughout the soil moisture, the component 
of the free energy due to the field AfFs will decrease as the soil surface is 
approached, while the component of the free energy due to hydrostatic 
pressure AfPS will increase in such a way as to keep the total free energy 
Afs constant. We shall wish to evaluate the total free energy Afs in terms 
of its partial or component free energies at the point a\ just under the 
vapor-water interface. 

Our object is now to determine the total free energy Afs of soil moisture 
at a given moisture content in terms of the total free energy of the soil 
moisture in the dilatometer AfD (which in turn is expressed in terms of 
the three following partial free energies : that due to the hydrostatic pres
sure AfpD, that due to the osmotic pressure AfoD, and that due to the 
adsorptive force field AfFD), obtained from freezing-point measurements 
made with the dilatometer on a saturated sample of the soil. This deter
mination can, as we shall see, be made, provided we know the freezing 
point AT at which the amount of unfrozen moisture remaining in the 
dilatometer (fig. 37, B) equals the moisture content of the soil in question 
(fig. 37, A). In other words, we require the freezing-point depression AT 
in order that the thickness t of the unfrozen water (fig. 37, B) may be 
equal to the thickness of the soil-moisture film (fig. 37, A). The reason for 
making the amount of unfrozen water equal in the two parallel cases will 
become apparent later. 

Free Energy Δ/D of the Unfrozen Water in the Dilatometer Expressed in 
Terms of Its Components.—Before we can express Afs of the moist soil in 
terms of data obtained from the dilatometer, we shall obtain an expres
sion for the total free energy AfD of the soil moisture in the dilatometer, 
in terms of its component free energies. This will require a detailed con
sideration of the component free energies of AfD. 

Figure 37, B, represents a small portion of a radial section of a soil 
particle with a liquid layer of thickness t overlain by an ice layer I and 
by water vapor V. The outer boundary of the influence of the adsorptive 
force field surrounding the soil particle is schematically represented by 
the line bb. Any water lying beyond this line is free from the body forces 
exerted by the soil particle. Since the point a2 (fig. 37, B) is within bby it 
will be affected by the attractive force surrounding the soil particle. 

Let us express Δ/ζ>, the total free energy of water in any of the three 
phases, in terms of its components at the point a2 in the liquid adjacent 
to the water-ice interface D. Let AfD equal the total free energy of the 
water in figure 37, B} under the conditions assumed in figure 37, A. The 
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value of AfD is a constant and the same throughout all the three phases 
(liquid, ice, and vapor) when the system is at equilibrium, because of the 
thermodynamic properties of free energy (art. 22). Expressed in terms 
of the vapor pressure of the vapor phase, AfD may (art. 22 and 39) be 
represented by 

AfD = RT\n^. (381) 
Po 

Like Afs, AfD is measured with respect to the point P in free, pure 
water, which is our datum; pD denotes the vapor pressure of the ice at 
the temperature TD of the partially frozen soil moisture in the dilatom-
eter, and po denotes the vapor pressure of the pure, supercooled water at 
the same temperature TD. 

We shall now consider in detail (fig. 37, B) the three component free 
energies that go to make up AfD at the point a2 in the water layer adja
cent to the water-ice interface. 

A. Let AfpD represent the component free energy due to hydrostatic 
pressure exerted on the unfrozen water layer of thickness t. This compo
nent is due to two factors. One of these is the force or "weight" of the 
superincumbent ice between D and bb which lies within the influence of 
the adsorptive force field and which presses against the liquid water 
layer of thickness t (art. 64). This hydrostatic pressure in the soil mois
ture is analogous mechanically to the hydrostatic pressure found below 
the surface of a body of water in a reservoir. In the water of the reser
voir, the hydrostatic pressure is produced by the weight of the overlying 
water arising from the presence of the earth's gravitational field. In soil 
moisture, the hydrostatic pressure arises from the presence of an adsorp
tive force field surrounding the soil particle. The other factor that con
tributes to AfpD is the atmospheric pressure exerted on the air-ice inter
face and communicated, in turn, to the water-ice interface. 

The combined hydrostatic pressure APPD due to both of the pressures 
mentioned above produces a freezing-point depression ATP of the soil 
moisture at the water-ice interface, in accordance with the Clausius-
Clapeyron equation (art. 27) 

TAv 
We find (eq. 156) that 

AfPD = vAP = vl-^ = l-^Xl, (382) 
TAv TAv 

since v = 1, approximately, in the c.g.s. system. Thus a determination of 
the freezing-point depression ATP due to the hydrostatic pressure of the 
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water at a2 lying in the water-ice interface (fig. 37, B) will immediately 
determine the component free energy AfPD of the water at the water-ice 
interface, since all the other quantities in equation 382 are well-known 
constants. 

If dissolved salts are present in the liquid water layer of thickness t 
(fig. 37, B), the total freezing-point depression AT of the water at a2 
adjacent to the water-ice interface^in the dilatometer will have two com
ponents: ATp, due to hydrostatic pressure just discussed; and AT0, due 
to the osmotic pressure of the dissolved material within the unfrozen 
water layer to be considered below. As will be recalled (art. 65), although 
hydrostatic pressure and dissolved material both produce freezing-point 
depressions of the soil water, whose combined freezing-point depression 
is the arithmetical sum of both, positive hydrostatic pressure gives soil 
moisture a positive component free energy, whereas dissolved material 
gives water a negative component free energy. Thus the component 
freezing-point depressions ATP and AT0 are additive; but the component 
free energies AfP and Afo are sub tractive, tending to neutralize each 
other (art. 65). 

B. Let AfoD represent the component free energy of the water at a2 of 
figure 37, B, possessed because of the dissolved material.The same consid-

7 AT 
erations apply to Af0D as were made for Afos- Therefore Af0D= H 

where AT0D represents the component freezing-point depression of the 
water at a2 in the water-ice interface because of the dissolved material. 

Suppose a very small layer of water at the interface D (small as com
pared with the total thickness of the water film) is frozen and removed 
from solution. This procedure will concentrate the solute in the remaining 
liquid soil moisture, increasing its osmotic pressure AP0D as well as its 
freezing-point depression AT0D> Assuming for the present that the solutes 
are uniformly distributed throughout the liquid soil moisture, then if 
half the liquid layer is frozen, the osmotic pressure AP0D as well as the 
freezing-point depression ATOD of the remaining liquid will be doubled. 
Thus the relation between the volume of the unfrozen moisture and its 
osmotic pressure will follow van't Hoff's law (eq. 226). Because of the 
hypothesis above, as more of the soil moisture is frozen, the osmotic pres
sure APOD, together with the freezing-point depression AT0D of the un
frozen moisture, should be expected to increase approximately in accord
ance with the following equations : 

(amount of soil moisture still unfrozen) X (osmotic pressure AP0D) 
= (a constant at a specific temperature) 

(amount of soil moisture still unfrozen) X (freezing-point depression ATOD) 
= (a constant at a specific temperature). 
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I t is generally conceded, however, that the solute concentration in
creases as one approaches the soil-particle surface. Therefore, as the 
amount of solvent or liquid water is decreased by the gradual freezing 
out of soil moisture, one might expect the osmotic pressure AP0D as well 
as the freezing-point depression ATOD to increase more rapidly than is 
predicted by the equations above. To a first approximation, however, we 
shall assume the above equations. Further work with the dilatometer 
should shed more light on their validity. 

Thus if the temperature of the saturated soil in the dilatometer is 
lowered so as to freeze part of the soil moisture, the part of the freezing-
point depression due to dissolved material, ATOD, determines the osmotic 
pressure APOD (eq. 200) and therefore the osmotic component of the free 
energy AfoD of the soil solution at the water-ice interface D of figure 
37, B, in accordance with equation 148. 

Since we have postulated that the thickness t of the unfrozen or liquid 
water layer surrounding the soil particle in the dilatometer (fig. 37, B) 
is the same as the thickness of the moisture layer surrounding the soil 
particle outside (fig. 37, A), we should expect that 

Afos = AfoD (383) 

since there is, to a first approximation, the same amount of liquid water 
as well as dissolved material present in the two cases. 

C. Let AfFD represent the component free energy possessed by the 
water at a2 (fig. 37, B), arising because it is situated within the adsorptive 
force field surrounding the soil particle (art. 26 and 64). Comparing 
AfFD and AfPD above, one may say that AfFD is the component free 
energy possessed by water at a2 by virtue of its position in the adsorptive 
force field, whereas AfPD is the component possessed by water at a2 by 
virtue of the hydrostatic pressure there, arising in part from the presence 
of the force field surrounding the soil particle and acting on the super
incumbent ice layer, and in part from external agencies such as atmos
pheric pressure. As was mentioned for AfFS, the free energy AfFD due to 
the adsorptive force field is roughly analogous to the gravitational poten
tial possessed by a mass in the earth's gravitational field. All the con
siderations mentioned in connection with AfFS apply here to AfFD. But in 
addition, AJFD includes any effect of the adsorptive field surrounding the 
ice, which effect we shall represent by K. Since the points αλ and a2 are at 
the same distance t from the surface of the soil particles, we may, for 
reasons that will follow, write 

AfFD = AfFS + K. (384) 
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Since K will enter into the final expression for the total specific free 
energy of the soil moisture AfS) we had better consider its meaning in 
more detail and evaluate it. Consider again figure 37. As will be recalled, 
the datum for the free energy is taken as any point (here schematically 
represented by the point P) in free, pure water outside the influence of 
the adsorptive force field. The total free energy AfFS at ai in the soil mois
ture represents the work per gram of water required to carry water from 
the point P to «i against the force of the adsorptive field surrounding the 
soil particle. Since water is attracted toward ah mechanical energy is re
leased by the water in moving it from P to a\. Consequently AfFs, the 
component of the free energy due to the adsorptive force field, will be 
inherently negative (eq. 168). 

Let us now evaluate the component of the free energy Δ/VD at the 
point a2 in the water of the water-ice interface of the dilatometer. I t will 
be shown, as stated by equation 384, that AfFn may be considered as 
made up of two parts, one of which is AfFS. In A of figure 37, AfFS repre
sents the component free energy produced by the adsorptive force field 
surrounding the soil particle. In B of figure 37, AfFS is only part of Δ/VD. 
The other part, K, of AfFD arises from the presence of the adsorptive force 
field produced by the superincumbent ice layer that acts upon the water 
at Ü2. The term AfFS is therefore the work per gram required to carry 
water from the point P to the point «i or from P to the point a2 against 
the adsorptive force field produced only by the soil particle, neglecting 
the effect of the ice layer at a2. This follows because ax and a2 were as
sumed to be the same distance t from the soil-particle surface. 

The second part of AfFD, which we shall call K, is therefore the work 
per gram of water required to carry the water from the point P to the 
point a2 through the adsorptive force field produced by the ice layer 
only. In other words, the force field at a2 differs from that at ai only in 
that a2 is acted upon by the additional adsorptive force field produced by 
the ice layer. Since the soil in the dilatometer is always saturated, the ice 
layer will, in general, be so thick that K is independent of the amount of 
unfrozen water and ice present. Only when the thickness of the ice layer 
becomes such that its outer boundary Q falls inside the range of influence 
bb of the force field surrounding a soil particle will K change—that is, 
begin to decrease. One may then consider if as a constant representing 
the work per gram of water required in carrying water from the point P , 
through the adsorptive force field produced only by the ice, to the surface 
of the ice layer. Since it is a general characteristic of free energy that the 
total free energy at a point equals the sum of the components, we have 
immediately 

AfFD = AfFS + K. 
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This follows because, although superimposed force fields are added vec-
torially, the associated free energies are added as scalars. Thus the total 
free energy due to the force field AfFD at a2 has been split up into two 
parts: (1) the work per gram Afp s required to carry water from the point 
P to a2 through the adsorptive force field produced only by the soil par
ticle, and (2) the work per gram of water K required to carry water from 
P to a2 through the adsorptive force field produced only by the superin
cumbent ice layer. Since the thickness of the liquid layer is the same in 
the case of both A and B of figure 37, any effect of AfFS will be found to 
cancel out in the end. It might at first have seemed strange to split AfFD 
into two parts, one of which is AfFs; but it was merely a mathematical 
artifice permitting us to reduce the number of unknown variables. If we 
know Afpsj we can now determine AfFD immediately, except for the uni
versal constant K. 

The free energy AfD of the moisture in the dilatometer is then the sum 
of three component free energies just considered in detail : 

AfD = AfPD + AfoD + AfFD . (385) 

Since we have assumed that the soil moisture in the dilatometer is in 
equilibrium, the total free energy AfD must be a constant having the 
same value at all points throughout the liquid, ice, and vapor phases so 
long as the thickness t of the liquid layer remains the same. This is true 
even though the three component free energies may change enormously 
from one point to another in the soil moisture or in going from one phase 
to the other. No matter how they vary among themselves, their sum, 
under equilibrium conditions of the soil moisture, is a constant. This 
follows immediately from a consideration of the thermodynamic proper
ties of the free-energy function (art. 22). 

By using equations 380 and 385, we can now express the total free 
energy Afs of the moist soil at a given moisture content in terms of a 
freezing-point measurement made on a similar sample of saturated soil 
placed in the dilatometer. 

Referring again to figure 37, A, we have (as has previously been shown 
at the point ax in the moist soil) 

Afs = Afps + Afos + AfFS . (386) 

At a like position a2 in the saturated soil (fig. 37, B) in the dilatometer, 

AfD = AfPD + AfoD + AfFD . (387) 
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Also, since we have the same amount of liquid water surrounding the soil 
particles in the two cases (permitting the reasonable assumption that the 
concentrations are the same in both cases, as previously mentioned) and 
since α,ι and a2 are at the same distance from the surface of the soil par
ticles, we have equations 383 and 384 giving the free energy due to the 
osmotic pressure and the field, respectively : 

AfoD = Afos ; (388) 

AfFD = AfFS + K . (389) 

With the aid of these two equations, equation 387 becomes 

AfD = AfPD + Afos + AfFS + K. (390) 

Therefore, combining equations 386 and 390 by equating (Afos + AfFs) 
of the former to (Afos + AfFS) of the latter, we have 

Afs = AfD - AfpD + Afps - K. (391) 

In our present case, AfPS = 0 (eq. 378). This follows (as was explained 
before where AfPS was considered in detail) because of the peculiar con
ditions involved in the customary definition of the freezing point of pure 
water as well as the definition of 0° C and because the only pressure acting 
on the soil moisture at the air-water interface is 1 atmosphere. The free 
energy of the soil moisture then becomes 

Afs = AfD- AfpD-K. (392) 

Also, because of our method of defining 0° C, the hydrostatic pressure to 
be used in evaluating AfPD at any point in the dilatometer is the total 
hydrostatic pressure at that point minus 1 atmosphere. If, then, the 
dilatometer contents are open to a pressure of 1 atmosphere, as is usually 
the case, then AfPD is due entirely to the hydrostatic pressure caused by 
the adsorptive field surrounding the soil particle. 

The terms AfD and AfPD (eq. 392) can be expressed in terms of measur
able quantities such as temperature and pressure, as was shown earlier 
in this article when AfD and AfPD were considered in detail. We have then 

Afs = Β Γ Ι η ^ - ^ - K (393) 
Po TAv 

where ATp is the freezing-point depression due only to hydrostatic près-
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sure in the soil moisture.This, of course, represents the difference between 
the total freezing-point depression AT and that due to the presence of 
dissolved material AT0 (art. 65). 

We now wish to evaluate K. The term K is a constant and, as pre
viously pointed out, is in general independent of the amount of unfrozen 
water in the dilatometer. Thus, whether one evaluates Afs for small or 
great amounts of unfrozen water, K should remain unchanged. If, then, K 
can be evaluated at some particular value of ATP in the equation above 
corresponding to a given amount of unfrozen moisture, it will have been 
determined for all others. We shall proceed to evaluate it in equation 393 
at such a freezing-point depression ATP that the water-ice interface is 
beyond the influence of the adsorptive force field surrounding the soil 
particle—that is, beyond bb of figure 37, B. 

Suppose Afs is evaluated for a moisture content (fig. 37, A) such that 
the thickness t of the unfrozen water layer is greater than the range of 
influence bb of the adsorptive force field exerted by the soil particle. We 
shall distinguish Afs under these conditions by Afs

f. In this upper range 
of moisture contents, the freezing-point depression due to hydrostatic 
pressure ATP must equal zero, since the adsorptive force field surround
ing the soil particle does not in this case extend out far enough to produce 
any hydrostatic pressure at the water-ice interface. Thus in this particu
lar case the third term in equation 393 drops out, and we have 

Afs' = RTln^-K. (394) 
Vo 

Since, in order to evaluate K, we are considering a very wet soil (fig. 37, 
A) where t is very great, then the vapor pressure ps of the soil moisture 
equals the vapor pressure PD of the parallel case of the unfrozen water in 
the dilatometer (art. 22) when the interface D (fig. 37, B) lies above the 
plane bb. In other words, t extends beyond the adsorptive force field of 
the soil particle. Equation 394 then becomes 

Afs' = RTln^-K. (395) 

The term Afs' of the reduced equation 395 can readily be evaluated. 
Since the point a2 (fig. 37, B) is now assumed beyond the adsorptive force 
field, the only significant factor contributing to the free energy Afs of 
the soil moisture is the osmotic pressure of the dissolved material in the 
soil solution. Hence, under these special conditions, the total freezing-
point depression AT must be the same at the air-water interface of the 
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moist soil as at the water-ice interface in the dilatometer. Thus since 
Afs' is produced entirely by dissolved material, we may (eq. 207) express 
Afs' in still another way : 

7 AT 
*fs' = 4r· (396) 

Combining equations 395 and 396 we get: 

— = RT\n^-K. (397) 
T p0 

But 
# T l n ^ = + — (398) 

Po T 

since (eq. 236 and 207) the two members of equat ion 398 are merely two 
ways of expressing the free energy of the same solution due to the pres
ence of dissolved mater ia l and since t he concentrat ions of t he soil solu
tions of bo th A and B of figure 37 are the same to a first approximat ion. 
T h e first member expresses the free energy of the solution in te rms of its 
vapor pressure; the second, in te rms of its freezing-point depression. 
T h u s (eq. 398) t he two te rms of equat ion 397 cancel out , and we find 

K=0. 

T h e free energy (eq. 393) of soil mois ture a t a par t icular soil moisture 
content , as determined from freezing-point measurements carried ou t 
with the di latometer , takes on the final form 

A / s = m n ^ _ ^ , (399) 
Po TAv 

Here it is recalled that : 

T = temperature of the dilatometer corresponding to the total 
freezing-point depression AT necessary to freeze out all but an 
amount of moisture equal to the soil moisture content whose 
free energy is desired (fig. 37). 

ATp — the part of the total freezing-point depression AT in the dila
tometer due to hydrostatic pressure alone; since this is a de
pression, it will be substituted as a negative quantity numer
ically. The value of ATP is determined from the total freezing-
point depression measured with the dilatometer by subtracting 
from the latter the freezing-point depression produced by the 



Feb. 1943] Edlefsen-Anderson: Thermodynamics of Soil Moisture 235 

dissolved material. The latter is readily determined at each 
temperature from a knowledge of the freezing-point depres
sion of the unfrozen soil solution in the dilatometer and the 
amount of unfrozen water shown by the dilatometer at each 
temperature. 

PD = the vapor pressure of the ice in the dilatometer at the tempera
ture T. 

Po = the vapor pressure of supercooled water at the temperature T. 
R = gas constant per gram of water. 
I = heat of fusion of water which must be taken as negative if Av 

is taken as positive. 
Δ^ = volume change when 1 gram of water changes to ice; since 

water expands on freezing, Av will be positive. 

As will be recalled (following eq. 186), the ratio — is always negative; 
Av 

and since the freezing point T of soil moisture is always less than 0° C, 
ATp is also always negative. The quantity Afs (eq. 399) is therefore 
composed of two negative terms. 

This equation permits us to evaluate the free energy Afs of soil mois
ture, at a particular moisture content, from freezing-point measurements 
made with a dilatometer. A series of such evaluations will be reported by 
the authors in a separate publication. 

70. Heat of Wetting and Swelling of Soils 

When any dry substance, such as a soil, containing colloidal material 
is wetted, several phenomena are observed. There is usually a change in 
color, an increase in volume, and an increase in temperature. Since heat 
is developed at the same time that a change in volume takes place, 
physical chemists and botanists have devoted considerable attention to 
what has been called "heat of swelling." The differential heat of swelling 

f — ) is the heat developed dq when the volume of the material wetted 

by the liquid changes by an amount dV. The subscript T is added to 
indicate that the initial and final temperature must be the same during 
the determination of dq. The differential heat of swelling increases rap-
pidly as the moisture content of the substance being wetted decreases. 

The differential heat of swelling f — ) is closely related to the differ

ential heat of wetting ( — ) . This relation will be discussed later. The 

\dm/T 
differential heat of wetting of a soil at a particular moisture content may 
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be defined as the ratio of the heat developed dq to the mass of water dm, 
added uniformly throughout to a large amount of the moist soil already 
at the moisture content m. We note that enough soil is taken so that the 
amount of water dm added to the moist soil does not change the soil 
moisture content appreciably. If we take a very large amount of soil, the 
differential quotient is the heat developed when 1 gram of water is added 
and distributed uniformly throughout the large mass of soil. 

The differential heat of wetting 
\dm/2 

may be measured in three 

ffaetf of tveff//?/ a, H/fteû dry so/7 /s 
V we/fed fo mo/sfi/re co/zfe/jf /r? 

ffeaf of weff/flg of dry so/7 Q0 

f/eaf of we/f/ng Q of so// 
n/Aose mo/sfare coûfeûf /s m 

§ k úrams of wafer /n //? so/7 sa/np/e fivaose dry we/gf/f /s 
^ Vcs &yra/ns) before // /s dropped //?/<? ÛÛ excess of wafer 

Is 
Fig. 38.- -Integral heat of wetting of soils as a function 

of moisture content. 

ways. In the first method, the material is wetted by adding a small incre
ment of water Am and measuring the quantity of heat Aq developed by 
the increment of moisture. This method, however, presents serious ex
perimental difficulties: It is impossible to make moisture distribute itself 
uniformly throughout a soil within a reasonable period at any moisture 
content below the moisture equivalent of the soil (157, 158, 163); and it 
happens that the moisture equivalent always falls in the wet range of 
soil moisture contents, where the heat of wetting is practically zero. Such 
measurements, therefore, cannot well be made with reasonable accuracy 

' at the moisture contents usually found in soils where plants are growing. 
In the second method we prepare the soil sample at the desired mois

ture content in any of the standard ways. For example, we might spray a 
fine fog of water vapor over the dry soil and then enclose it in an airtight 
vessel until an equilibrium distribution of soil moisture is established. 
After the soil sample has reached equilibrium, suppose we drop it into a 
calorimeter containing an excess of water and measure the amount of 
heat Q, often called the integral heat of wetting, evolved by the soil sam-
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pie, whose dry weight is G and which originally contained m grams of 
water. We can repeat the same procedure for a series of soil samples of 
varying moisture content ra, and plot the results as shown by curve A 
(fig. 38). The vertical distance from the origin to the point P (where the 
point P is the intersection of curve A with the vertical axis) represents 
the amount of heat Q0 liberated when enough water is added to the dry 
soil to saturate it. The difference between Q0 and any other Q, associated 
with a particular moisture content m, represents the heat q liberated 
when dry soil is wetted uniformly to the particular moisture content m. 

\dm/T 
The slope ( — ) of this curve is the magnitude of the differential heat 

\dm/T 
of wetting. The reason is readily seen if we draw a horizontal line B from 
P. We see from the curve that the more water m we add to the originally 
dry soil sample, the greater is the amount of heat q evolved. 

The third method, which is indirect, uses the Clausius-Clapeyron 
equation : 

\dT/ 
l = T[^)(vv-vL), (400) 

as derived in article 27, where I represents the heat required to vaporize 
1 gram of water (that is, the latent heat of vaporization) and where vL 
and vv are the specific volumes of liquid and vapor, respectively, at the 
vapor pressure p. Here {vv — v£) = Av is the change in volume accom
panying the change in phase from liquid to vapor. If vL may be neglected 
in comparison with vv, as is usually the case, we may write 400 in the form 

m l=Tvv(^-). (401) 

If we may assume that the vapor obeys the perfect gas law, we may ex
press vv in terms of p ; and 401 becomes 

l = RT^dp=RT2d}nPt ( 4 0 2 ) 

p dT dT 

The latent heat of evaporation I is the negative of the heat of condensa
tion or adsorption, which we shall denote by λ; that is I = — λ. The heat 
of condensation λ is therefore the amount of heat liberated per gram of 
water vapor when the vapor condenses completely to the liquid state. 

Expressed in terms of λ, equation 402 becomes 

x==_RT2d]np^ 
dT 
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We shall denote by λ0 the heat liberated per gram when water vapor con
denses to the free, pure liquid state; and by λ the heat liberated per gram 
when water vapor condenses uniformly onto a large amount of soil 
already at a definite moisture content. We have, then, from the above, 
both 

RT2dJnpo a n d X e_B r tdIn£ ( 4 0 3 ) 

dT dT 

where p denotes the vapor pressure of the moist soil and p0 that of the 
free, pure water at the same temperature, T. 

The heat of condensation or adsorption λ of soil moisture may be 
thought of as composed of two parts: (1) the heat liberated λο when 1 
gram of water is condensed from the saturated vapor of the free liquid 
state; (2) the heat liberated when the same gram of water is taken from 
free, pure water and evenly distributed throughout a large mass of the 
soil at the moisture content at which we wish to determine the differen
tial heat of wetting. To be strictly correct we should take so large an 
amount of soil that the addition of the gram of water will not alter the 
moisture content appreciably. The second part of the above is recognized 

immediately to be the differential heat of wetting ( — ) . Therefore 
\dm/T 

λ = λ„ + (^) 
\dm/T 

or 

\dm/T 
which with 403 becomes 

(9Λ) =-BT**hp+RT**h 
\dm/T dT dl 

Hi 
dT 

din 
= fiy2c¿(lnpo-lnp) = Rj,2 ® 

dT dT 
or, for small finite changes, 

/ x ΑΦ) 
(*1) =RT> ILL. (404) 
\dm/T AT 

Here the differential heat of wetting ( — ) denotes the heat liberated 
\dm/T 

per gram of water added when pure water whose vapor pressure is p0 at 
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the temperature T is added to moist soil whose vapor pressure is p at the 
temperature T. 

Equation 404 may, by a slight transformation, be adapted to the 
evaluation of the differential heat of wetting from measurements of vapor 
pressure of soil moisture at two different temperatures. If, therefore, the 
vapor pressures p0 and p of the free water and the moist soil, respectively, 
are measured at two different temperatures, T\ and T2, we may write 

/•Λ M , 4" (g)-kfc)] (405) 
\dm/T T2 - Τλ 

as representing a close approximation to the truth. Here we have resorted 
to the approximation of replacing the infinitesimal change of the loga
rithm of the pressures as well as the temperature by finite changes. This 
implies that the ratio of the finite changes is practically equal to the ratio 
of infinitesimal changes. At the same time, we have replaced T2 by 
T i T2 as being a very good average of T2 over the range for which the 
ratio is being determined. Thus, by measuring the vapor pressures pi 
and p2 of the moist soil as well as the vapor pressures poi and p02 of a free 
body of water at two different temperatures T\ and T2} we can evaluate 

the differential heat of wetting ( — ) . Since the determination of the 
\dm/T 

differential heat of wetting of a soil at a particular moisture content de
pends upon the measurement of the relative vapor pressure of a free body 
of water po with respect to that of the soil moisture p) evidently equation 
405 is most useful in that range where p0 differs appreciably from p—that 
is, for relatively dry soils. 

Finally, it is interesting to observe the close relation existing between 
the differential heat of wetting ( — ) and the differential heat of swelling 

( \ \dm/T 

— ) . As was proved in article 7, we may write 
(dÄ) =(d-°L) (djA 
\dV/T \dm/T \dV/T 

And according to article 6, the second term on the right may be trans
formed into its reciprocal, which is more readily visualized, giving 

/eq\ = Wr (406) 
\dV/T /dV\ 

\dm/T 
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\dm/T 
where ( — ) is the total increase of volume of our moist soil per unit 

\dm/T 
mass of water added at a particular soil moisture content m, when the 
initial and final temperature during the process are kept the same, and a 
large enough amount of soil is taken so that the moisture content of the 
soil is not changed appreciably by the addition of the moisture. The 
volume here considered is the actual volume occupied by both soil and 
water but does not include the volume occupied by air. 

If, as is frequently the case, no great change occurs in the total volume 
of the water and soil when water is added to the soil and if we use the 

c.g.s. system, we may set ( — ) = 1 . Under these conditions, the heat 

of wetting would be numerically equal to the heat of swelling according 
to equation 406, which becomes 

(dJL) = (*Λ) . (407) 
\dV/T \dm/T 

We have then for the heat of swelling, according to 405 and 406, 

, . ΑΤχΓ,Γΐη^ν^ί-ΥΙ/ s 
(*ή = L_w WJ (βν\ 
\dVjr (Γ, - TO \dm/T 

And as mentioned above, if ( — ) = 1 , approximately, in the c.g.s. sys-
\dm/T 

tem, equation 408 becomes 

, χ RTlT2\In (Έή-1η(^)] 
(dq\ L W W J ; (409) 
\dV/T (T, - Ti) 

enabling one to determine the heat of swelling of soil in terms of its vapor 
pressure at any two different temperatures, Ti and 5P2. Equation 408 or 
409 can be used easily only for comparatively dry soils, for the reasons 
given in connection with equation 405. 

Incidentally, ( — ) is not exactly equal to 1, but departs from it 

slightly in drier soils. 

file:///dVjr
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71. Free Energy and Vapor Pressure of Soil Moisture in Relation to the 
Swelling Pressure of Soils 

As will be recalled, the osmotic pressure of a solution is defined as the 
hydrostatic pressure ΔΡ that must be placed on the solution to establish 
equilibrium between it and the pure solvent, through a semipermeable 
membrane—that is, to raise the vapor pressure or free energy of the 
solvent of the solution to that of the pure solvent. The swelling pressure 
of a colloid is defined in exactly the same way: it is the hydrostatic pres
sure ΔΡ that must be applied to the water films surrounding the colloidal 

P/sfon w/fh sem/permeob/e membrane 

motif coffo/cf pure free water 

3 1 
Fig. 39.—Moist colloid under the hydrostatic pressure necessary 

to make it in equilibrium with free, pure water. 

particles in order to raise the vapor pressure of the colloid moisture to 
that of free, pure water at the same temperature. 

One might even speak of the osmotic pressure of a colloid in analogy 
with that of a solution, as far as external appearances are concerned. In
ternally we should find the kinetic picture somewhat different. The vapor 
pressure of a solution is reduced by the solute particles in proportion to 
the ratio of the relative number of solute particles to solvent particles; 
that of a moist colloid, by the adsorptive forces surrounding the colloidal 
particles as well as by any solute that might be present in the colloid 
moisture. 

Suppose the moisture in a colloid is at equilibrium with its vapor in a 
closed chamber (fig. 39). If a vessel of free water is brought into the 
chamber, the equilibrium will be disturbed, and the free water will distil 
onto the colloid because the vapor pressure or free energy of the free, 
pure water is greater than that of the colloid moisture. To restore equi-
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librium in the chamber, we need only apply a hydrostatic pressure ΔΡ to 
the colloid moisture (by means of a piston, permeable to vapor but not 
to liquid water) sufficient to raise its free energy and consequently its va
por pressure by the amount Δρ, making the vapor pressure of the colloid 
moisture equal to that of the free, pure water. This particular change of 
the hydrostatic pressure ΔΡ has been defined as the "swelling pressure." 

As was shown in connection with equation 238 with the aid of equation 
156 and article 22, the increase of the free energy Δ/ of a liquid as well as 
of its vapor (which, in the present case, is the colloid moisture) due to a 
hydrostatic pressure ΔΡ on the liquid is given by 

Δ/ = vL ΔΡ = vvAp. (410) 

Thus to increase the free energy of colloid moisture by the amount Δ/ to 
that of free, pure water we must exert a pressure ΔΡ on the colloid mois
ture, which raises its vapor pressure by the amount Ap. Let APC denote 
the hydrostatic pressure necessary to raise the vapor pressure p of the 
colloid moisture to that of free water po, in analogy with APo for osmotic 
pressure. 

The free energy of the colloid moisture, which we shall represent by 
Δ/c, is therefore a negative quantity equal to — Δ/ of equation 410, since 
we always measure free energies with respect to free, pure water. That is, 

Afc = - Δ / = -vLAPc = -vvAp. (411) 

Thus if the swelling pressure in the colloid is APc, the free energy Δ/c of 
the colloid moisture is —vLAPc. Equation 411, by the way, has the same 
form as equation 151 for the free energy due to osmotic pressure. 

We wish now to express the swelling pressure APC in terms of the vapor 
pressure p of the colloid. From equation 411 we may write, for infinitesi
mal changes, 

VL dPc = vvdp . 

Assuming that the vapor obeys the ideal gas law (eq. 367), we have 

VL fAPCdPc = RTr°d-V. 
Jo J v p 

APc = ^ l n ^ ; 

Integrating, we have 

APC = 
VL V 

or, by inverting the ratio ~ , we get 
V 
A P C = - ^ ΐ η ^ - . (412) 

VL PO 
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It will be remembered that when we are dealing with water in the c.g.s. 
system, vL = 1. 

This, it might be noted, is identical in form with equation 251, giving 
the relation between hydrostatic pressure and vapor pressure, and par
ticularly with the following equation, giving the relation between osmotic 
pressure and vapor pressure: 

VL VO 

The latter was obtained by combining equations 148 and 227. 
Caution must be exercised in attempting to apply equation 412 experi

mentally to unsaturated soils where a force is applied to squeeze out 
water. In this case, part of the force applied to the soil mass may be 
transmitted through the solid particles by direct mechanical contact be
tween them. Such a force contributes no hydrostatic pressure to the col
loid moisture and should not be included with APc, since it merely tends 
to break down the granules. The other part, representing the actual 
increase of hydrostatic pressure in the colloid moisture, represents the 
swelling pressure APC. Only when all the pores of the colloid are com
pletely filled with water can we be certain that the hydrostatic pressure 
necessary to just begin to squeeze out water from the colloid is equal to 
the swelling pressure APC of the colloid, unless the pressure is applied by 
means of some inert fluid filling the space not occupied by moisture. Thus 
we see that if we are not careful, the hydrostatic pressure of the colloid 
moisture may have no relation to the force applied to the colloid exter
nally, unless that force is applied through an inert fluid which fills up all 
the voids and transmits the pressure directly to the soil moisture. 

To illustrate the application of these ideas, we might consider a con
crete highway underlain by a very heavy clay soil into which moisture 
would tend to seep. Suppose some free water comes in contact with the 
clay subsoil. We might ask how great a pressure would be exerted upward 
on the pavement because of the tendency of the free water to move into 
the clay. We should find that the upward pressure is just the swelling 
pressure APc we have been considering, and that p is the vapor pressure 
of the clay subsoil at the time the swelling pressure APC is being deter
mined. 



THEORY UNDERLYING THE CALCULATION OF THE ABSO
LUTE VALUE OF THE FREE ENERGY / OF SOIL 

MOISTURE AT ANY TEMPERATURE 

72. General Treatment of the Dependence of Free-Energy Relations of 
Soil Moisture on Temperature 

In all our foregoing considerations of the free energy Afs of soil mois
ture, we have been dealing with the difference between two absolute 
values of free energy/and/0 such that Afs = (/ — /o). Here/o equals the 
absolute value of the specific free energy of our datum, which is usually 
taken as free, pure water; a n d / represents the absolute value of the spe
cific free energy of the soil moisture. In other words, Afs represents the 
energy, aside from the work of expansion against atmospheric pressure, 
that must be given to each gram of water to change it from its state in the 
soil moisture to that in free, pure water. 

Parenthetically we may add that the datum need not be a free, pure 
body of water. Actually the water may be in any desired state. With few 
exceptions, however, free, pure water will be found to be the most con
venient and desirable datum. Unless otherwise mentioned, /o will there
fore refer to the absolute value of the specific free energy of free, pure 
water. 

I t will be recalled that the specific free energy Afs is measured with 
both the datum and the soil moisture at the same temperature. Until 
now, nothing has been explicitly stated regarding the effect of a change of 
temperature either on the absolute specific free energies / and /0 or on 
Afs itself. It is important and interesting to determine this dependency. 
For example, Afs may be determined from freezing-point measurements 
on soil moisture, at a temperature near 0° C. It may, however, actually be 
desirable to know the specific free energy Afs of the soil moisture at some 
higher temperature in order, for example, to determine the amount of 
energy a plant must expend to extract water from the soil at a given 
moisture content. The question then is, how are we to find the specific 
free energy Afs at any temperature T when we have determined it once 
at some particular temperature T0? A satisfactory answer to this should 
greatly increase the range of usefulness of our known values of Afs. I t 
will enable us to calculate Afs at any temperature T in terms of a single 
determination at some temperature T0. 

In order to fix in mind the relation between the absolute value of the 
specific free energy/and the specific free energy Afs and their dependency 
on temperature, let us consider with reference to a moist soil the sche
matic diagram shown in figure 40. The curve /0 indicates the variation of 
the absolute value of the specific free energy of free, pure water, our da-

[244] 
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turn, as the temperature is changed;/indicates the change of the absolute 
value of the specific free energy of soil moisture as the temperature is 
changed. The specific free energy Afs^ of the soil moisture at the temper
ature Ti is given by the difference in ordinate between the curves at 2\ ; 
that is, (/ — /o) = AfSTl. The shape and values for the free-energy curves 
will of course depend upon the particular problem. As we proceed to a 
different temperature T2 of our soil moisture, both/0 and/ i change; and 
consequently the specific free energy changes to a new value, AfSrr We 
thus observe that in general. Afs changes with the temperature. 

As will be recalled (art. 62 and the latter part of art. 21) the specific 

TEMPERATURE 

s 
Fig. 40.—The change in free energy Afs 

with temperature. 

free energy Δ/ has distinct advantages over the quantities total potential 
and capillary potential used previously in soil literature in describing the 
energy relations of soil moisture. Our present case is another excellent 
illustration of this fact. The quantities capillary potential and total po
tential were not defined in such a way as to show explicitly the depen
dence of these functions on temperature. The definition of free energy, on 
the other hand, involves the temperature explicitly (eq. 92). If we have 
determined the total or capillary potential of our soil-moisture system at 
one temperature, for example, the definition of these terms does not per
mit us conveniently to calculate the magnitude of these functions at any 
other temperature. We shall find, though, that the manner in which the 
term ''free energy" has been defined enables us directly to show how the 
energy of soil moisture depends on the temperature. 

Our problem in the articles to follow is therefore to calculate, on the 
basis of thermodynamics, the specific free energy Afsr2 of our soil mois
ture at any temperature T2 from a known value AfsTj. at a particular 
temperature 2V 
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73. Dependence of the Absolute Value of the Free Energy / of Soil Moisture 
on the Temperature 

In this article we shall derive by two different methods an expression 
showing how the absolute value of the free energy / of water varies with 
changes in temperature. Then, in later articles, we shall show how the 
difference (/i — /0) = Afs, the free energy of soil moisture, varies with 
temperature. Thus the dependence of these functions of soil moisture on 
temperature will have been indicated. 

Method I.—As already shown (art. 21), the free energy / is defined 
basically by 

f=h-Ts. (413) 

From equation 91, the heat content h may be expressed by 

rr 
h=l cpdT (414) 

where cp denotes the specific heat at constant pressure and the integration 
is carried out from 0° A to T° A. The entropy s (eq. 86), may be expressed 
b y 

s = f SlÉÎ.. (415) 
Jo T 

Thus equation 413 becomes 

f-fJodT-rJ^Sf. (416) 
For our present purpose, let us evaluate / at the two temperatures T\ 

and T2. As will be seen later, Ti will be taken as 273° A. At Th equation 
416 takes on the following form : 

ί^Γο^Τ-Τ,Γ0-^--, (417) 
J o J o T 

/2 = fT\dT-T*fT%^. (418) 
Jo Jo T 

and at T2 

The integration of equation 418 from 0° A to T2 may be divided into two 
steps: an integration from 0° A to 7\, and then from Τχ to T2, giving 

U = fTlcPdT + f T \ d T - T2 f T l 2 ^ 1 - T2 fT2°J^L, (419) 
JO J Ti JO T J Ti T 
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Subtracting equation 417 from 419, we have 

J Ti JO T JO Τ J Tx T 
(420) 

As shown by Nernst and others, the specific heat at constant pressure 
cp decreases considerably as one approaches 0° A; but in the neighbor
hood of Ti = 273° A, it is practically constant for water in the liquid 
phase (art. 20). Therefore cp can be taken outside the integral sign of the 
first and last terms of the right-hand side of equation 420 since cp is ap
proximately constant within the limits of temperature determined by 
T\ and T2; and, as will be recalled (eq. 415), the integrals of the second 
and third terms above are T2sx and TiSi, respectively. Equation 420 
accordingly becomes 

CTxArp 
(421) h- -h-

and therefore 

and 

u- ■ Si

ft ■■ 

= c(T, - 2Ί) 

= cp(T2 - ΪΊ) 

= fi + cp(T2-

= /i + ( r 1 - : 

- 8 ι (Γ , 

- β ι (Γ, 

■ ΪΊ) - < 

Γι) fe -

-Τύ 

- T i ) 

h(Tt -

■ β ι ) -

-T, 

-Tt 

■ 7 Ί ) 

T2cp 

cdT¡ Ύ' 
rp 

Cpln — 

- T2cpln — 

(422) 

This equation shows directly the dependence of the absolute value of 
the specific free energy of soil moisture on temperature. Knowing the 
absolute value of the free energy, specific heat, and entropy at one tem
perature Tiy we can calculate the absolute value of the free energy f2 of 
moisture at any other temperature T2. As T2 approaches Thf2 approaches 
/i , a situation that is to be expected. 

Method IL—To support the validity of equation 422 and to illustrate 
different possible general methods of applying thermodynamics to soil 
moisture, let us consider another approach to equation 422. 

As shown in equation 143, 

& ) , — · «*> 

Now the specific entropy s (eq. 85) may be represented by 

s = Sl+fT2^l. (424) 
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Here s± is the absolute value of the entropy at the temperature Th which 
we shall put equal to 273° A. Since cp is essentially constant (art. 20) 
with respect to changes of temperature in the vicinity of 273° A, we can 
take Cp outside of the integral sign ; and therefore 

fTdT 
s = Sl + cJ °±. (425) 

J Tx T 
Integrating, we have 

T 
s = si + cpln —. (426) 

T\ 
Substituting s from equation 426 into equation 423, we get 

\^-A = -s= - s i - cpln— = - s i - CplnT + CplnTV (427) 

Since we wish to deal with a definite integral from which the integration 
constant falls out, we may change the partial derivatives to total deriva
tives without altering the result, and obtain 

df=-SldT- cpIn TdT + cpIn TxdT. (428) 

Integrating 428, between T\ and T2, we find 

/2 - / i = - si / *dT -cpf \nTdT + cpln Tx f * dT (429) 
J Tx J Tx J Tx 

= -Sl(T2 - Γ0 -CJTIUT- T\ ** + cp(T2 - 7\) In 7\ 

= -*ι(Γι - Γι) - cpT2 In T2 + cpT2 + cpTx In ΤΊ - cpT1 
+ cp(T2 - Tx) In Γχ. 

Cancelling out and combining terms, 

Í2-fi= - *ι(Γ2 - Γι) - cpT2 In ̂  + cp(T2 - Tx) (430) 
■t 1 

= (Γ, - Tx) (cp - Sl) - cp T2 In p 
i 1 

h = h + (Γ* - Γι) (cp - βι) - cp Τ 2 1 η ^ , (431) 
21 

and 

which is the same equation as arrived at by method I. 

file:///nTdT
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To bring out one way in which equations 422 and 431 might be used 
for calculating the change in the absolute value of the free energy of 
moisture in going from one temperature, ΤΊ, to another, T2, let us assume, 
for example, that T\ = 0° C, and T2 = 25° C, and calculate the change 
in the absolute value of the specific free energy of free, pure water which 
we have taken as the datum (art. 39). From the International Critical 
Tables for pure water we find that at 0° C 

/ i = —1.5985 X 1011 ergs per gram; 
$i = 2.11 X 107 ergs per degree per gram; 
cp = 4.18 X 107 ergs per gram. 

Substituting these in equation 431 in order to calculate^ at 25° C, we 
have 

/2 = -1.5985 X 1011 + (298 - 273) (4.18 X 107 - 2.11 X 107) 
OQO 

- 4.18 X 107 X 298 X 2.3 log — 
273 

= -1.5985 X 1011 + 0.517 X 109 - 1.092 X 109 

= —1.6043 X 10u ergs per gram. 

The International Critical Tables give as the free energy of water at 25° C 

f2 = —1.6060 X 1011 ergs per gram. 

The calculated value of f2 at 25° C is reasonably close to the one given by 
the International Critical Tables, which was determined experimentally. 

I t is interesting to calculate the total change in the absolute value of the 
free energy in going, for example, from Ti = 0° C to T2 = 25° C. From 
the values of f2 and/i above we have 

h - h = (-1.6043 X 1011) - (-1.5985 X 1011) 

= — 58 X 107 ergs per gram. 

Thus the absolute free energy is decreased by 58 X 107 ergs as the free, 
pure water goes from 0° C to 25° C. Suppose that the free energy Afs of 
soil moisture at the permanent wilting percentage is approximately 
—8 X 107 ergs per gram in the neighborhood of 0° C. 

These relations are schematically illustrated by figure 41, which, for 
clarity, is drawn to a distorted scale. The top curve represents the varia
tion of the absolute value of free energy with temperature for free, pure 
water in ergs per gram. When the temperature of the free, pure water is 
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changed from 273° A to 298° A, the absolute value of the free energy of 
the free, pure water drops from A to B, which entails a drop of 58 X 107 

ergs per gram. 
The variation, with changes in temperature, of the absolute value of 

the free energy / of soil moisture at a particular soil moisture content is 
represented by a curve such as CD. If CD corresponds to the moisture 
content at the permanent wilting percentage, then the curve for all mois
ture contents greater than this, such as the moisture equivalent or field 

ΓΕΜΡεΜΤυΡΕ *· (t) 

Fig. 41.—The variation of the free energy of soil moisture 
with temperature at the moisture equivalent and permanent 
wilting percentage. 

capacity y will lie between CD and AB. If the soil is drier than the perma
nent wilting percentage, then the corresponding curve will lie below CD. 
Thus the absolute value of the specific free energy / of soil moisture for a 
given soil at different moisture contents is represented by a family of 
curves. Each member corresponds to a single value of the soil moisture 
content and shows the variation of the free energy / of the soil moisture 
with temperature. 

The vertical distance between any two curves or members of the fam
ily, at a particular temperature, represents the difference in the 
absolute value of the free energy of the soil moisture at the two moisture 
contents. If one of the curves is that corresponding to free, pure water 
such as AB in the diagram, the vertical distance Afs, with respect to AB, 
is what we have previously called the "specific free energy" or just the 
"free energy" of the soil moisture. The assumed free energy AfSTx at the 
temperature 7\ of the soil moisture at the permanent wilting percentage 
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is represented by the distance AC, or —8 X 107 ergs per gram. As will be 
noticed from the discussion above, a change of 25 centigrade degrees 
causes a change in the absolute value of the free energy of the datum of 
— 58 X 107 ergs per gram, whereas the difference in the absolute value 
of the free energy between the datum and soil moisture at the perma
nent wilting percentage at a constant temperature (T± = 273° A) is only 
— 8 X 107 ergs per gram. 

As the diagram indicates, the absolute free energy / changes rapidly 
with temperature. We have not yet shown quantitatively how Afs 
changes with temperature. If free energy of soil moisture Afs were inde
pendent of temperature, the two curves AB and CD, as well as all the 
other members of the family of curves, would be parallel to each other. 
This is not, in general, true, as will be discussed later. If, then, we have a 
sample of soil at a particular moisture content, the amount of work or 
effort a plant or any other mechanism must exert to remove water from 
the moist soil will in general vary with the temperature of removal. 



THEORY UNDERLYING THE CALCULATION OF THE FREE 
ENERGY Afs OF SOIL MOISTURE AT ANY TEMPERA

TURE UNDER DIFFERENT CONDITIONS 

74. Dependence of the Free Energy Δ/β of Soil Moisture on Temperature, the Effect 
of Surface Tension σ Only Being Considered 

In the last article we considered the changes in the absolute value of 
the free energy/0 of our datum, with respect to variations of temperature. 
We found it to be appreciable. In fact, a change from 0° C to 25° C en
tailed a drop in the absolute value of the free energy of about 58 X 107 

ergs per gram. 
We shall now consider the variation of the free energy Afs of soil mois

ture at a particular soil moisture content with variations of temperature. 
That is, we wish to study how the vertical distance between two curves 
such SLSAB and CD in figure 45 (p. 263) varies as we go from one tempera
ture to another. 

The determination of the dependency of Afs on temperature is ex
tremely important. For example, as mentioned previously, our method of 
determining Afs at a particular soil moisture content may require us to 
determine it in the neighborhood of 0° C. Yet we might, for practical 
purposes, wish to use the value of Afs at 25°C—the temperature at which 
plant may be growing. Without knowing how Afs depends upon tem
perature, we should have to determine Afs experimentally at each 
temperature at which it is to be used. 

We shall now turn to the case of a relatively moist soil where the effect 
on the air-water interface of the adsorptive force field surrounding the soil 
particle is negligible. The effect of dissolved material will be taken up 
later. The present treatment applies to determinations of the capillary 
potential made in the past by a porous bulb atmometer on soils whose 
moisture content falls in the vicinity of the field capacity or the moisture 
equivalent. Under the conditions here postulated, the capillary potential 
is practically synonymous with free energy, since the component of the 
free energy due to the adsorptive field is here negligible. The final mathe
matical expression we shall obtain for Afs will enable us to calculate Afs 
at any temperature from a single determination of Afs made at a par
ticular temperature. 

Let us assume that the free energy Afsrt has been determined at a 
single temperature Th and endeavor to express the free energy Afs at any 
other temperature T in terms of AfSr^ Under the conditions postulated, 
the variation of Afs with temperature is caused by the variation of the 
surface tension σ with temperature. Since the surface tension σ decreases 
with increase of the temperature T, we might expect the free energy 

[252] 
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Afs to decrease as the temperature T is raised. Quantitatively this is 
shown as follows : 

From equation 211 we have the following relation connecting the surface 
tension σ, the free energy Afsr, and the radius of curvature r of the air-
water interface of a capillary body of water at the temperature T: 

AfST = RT\nP- = ^ . (432) 
Po r 

Here p refers to the vapor pressure of the moist soil, po to that of free, pure 
water, both at the same temperature, T. Neither v nor r would be ex
pected to change appreciably as the temperature of the moist soil changes, 
since the soil moisture content is kept constant throughout all changes of 
temperature in the present treatment. Of course, if the moisture content 
is not kept constant when the temperature is changed, there are other 
complications, not treated here. Since the magnitude of the radius of 
curvature r of the air-water interface of soil moisture is hard to determine 
directly, we shall eliminate it from equation 432. 

Let us assume that at another temperature T\ the surface tension of 
water is σΤχ and also that the free energy of the soil moisture has been 
determined and found to be Afsrv We then have (eq. 432) 

A / 2v 

A/ STi — — GTX 

r 
so that 

2v __ AfsTt 
r σΤι 

Hence equation 432 becomes 
AfsT = RT\nV- = (*ΐ*ϊι\ στ. (433) 

Po \ <rTl / 

Since we wish to express Afsr in terms of the temperature T, the sur
face tsnsion στ must also be expressed in terms of T. The dependence of 
the surface tension στ on the temperature is given by figure 42, plotted 
from data taken from the International Critical Tables. From these data 
the following relation was derived : 

στ = 117 - 0.152T (434) 

where the surface tension στ is expressed in dynes per centimeter, and the 
temperature T in degrees absolute. 

Inserting στθΐ equation 434 in 433, we have 

Afsr = ΑΓΙη^- = (^ΐλ (117 - 0.152Γ). (435) 
Po \ σΤι I 
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Equation 435 enables us to calculate the free energy Afsr at any tempera
ture T in terms of a single determination of the free energy AJSTX of the 
soil moisture, made at the temperature ΤΊ according to 

Afsr = Δ/. ST1 

στχ 

(117 - 0.15277) . (436) 

The surface tension σΤχ can, of course, be obtained from equation 434 or 
directly from a set of physical tables. 

1 

V 

a--//7/ - 0./5/6 x T 

30 40 50 60 70 ÔO 90 

TEMPCfíATUfíC °C 
Fig. 42.—Variation of surface tension with temperature. 

Similarly by equation 435 one can compute the vapor pressure of a 
relatively moist soil at any temperature T if the free energy AfSTxov the 
vapor pressure p of the moist soil has been determined at some tempera
ture TV This is clear from a further consideration of equation 435. 

β Γ Ι η ^ = ^ ^ ( 1 1 7 - 0 . 1 5 2 7 7 ) 
Po <TTX 

or 
lnp _A/sr 1(117-0.1527T) 
% o aTlRT 

so that 

_„.«&)(¥-«"). P = Po (437) 
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According to this equation, if we know AfsTi of a relatively moist soil 
at a particular moisture content and temperature ΤΊ, we can compute the 
vapor pressure p of this same sample of soil at any other temperature T, 
where p0 is the vapor pressure of free, pure water at the temperature T. 
All the other quantities such aè R and στ can be obtained from a set of 
physical tables. 

Note again that equation 435 holds only for a relatively moist soil 
where the adsorptive force field surrounding the soil particle is negligible 
at the air-water interface. 

Equation 437 might give the impression that the vapor pressure of soil 
moisture should decrease with increase of temperature, since the absolute 
value of the exponent decreases with temperature. I t must be recalled 
(eq. 121), however, that the numerical value of the free energy Δ / ^ has 
always been found negative for unsaturated soil moisture. Thus the vapor 
pressure p will increase with a rise in the soil-moisture temperature T. 
Clearly, judging from the form of the equation, as the temperature T 
increases, the vapor pressure of the soil moisture p will approach that of 
the free water p0. As the critical temperature of water is approached, its 
surface tension approaches zero; and consequently the factor in the expo
nent of equation 437 reduces to zero at this temperature, making the 
exponential unity and p equal to p0. 

75. Dependence of the Variation in Height of a Water Table on the Variation 
in Temperature of the Soil Moisture 

Equation 436 may be used as the basis to account for the diurnal varia
tion in height of a water table close to the surface of the ground. As all 
soil workers have observed, a water table close to the surface of the 
ground gradually rises from dawn till about sunset and then begins to 
fall, continuing to fall throughout the night. The whole process is re
peated the next day. The amplitude of the variation in height of the water 
table is found to increase with an increase in the amplitude of variation 
of the soil temperature between the day and the night. 

Superimposed upon these fluctuations there will be a gradual and pro
gressive lowering of the water table if the root hairs of actively trans
piring vegetation are present and if the water table is close enough to 
the soil surface to make upward capillary movement appreciable. Some
times, where the water table is close to the surface and plants are grow
ing, the water table drops during the day because of transpiration. We 
are here concerned with none of these. What we are interested in is only 
a fluctuation in the height of the water table, without any total loss 
(through plants) of water from the whole soil-moisture system composed 
of the water table plus the overlying moist soil. 
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To illustrate the application of equation 436 to the explanation of the 
variation in height of a water table with temperature, let us consider the 
simplest case of the variation in height of a column of water in a vertical 
capillary tube dipping into a free water surface. Figure 43 shows a capil
lary tube of radius r having its lower end in a vessel of water. At the 
temperature T\ the height is hTl; at a higher temperature T7, for example, 
the column will have dropped to hT. For the present we are neglecting 
the effect of such minor influences as the slight change in the density p 
of water caused by changes of its temperature. 

(Lower temperature)A 

τ^ (tt7-atssr)=t>r 

ß (Higher temperature) 

t>T^7$(t¡7-0.t52T,) 

Fig. 43.—Illustration of change in water table 
with temperature. 

If at the temperature T\ the free energy is AfTl just below the meniscus 
at A, and if at the temperature T it is Afr just below the new position of 
the meniscus at B} we have (eq. 436) 

Δ / Γ = ^ ( 1 1 7 - 0 . 1 5 2 Γ ) . (438) 

This equation applies to any relatively moist soil, no matter how saline. 
From equation 211 we have 

_ 2σΤι v Δ Μ — · (439) 

Here, as will be recalled, r is negative when the vapor-water interface is 
concave to the vapor phase. Inserting equation 439 into 438, 

Δ/ν = - ( 1 1 7 - 0 . 1 5 2 Γ ) , 
r 

(440) 



Feb. 1943] Edlef sen-Anderson : Thermodynamics of Soil Moisture 257 

Let us now express the height of the capillary column A in terms of the 
temperature T of the capillary column. From equation 156 we have, for 
the free energy due to hydrostatic pressure immediately below the water 
meniscus, 

Δ/V = v AP . (441) 

Since AP immediately below the meniscus equals the weight of the 
column of water (of length A and unit cross section) under the meniscus, 
we have ΔΡ = — hpg. We insert the negative sign because ΔΡ here rep
resents a state of tension or negative hydrostatic pressure with respect to 
our datum. Equation 441 then becomes 

AfT= -hpg (442) 

where g = 980 dynes per gram. 

Inserting AfT of 442 into 440 and solving for A, we have 

A = - - ( 1 1 7 - 0 . 1 5 2 T ) , (443) 
gr 

where p and v have been omitted because the density p and the specific 
volume v of water are approximately unity in the c.g.s. system, and where 
the radius of curvature r is substituted as a negative value according to 
our previous convention. 

According to equation 443, the height A of the capillary column rises as 
the temperature decreases and falls, as the temperature rises. Thus, con
sidering figure 43, we find equation 443 predicting that with rise of tem
perature the water table will rise from a to b as the capillary column 
drops from A to B. The amount of the rise ab of the water table can, of 
course, easily be calculated from a knowledge of the diameters of the 
capillary tube and the vessel. 

This case of the simple capillary tube and the variation in height of its 
water table with changes of temperature is analogous to the actual situa
tion found in a moist soil with a high water table. When equilibrium of 
the soil moisture has been established at a temperature 7\ in a soil column 
in contact with a body of water (fig. 44, A), the relation between the free 
energy AfTl of the soil moisture at a height A (on the one hand) and the 
height A (on the other) may be schematically represented by the straight 
line AfTl of figure 44, B. This, as well as the following statements, is 
entirely justified by the next article, which should be read in connection 
with the present one. Under equilibrium conditions of soil moisture, the 
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rate of change of the free energy AfTl with respect to the height h (eq. 442) 
must be equal but opposite in sign to g, the gravitationalforce. That is, 

d(AfTl) 
dh = -g, (444) 

since p = 1. At the water table, AfTl = 0, while at the top of the soil 
column, the free energy of the soil moisture AfTl has reached its maximum 
negative value. The soil moisture contents CTX throughout the soil col-

Free energy 
so// mote for* âf 

-/W 

of ¿o// C 

Fig. 44.—Variation of soil moisture with height above a water 
table because of variation of i ts free energy with temperature. 

umn, corresponding to the free energy AfTl at different heights hy are 
given by curve CTl also placed in figure 44, B. The highest moisture con
tents are, of course, at the bottom of the soil column. 

Suppose we now raise the temperature of the entire soil-moisture sys
tem from Ti to T and inquire what will happen to the free energy Δ/ of 
the soil moisture throughout the soil column, as well as to the moisture 
content C. From what has gone before, based upon equations 440 and 
443, we should expect the free-energy curve Δ/ to drop temporarily to 
some such position as F. In other words, the free energy Δ/ of every 
element of moisture throughout the soil column at different heights h 
above the water table will have decreased numerically. 

The free energy throughout the soil column cannot remain at equilib
rium in the state represented by F, since under these conditions the gra
dient of the free energy is not equal to minus g (eq. 444). This relation 
represents the rate of change of the free energy in any soil column at any 
temperature at equilibrium. 
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Changes will therefore be set up throughout the soil column, no matter 
what the temperature change happens to have been, tending to restore 
Δ/ throughout the soil column to the values represented by curve AfTl so 

that the gradient of the free energy — — at the new temperature T is 
dh 

restored to the same value, minus g. These readjustments will involve a 
progressive change of moisture contents throughout the soil column from 
CTX to those represented by the curve CT when the temperature is raised. 
In other words, if the temperature is raised, water will flow out of the soil 
and into the water table, which will raise the height of the water table. 
(Likewise if the temperature of the soil column is lowered, water will 
move into the soil, and the water table will be lowered. The curves corres
ponding to the lowering of the temperature are not shown in the graph, 
but would be displaced in the direction opposite to CT-) The equilibrium 
moisture distribution represented by the curve CT is such that equations 
444 and 442 are satisfied. At equilibrium the free-energy curve Δ/V at the 
higher temperature T7, corresponding to CT, therefore coincides with 
Δ/τν The reasons for this fact, besides those already given, follow imme
diately. 

According to equation 442, the free energy Δ/ of the moisture in a soil 
column in contact with a water table under equilibrium conditions de
pends only on its height h above the water table. No matter what the 
temperature T happens to be, the free energy Δ/ at equilibrium is given 
by 

Δ / = -hpg. 

Any variation of p, the density of water, with changes of temperature is 
a second-order effect and is therefore negligible. The question then is, 
how can the soil column at the higher temperature T maintain the same 
free energy throughout as represented by the curve AfTv when equation 
440 seems to predict that the free energy AfT of the soil column will rise 
(become less negative) with rise in temperature to some such curve as 
F in figure 44,5? 

This difficulty is immediately cleared up when we recall the following 
experimental facts : (1) when the temperature is raised, water moves down 
in the soil and runs out of the bottom of the column, the soil moisture 
content thus being decreased; (2) as the soil moisture content is decreased, 
the free energy Δ/of soil moisture decreases—becomes more negative. 

As the temperature of the soil column is raised, the free-energy curve 
AfTl will therefore temporarily tend to move to the position F, corre
sponding to a greater positive free energy at a height h. While this is 
going on, however, water will drain out of the bottom of the soil column 
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into the water table, which will cause the free energy at a given height h 
to become more negative and simultaneously counteract the change of 
Δ/ caused by the rise of temperature, until finally the free energy repre
sented by curve AfTl is reestablished throughout the soil column and the 
free-energy curve AfT at the higher temperature T coincides in position 
with fTl. The net result of the rise in temperature of the soil column is, 
then, the downward movement into the water table of the amount of 
soil moisture represented by the shaded area between the curves CTX and 
CT- The water table accordingly rises with a rise in temperature, and no 
change finally occurs in the free energy Δ/ throughout the soil column 
caused by a change in temperature. 

The reverse of the results obtained above would, naturally, have 
occurred if the temperature of the soil column had been lowered. 

Carrying the analyses further, we should be able to calculate quanti
tatively the amount of water that would move into or out of a soil column 
and into the water table, with changes of temperature, merely by using 
equations 438 and 442 and by knowing the dependence of the free energy 
Δ/V of the soil moisture, at but a single temperature T, on the soil moisture 
content. 

If the soil is relatively dry, equation 438 should be replaced by the 
more comprehensive equation 477 or 484 and by the treatment of articles 
80 and 81. 

76. Dependence of the Free Energy on Height h above a Free, Pure Water Surface 
Used as the Datum 

In article 75 (eq. 442) it was shown that the free energy of water just 
under the meniscus, in a capillary tube (fig. 43), at the height h above 
the free water surface is given by 

Δ / = -hpg 

where p is the density of water in grams per cc and g = 980 dynes. In this 
article, we shall show, as a corollary to the previous one, that under equi
librium conditions equation 442 gives the free energy Δ/ of water at a 
height h above free, pure water, no matter whether the water at the height 
h is in a capillary tube (as in the present case), or is soil moisture in a 
column of soil at a height h above the water table, or is vapor at a height h 
above a free water surface (art. 37). 

The truth of this statement is seen immediately when one considers a 
soil column and a capillary tube both dipping down into a vessel of free, 
pure water used as the datum, the whole being contained in a closed 
chamber such as a large bell jar. When equilibrium has been established, 
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the liquid and vapor phases will be in equilibrium throughout the whole 
system, composed of the soil column and capillary tubes, all dipping down 
into the body of free water, surrounded by water vapor. Thus if the 
meniscus in the capillary tube comes to equilibrium at the height h, it will 
be hi equilibrium with the vapor at that level. Likewise the soil moisture 
at the height h in the soil column will also be in equilibrium with the va
por at the height h. If they are not at equilibrium, a readjustment will 
take place until they are. 

We see (art. 22) that the free energy of the water in the soil column, in 
the capillary tube, and in the vapor phase are the same at the same height 
h, when equilibrium has been established. Thus, no matter in what state 
water happens to be (whether as water in a capillary tube, soil moisture, 
or vapor) at a height h above the free water surface (when each of them is 
in equilibrium with the free water surface used as the datum), the free 
energy of the water, expressed in terms of that in the capillary at the 
height h, is given by Δ/ = —hpg. Expressed in terms of the vapor pres
sure p at the height h above the free water surface, it is (eq. 159 and 236) 

Δ/ = RT In— where p0 is the vapor pressure at the free water surface 

used as the datum. 
The equation Δ/ = — hpg presents one method (similar to the one 

previously used by many soil workers—20, 56, 81—for determining the 
capillary potential of soil moisture at different soil moisture contents) 
for determining the free energy of soil moisture at different moisture 
contents. The soil moisture in a long soil column dipping down into free, 
pure water is allowed to come to equilibrium throughout with the surface 
of free, pure water taken as the water table. When equilibrium has been 
established, the moisture content in the soil column will vary uniformly 
from saturation, at the lower end next to the free water surface, to rela
tive dryness at the upper end of the soil column. The soil column is then 
taken down, broken up into small sections, and the moisture contents at 
the different heights h determined. The free energy corresponding to each 
different soil moisture content (associated with a definite value of the 
height h above the water table) is computed immediately from Δ/ = 
— hpg. Thus a curve can be plotted showing the dependence of the free 
energy Δ/of the soil moisture on the moisture content, just as has been 
done in the past for the capillary potential of soil moisture. 

This method of determining the relation between soil moisture content 
and its free energy, although sound theoretically, is somewhat impractical 
because years are required for the soil moisture in a soil column to come 
to complete equilibrium with a water table, and because the temperature 
of the soil must be maintained constant throughout this time interval. 
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77. Dependence of the Free Energy &fs of Soil Moisture on Changes in Temperature 
When the Ratio of the Vapor Pressures £- Remains Constant 

Po 
The following treatment will be particularly applicable to very saline 

moist soils where, as will be shown later (art. 78), the ratio of the vapor 
pressure p of the solution to that of pure water p0 remains practically un
changed with changes of temperature. I t will also apply directly to any 
other cases where future experiments show that the ratio — is relatively 
constant. P° 

We shall proceed immediately to show how Afs, at a particular soil 
moisture content, might be calculated at any desired temperature when 
Afs has been experimentally determined at but one temperature, TV As 
mentioned before, this calculation has not been possible with the quanti
ties called capillary potential and total potential used in the past for 
describing the energy relations of soil moisture. 

Equation 146, the basis for our development, is 

($&>) = -A, (445) 
\ dT Jv 

Before using this expression, let us understand the meanings attached to 
the symbols d and Δ in our present problem. Figure 45 has been consider
ably distorted to bring out the meanings of the symbols Δ and d (differen
tial). 

To avoid confusion, we must recognize clearly that we are dealing in 
equation 445 with two types of changes in the value of the absolute free 
energy/. One change symbolized by Δ, as Δ/, indicates the difference be
tween the value of the absolute free energy of the soil moisture and the 
value of the absolute free energy of pure water in the standard state, both 
states being considered at the same temperature. A change in Δ/, called 
the free energy of the soil moisture, is produced entirely by a change of 
soil moisture content, the temperature remaining constant. For example, 
at A in figure 45 this change or difference is represented by Afsru at B by 
Δ/STV The other change, symbolized by d, as d(Af), arises from a varia
tion of temperature, all other variables such as soil moisture content re
maining constant. At the temperature ΤΊ, for instance, the free energy of 
the soil moisture is AfSrv If now the temperature is raised by an amount 
dT, the free energy AfSTi is further increased by an amount d(AfsTi) so 
that the free energy of the soil moisture at T2, AfST2, now equals the sum 
AfsTi + d(AfsTi)· The quantity As (eq. 445), since it involves the symbol 
Δ, refers to the change in entropy per gram of water in going from the 
state of pure water/0 to the soil moisture in the s tate/ , both states being 
at the same temperature. 
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Summarizing, therefore, we can say that according to equation 445, the 

rate of change, ' the free energy Afs of soil moisture with re

spect to temperature equals the negative of the specific entropy As of the 
soil moisture, with respect to free, pure water, the soil moisture and free, 
pure water being at the same temperature when As is computed. Clearly, 
the vapor pressure of soil moisture differs from that of pure water at the 
same temperature, and the subscript p indicates that the vapor pressure 

5: 

TEMPERAWÑE *-fr) 
Ti T2 

1 1 

1 

\ ^ 1 

\ V r\ 
\ )' ! 

i V H 

***—^free energy oí pi/re nafer f0 

* \ç-f~ree energy of so/'/ mo/s/c/re af a 
^\oar//c¿//ar so// mo/sfvre confer?/ 

Fig. 45.—Illustration of two different types of changes in 
free energy of soil moisture at a given moisture content due 
to change in temperature. 

of pure water as well as the vapor pressure of soil moisture must be re
garded as constant during variations of temperature. 

The evaluation of the free energy Afs will be performed in two steps. 
The first step will consist in an integration of equation 445, which will 
give the change in free energy Afs' in going from one temperature Tx to 
another temperature T, assuming that the vapor pressures do not change 
with temperature. The latter state, of course, is a hypothetical condition 
not found in nature. The second step will consist of showing that the 
difference in free energy between this hypothetical state and that actually 
experienced in nature is negligible. Thus we shall have determined the 
actual free energy of the soil moisture at the higher temperature. 

To proceed with the first step, let us recall (art. 22) that the free energy 
is the same in all phases of a given substance when at equilibrium. Con
sequently, the free energy Afs' of the vapor phase always equals the free 
energy of the liquid phase of the soil moisture. If, therefore, we calculate 
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the changes in free energy of the vapor phase caused by changing the 
temperature of the soil moisture, we have also calculated the change in 
the free energy of the soil moisture. In the present case, as in numerous 
others, it is much easier (art. 39) to deal with the vapor phase. We shall 
therefore carry out the following analysis with respect to the vapor phase. 

Returning to equation 445 and using the notation Afs to represent the 
free energy of soil moisture, we have 

d(Afs') = -AsdT. (446) 

Integrating between the temperature 7\ and T, 

AfsT - AfSTl = - / AsdT. (447) 

Here AJST represents, as before, the value of the specific free energy of 
soil moisture in the hypothetical state at any temperature T, and AfsTi 
that at Th the initial state. 

To evaluate the integral, we may conveniently express As in terms of 
variables such as p, v, or Γ, which can be measured. From equation 16 
we have 

- -Γ (-) 
J PO! \dT/ 

Δί = -Λ. ^ρλ*· <448) 

Here p0i refers to the vapor pressure of free, pure water at the standard 
state, and pi to the vapor pressure of the soil moisture, both at the same 

temperature TV To evaluate Í — j let us assume that the water vapor 

surrounding the soil moisture obeys the ideal gas law as stated in equation 
367 by 

RT 
v = . 

V 
Differentiating v with respect to T, 

R fdv\ =R 
\dT/p~p 

(449) 

Thus equation 448 becomes, by substituting from 449, 

As= -R j P1 * . (450) 
Po! p 
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Integrating equation 450 to determine the change in entropy of the soil 
moisture in taking it from the standard state, corresponding to the vapor 
pressure p0i, to the state corresponding to the vapor pressure ph we have 

Δβ= - Ä l n ^ - . (451) 
Poi 

Substituting the value of As (eq. 451) into equation 447, we have 

Afsr' = AfsTL + RÍ \n?LdT. (452) 
J Tx poi 

As will be recalled, pi and p0i above refer to the vapor pressure over the 
moist soil and free, pure water, respectively, at the temperature Th the 
moisture content of the soil remaining the same throughout the tempera
ture changes involved in the integration above. 

Equation 452 is based, of course, on equation 446, in which the vapor 
pressure of the soil moisture as well as that of the free, pure water was 
assumed to remain unchanged with changes of temperature. The term 
Afsr' of 452 therefore gives the free energy of the soil moisture in the 
hypothetical state at the temperature T7, under the assumption that the 
vapor pressures p\ of soil moisture and p0i of pure water do not change 
with temperature. 

Now, proceeding to the second step, we shall show that the free energy 
AfsTf of the soil moisture given by equation 452 in the hypothetical state 
is practically equal to the free energy Afsr actually found by experiment 
at the temperature T. To do this, let us reduce equation 452. Since the 
logarithmic term in the hypothetical state is independent of temperature 
because the vapor pressures p\ and p0i were assumed to be unchanged in 
going from Τλ to T, equation 452 may be placed in the following form: 

Afsr = AfSTl + Rln^- f dT. (453) 
POIJTX 

Substituting for the free energy AfSTt of soil moisture at the temperature 
Ti from equation 236 and integrating, we have 

Afsr' = ΑΓχΙη^- + R(T - Tx) l n ^ 
Poi Poi 

= Ä T l n ^ - . (454) 
Poi 

Here the vapor pressures not only are those found experimentally for the 
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soil moisture at the initial temperature T\ but are also those of the hypo
thetical state, since we assumed the vapor pressures to be unchanged by 
temperature in going to the hypothetical state. Since the vapor pressures 
were assumed to be constant in the derivation of equation 454, then the 

ratio — is also independent of temperature and is the same at the tem-
Poi 

perature T (eq. 454) as at T\. 
According to an experimental fact (as is shown in the next article), the 

ratio of the vapor pressure of a solution to that of free, pure water is prac
tically independent of temperature, although the vapor pressures them
selves change quite markedly with temperature. Thus the ratio of the 

7) 
vapor pressures — actually found experimentally at the temperature T 

Po 
will prove experimentally to be the same as the ratio — of the hypothet-

Poi 
ical vapor pressures at T.The pressures px and p0i are, of course, the actual 
pressures found at the temperature TV Since the free energy of the sol
vent of a solution depends only on the ratio of the vapor pressures (eq. 
227), we may write, for the true experimental value of the free energy 
AfsT of the soil moisture at the temperature T7, 

AfsT = RT'In 2- . (455) 
Po 

Obviously, the right-hand side of equation 454, giving the free energy 
afar of the soil moisture in the hypothetical state to the temperature T, 
is equal numerically to the right-hand side of equation 455, giving the 
actual free energy AfSr of the soil moisture in the real state at the tem
perature T, since the two vapor-pressure ratios ( — at the temperature Τχ 

\Poi 

and — at the temperature T ) were originally assumed to be the same. 
Po / 

Thus we have shown that the actual free energy AfSr of soil moisture at 
the temperature T is equal numerically to the free energy AJST of the 
hypothetical state and is given by equation 453 or 454. We then have 

Afsr = AfSTl + R(T - Ti) In 2-, (456) 
Po 

where the pressures p and p0 are those at any temperature between T and 
Γι, since the ratio is independent of temperature. 

Thus, knowing the free energy of the soil moisture of a very saline moist 
soil at but one temperature Th we can immediately by equation 456 cal
culate the free energy AfSr of the soil moisture at any other temperature T. 
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78. Dependence of the Free Energy Δ/θΓ on the Temperature, the Presence of 
Dissolved Material Only Being Considered 

The treatment in the present article, using the results of the previous 
article, applies particularly to a very saline moist soil, and possibly to 
other cases in soils if future experimental work shows the ratio of the va-

por pressures — to be independent of changes in temperature. Let us 
Po 

examine whether experimental evidence now available will support our 

TABLE 1 
DEPENDENCE OF VAPOR PRESSURE OF SOLUTION ON TEMPERATURE 

Temperature 

0 
10 
20 
30 
40 
50 
60 

Vapor pressure 

Of H2O, 
Po 

mm 
4.58 
9.21 

17.5 
31.8 
55.3 
92.5 

149.3 

Of 2.5 per cent 
solution of 

NaCl, 
P NaCl 

mm 
4.5 
9.1 

17.3 
31.4 
54.5 
91.2 

147.2 

Of 5.0 per cent 
solution of 
Na2C03, 
V Na2CO, 

mm 
4.5 
9.0 

17.2 
31.2 
54.2 
90.7 

146.5 

Ratio, — Po 

P NaCl 
Po 

ratio 
0.982 

.989 

.989 

.987 

.986 

.986 
0.986 

V Na2CO, 

Po 

ratio 
0.982 

.978 

.983 

.981 

.980 

.981 
0.981 

V 
assumption that the ratio — is independent of temperature for a saline 

Po 
solution. 

Table 1, taken from the International Critical Tables, gives the aqueous 
vapor pressures of pure water, of sodium chloride solution, and of sodium 
carbonate solution at different temperatures. From the vapor pressures, 
the last two columns have been computed. Evidently, the ratio of the 
vapor pressure p over the solution to that over the free, pure water sur
face po is essentially independent of temperature over the temperature 
range considered. We should also note that the two solutions taken rep
resent more extreme conditions, with respect to vapor-pressure depres
sion caused by dissolved material, than are customarily found in soils. v Having shown above that In — remains approximately constant as 

Po 
the temperature T of the solution is changed, we are justified in using 
equation 456 in calculating the dependence of the free energy Afsr on 
temperature : 

AfST=Afsr1 + R(T-T1)lni-
Vo 

(457) 
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Figure 46 should clarify the meaning of equation 457, which gives the 
free energy AfSr of a sample of soil moisture at any temperature T in 

terms of a known value of the free energy AfSrv Since the ratio — is in-
Vo 

dependent of temperature, it can be expressed in terms of Afsrv Figure 
46 shows that in taking the sample of moist soil from the temperature Ti 
at which we know the free energy AfsTt and the vapor pressure p, to any 
other temperature Γ, the free energy of the soil moisture changes to 
AfsT (eq. 457). This relation enables one to calculate Afsr at any tem-

TEMPEPATUPE -Í+) 

x 

I ~—r'-
\ Δ Λ Ν 5 . ^ 

^ ^ ζ ν 

Fig. 46.—Change of free energy of soil mois
ture with temperature at a given moisture 
content. 

perature T for a particular moisture content provided Afsr is known at 
some one temperature. 

A more useful expression can be obtained if we further transform equa
tion 457. As will be recalled (art. 39), the free energy of soil moisture 
Afs^ may be expressed in terms of the vapor pressure of the soil moisture 
as follows: 

AfsTl = RT1ln^-. 

Introducing 458 into equation 457, we have 

AfsT^R^ln^ + RiT- Ti)m^-. 
Po Po 

Expanding the last member of this equation and cancelling out like 
terms, we have 

(458) 

(459) 

AfsT = RT\n^-. 
Vo 

(460) 
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To transform this equation into a more useful form, let us multiply 
the numerator and denominator of the right-hand side by Th the tem
perature corresponding to the known value of the free energy AfSTl) and 
recall 458. Equation 460 becomes 

AfsT = ^rAfsTl. (461) 

If we know, therefore, the free energy AJSTX of the soil moisture of a 
saline soil at any particular moisture content and temperature T1} we 
may readily calculate the free energy Afsr at some other temperature Tf 
but at the same moisture content. This equation may be applied to any 
soil moisture whose free energy is due mainly to the presence of dissolved 
material. 

Thus one can calculate the free energies Afsr for a series of moisture 
contents at any temperature T if the free energies Afsr» at some one 
temperature 7\, are known for the same series of moisture contents. 
Equation 461 shows, for a very saline soil, that the free energy Afsr of 
soil moisture decreases as the temperature of the moist soil is raised. 

Equation 461 may be derived with much less effort by another method 
if we recall the experimental observation, from table 1, that the ratio of 
the vapor pressure p of a solution to that of pure water p0 at a given tem
perature is a constant independent of temperature over the range of con
centrations shown. 

The free energy Afor of a solution due to osmotic pressure has been de
fined (eq. 227) by 

AfoT = RTln^. (462) 

When applied to solutions, Afor has the same significance that Afsr does 
when applied to very moist saline soils. We may therefore write this 
equation in the following form for our present use : 

Afsr = RT ln^-. (463) 
Vo 

Let us assume that Afsr has been determined at some particular temper
ature ΤΊ and found to be 

A/ST^RT^U?-. (464) 

Dividing equation 463 by 464 and recalling the constancy of the ratio 
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— of the vapor pressure of a solution to that of free water despite varia-
Vo 
tions of temperature, we have 

Afsr = T_ 
àfSTl Tx 

or 

AfsT = ̂ AfsTl} (465) 

which is the same as equation 461. 

79. Dependence of the Free Energy Δ/ΛΓ of Soil Moisture on the Temperature, the 
Effect of the Adsorptive Field Only Being Considered 

The dependence of the free energy on the adsorptive field alone prob
ably corresponds to no actual condition found with soil moisture. I t ap
proximates most closely the conditions to be expected in a relatively dry 
soil if very little dissolved material were present in the soil moisture. As 
the moisture film surrounding the soil particles becomes thinner, the air-
water interface of the film comes increasingly under the influence of the 
adsorptive force surrounding the soil particles. The chief reason for intro
ducing a treatment of this case is to complete the basic considerations 
necessary for the treatment of the generalized case to follow, which con
siders all the principal factors contributing to the free energy Afsr of 
soil moisture. 

The free energy AfSr is given, as before, by 

AfsT = RT\nV-. 
Po 

It is a well-known fact that the electrostatic field surrounding a charged 
particle is not appreciably affected by temperature changes. Since the 
adsorptive field surrounding the soil particles arises from the unsatisfied 
electrostatic forces of the surface molecules of the soil particles, we shall 
assume, to a first approximation, that the adsorptive field as well as its 
resultant effects are not much modified by changes of temperature. The 
quantity of water adsorbed on soils of course decreases with increase in 
temperature; but this decrease occurs because the kinetic energy of the 
adsorbed molecules is higher at the higher temperatures rather than be
cause the field changes with temperature. The sum, therefore, of the 
component of the free energy of water AfFS due to its presence within the 
adsorptive field surrounding the soil particle, as well as the component of 
the free energy of the moisture due to the hydrostatic pressure Afps 
caused by the pull of the adsorptive force on the superincumbent layer of 
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moisture (art. 64), is a constant K with respect to changes of tempera
ture. That is, 

Afsr = AfFS + Afps = K. (466) 

Thus in the next article we shall consider the total change in the free 
energy (AfFS + àfPS) of soil moisture, caused by the presence of the 
adsorptive field, to be independent of temperature so long as the soil 
moisture content remains constant throughout the temperature change. 
Although not considered in the discussion above, the free energy AfPS due 
to hydrostatic pressure clearly may be due in part to pressure transmitted 
from external sources such as atmospheric pressure. Any external pres
sure not influenced by temperature changes will, of course, be merely 
superimposed upon AfPS above; and the form of equation 466 will re
main unchanged. 

80. Dependence of the Free Energy Δ/θΓ of Soil Moisture on Its Temperature T, All 
Known Factors Affecting the Free Energy of Soil Moisture Being Considered 

Having just taken up separately for extreme cases the various factors 
affecting the free energy Afsr of soil moisture as the temperature is 
changed, let us now consider the most general case, where all these factors 
enter simultaneously. 

In the present instance, four component free energies will go to make 
up the total value of the free energy Afsr of soil moisture, 

Afsr = RT In ̂  = Af<rs + AfpS + Afos + AfFS . (467) 
Vo 

As before, AfffS denotes the component of the free energy due to surface 
tension and radius of curvature of the water-air interface; AfPs, that due 
to the hydrostatic pressure of the moisture adjacent to the soil-particle 
surface caused by the adsorptive forces surrounding the soil particle (but 
excluding that due to the surface tension and radius of curvature of the 
water-air interface), as well as due to any pressure transmitted from 
external sources; Afos, that due to the osmotic pressure of the dissolved 
material; and AfFs, the free energy possessed by water by virtue of its 
position in the adsorptive field surrounding the soil particle as well as in 
the earth's gravitational field. The present generalized treatment is un
like the previous special cases where we had to determine Afsr experi
mentally at but a single temperature in order to calculate Afsr at any 
other; we must here experimentally determine Afsr at two temperatures. 

Before evaluating Afsr we must properly express each of the four com
ponent free energies in terms of temperature. 
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Consider first the evaluation of Ajas as a function of temperature. 
According to equations 211 and 434, 

AUs = 2(117 - 0.15277) - . (468) 
r 

Equation 468 can be placed in the following form, where fci and k2 are 
constants independent of temperature: 

Α/σ8 = ̂  + ^Τ. (469) 

Next let us evaluate Afos as a function of temperature. I t was pre
viously shown that the ratio of the vapor pressure p of a solution to that 
of pure water po at a given temperature is a constant, independent of 
temperature. Therefore if fc3 is such a constant that 

£ 1 η £ - = Α;3, (470) 
Po · 

we have 

Afos = RT In?-=kzT. (471) 
Po 

Finally, as was brought out in the preceding article, the two component 
free energies AfFS and AfPS arising from the existence of the adsorptive 
field surrounding the soil particle are constants independent of tempera
ture. Therefore we have 

AfFS + Afps = h, (472) 

&4 being another constant independent of temperature. 
We can now determine in a generalized way the total free energy Afsr 

of a moist soil at any temperature, the soil moisture content remaining 
constant. Substituting equations 469,471, and 472 into 467, we have 

Afsr = h + k2T + kzT + fc4; (473) 

and upon further combining the terms on the right side, we may write 

Afsr = C1 + C2T, (474) 

where Ci and C2 are still other constants independent of T. 
Since equation 474 contains two unknowns, C\ and C2, we must de

termine Afsr experimentally at any two different temperatures T\ and 
T2 before we can calculate C\ and C2 and consequently before calculating 
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AfsT at any desired temperature T. Let us assume that Afsr has been de
termined experimentally and found to be Afs^ at the temperature T\ 
and AfsTt at the temperature TV We then have 

4/ΑΓΙ = Cl + C2T1 
and 

AfsTt — Ci + C2T2. 

The unknowns Ci and C2 are determined immediately if we solve the set 
of linear simultaneous equations above, with two unknowns, for Ci and 
C2. We then have 

d = riAftr.-r,4frri (475) 
Γ ι - Γ , 

and 

O2 = = 

2 Ί - Γ , 
(476) 

Inserting d and C2 of equations 475 and 476 into equation 474, we have 
the free energy Afsr of soil moisture at any temperature T in terms of its 
value at but two temperatures, Ti and T2. Then 

AfST = fTi*fsT2-TiAfST\ + /AfSTl - AfsA T ( 4 7 7 ) 

This equation is the result of the most general treatment in which all 
the factors known at present (for example, surface tension, osmotic pres
sure, hydrostatic pressure, and the adsorptive forces surrounding the soil 
particle) are considered. 

Equation 477 in contrast to equations 436, 465, and 466 requires a 
determination of Afsr at two temperatures, T\ and T2. 

When, therefore, the conditions of the soil moisture happen to agree 
approximately with those conditions assumed in deriving the simpler 
equations 436, 465, or 466, it is advisable to use them. Equation 477 is a 
general one applicable under all conditions of soil moisture, of which 436, 
465, and 466 are merely special cases. 

To fix our ideas as to the use of equation 477, let us assume the follow
ing set of data: At the temperature Ti = 280° A, AfsTi of a moist soil at a 
particular soil moisture content was found equal to —3 X 107 ergs per 
gram; at T2 = 300° K, for the same soil moisture content, AfST2 = 
—2 X 107 ergs per gram. Therefore 

A / 2 8 0 X ( - 2 X 1 0 7 ) - 3 0 0 ( - 3 X i a 7 ) , ( - 3 X 1 0 7 ) - ( - 2 X 1 0 7 ) ^ 
&JST = r X *■ 

280 - 300 280 - 300 

= - 1 7 X 107 + 5 X 105 X T. (478) 
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Let us now, by equation 478, calculate the free energy Afsr of our sample 
of soil moisture at 273° A. 

Δ/5 273 = - 1 7 X 107 + 5 X 105 X 273 = -3 .35 X 107 ergs per gram. 

81. Dependence of the Free Energy of Soil Moisture on Temperature, Expressed 
in Terms of the Differential Heat of Wetting 

We shall approach the subject of the variation of the free energy of soil 
moisture with temperature by a method somewhat less empirical than 
that used in the previous article. We may, for example, wish to know the 
free energy Afsr of soil moisture at some temperature T but instead find 
it more convenient to measure its heat of wetting, from which the free 
energy Afsr may be computed. The following discussion will show how 
the free energy Afsr may be calculated from experimental results on the 
differential heat of wetting. 

We have seen from equation 404 that 

\dm/T 

RT*d\ 
(479) 

dT 

and from equation 236 that a change in the free energy Afsr in going from 
free water at a vapor pressure p0 to the soil moisture at the vapor pres
sure p may be expressed by 

AfsT = RT) 
W 

or 

, l n ( - ) 
\Po/ 

RT p 

Substituting equation 480 into 479, we have 

\RTJ 

4/W__lnPo_ (480) 

\dm/T dT 
or 

\ T J \dm/TT* 

The value of ( — ) depends, in general, on the temperature and mois-
\dm/T 

ture content. Suppose, now, we keep the moisture content of the material 
constant and determine experimentally the differential heat of wetting 
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of the material ( — ) as some function Φ(Γ) of the temperature T, en-
\dm/T 

abling us to write the identity 

(^) - Φ ( Τ ) . (482) 
\dm/T 

If this function is substituted in equation 481, we have 

< ^ ) -<¡(=^)--*mf 
Then, integrating between any two temperatures 7\ and T, we have 

dT ΓΛΨ)-ΙΧ> 
or 

T T7! JTI JT2' 
(483) 

Here AfSr and AfsTi correspond to the free energy of the soil moisture 
with respect to that of free water at the temperatures T and Th respec
tively. Rearranging equation 483, we have 

AfsT = - τ/\.(Τ)ψ2+(^ήτ. (484) 

This equation furnishes a rigorous method in addition to those given in 
articles 74, 78, 79, and 80 for determining the free energy AfSr of soil 
moisture as a function of the temperature T, regardless of whether the 
differential heat of wetting is due to solution effects or to adsorption of 
moisture. It requires an experimental determination of the differential 
heat of wetting Φ(Τ) of the soil sample as a function of temperature be
tween Ti and T, as well as a single determination of the free energy AfSTt 
of the soil sample at some one temperature ΤΊ. Although we may not be 
able to make all the determinations on only one soil sample, we can make 
the determinations on different samples, all at the same moisture content. 

As equation 484 shows, we can determine the free energy Afsr of soil 
moisture at any temperature T from the differential heat of wetting 

or, what is the same thing, ΦΤ (eq. 482), provided we know the 
\θπι/Ί 
free energy A / ^ at some one temperature T\. Equation 484 is most 
useful in determining the dependence of the free energy of soil moisture 
on variations of temperature for comparatively dry soils where the 
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differential heat of wetting p 2 ) T i s  appreciable. Because of the very 

minute heats of wetting of relatively moist soils, we cannot, with the 
present development of calorimetric technique, secure dependable re- 
sults with this equation at  high soil moisture contents. More usable 
approaches at  such contents are discussed in articles 74,77, and 80. 

In contrast to the previous methods of determining the dependence of 
the free energy of soil moisture on temperature, where we considered the 
various mechanisms involved such as surface tension and salt concentra- 
tion, equation 484 does not necessitate the assumption of specific mech- 
anisms. Only measurable thermodynamic quantities such as differ- 
ential heat of wetting and temperature are involved explicitly. 



MOVEMENT OF SOIL MOISTURE 

82. Importance of Free Energy Af8 in Studies of the Movement and the 
Equilibrium of Soil Moisture 

Because of the thermodynamic properties of the free energy Afs, two 
bodies of moist soil, A and B, a t  the same temperature will be in equilib- 
rium if their values of Afs are the same (art. 21 and 22).The temperature, 
as well as the free energies, a t  A and B must be the same if equilibrium is 
to exist; for the free energies may well be the same at  the two points A 
and B, since we may have 

and yet equilibrium will not exist if the temperatures are different. If, 
however, Afs of B is less than that of A ,  there will (eq. 115) be a tendency 
for moisture to move from A to B because moisture will always move 
from points of higher Afs to points of lower Afs. It will continue to move 
until the final value of Afs at A is the same as the final value at  B. The 
value of the free energy a t  A will then have decreased, whereas that at  B 
will have increased. Incidentally, when equilibrium has thus been estab- 
lished, there will have been a net decrease of the total free energy of the 
system (art. 21). 

The different values of Afs for different interconnected regions of mois- 
ture all tend to approach the same value. If the interconnections are 
through the vapor rather than the liquid phase, selective distillation will 
continue until enough moisture has moved from regions of high Afs to re- 
gions of low Afs to make the value of Afs uniform throughout. No matter 
whether the water is liquid, ice, or vapor, moisture will always move from 
regions of high Afs to regions of low Afs until the value of Afs is uniform 
throughout. 

In perfect analogy with the idea of potential as used in electricity, mag- 
netism, or soil-moisture studies, the gradient of the total specific free 
energy Afs in the soil is the negative of the force per gram acting on the 
water particle. Also the component of the force acting on a water particle 
per gram in any direction is the negative of the derivative of the total po- 
tential in that direction. All the vector properties usually associated with 
the gradient of a potential should be associated with the gradient of the 
free energy Afs. 

We often hear that the gradient of the capillary or pressure potential at  
some point equals the negative of the resultant force per gram acting on 
the water at  that point. This statement is not always true. The pressure 
or capillary potential, as customarily used in the past, seems not to con- 
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sider the effect of the variation in concentration of dissolved material in 
producing water movement. The capillary or pressure potential explicitly 
deals only with the energy in the soil moisture arising from the mechan
ical tension or pressure existing in the soil moisture. 

The free energy Afs is a more generalized quantity than any of the 
others previously used for describing the energy content of water and 
includes them as special cases only. The free energy Afs (art. 60) includes 
the energy due to the adsorptive field surrounding the soil particle and 
that due to dissolved material, as well as that due to hydrostatic pressure. 
It includes any other terms that might be appreciable under certain con
ditions, such as the kinetic energy of water (taken up at the end of this 
article) and the energy due to the possible orientation of the water mole
cules in the vicinity of the water-soil interface. In the present treatment 
the latter contributions to the free energy Afs have been regarded as 
negligible. 

I t is self-evident that the adsorptive field surrounding the soil particle 
can cause differences in hydrostatic pressure and hence in moisture move
ment. On the other hand, let us show in a preliminary way that dissolved 
material will also cause movement. Referring to article 40, we see that if 
a solution is placed in contact through a semipermeable membrane with 
pure water in a capillary tube, water will, in general, move either into or 
out of the capillary tube. Let us gradually increase the tension on the pure 
water in the capillary tube. Water will flow into the solution until the 
hydrostatic tension — APP in the pure water of the capillary tube nu
merically equals the osmotic pressure AP0 of the solution. In other words 
(art. 24 and 40) when the free energy v( — APP) due to hydrostatic pres
sure on one side of the semipermeable membrane equals the free energy 
— vAPo due to osmotic pressure on the other side of the membrane, no 
further movement takes place. If the tension — APP on the pure water is 
increased until its magnitude is numerically greater than the osmotic 
pressure AP0j water will move from the solution into the pure water in 
the capillary tube. Thus we see that pure hydrostatic pressure or tension 
may not be the only cause of capillary movement of soil moisture. 

Let us consider the two following hypothetical cases in soils in order to 
bring out the generalized usefulness of the free energy Afs in predicting, 
under given conditions, the tendency of moisture to move in a soil as well 
as to show that the capillary, or pressure, potential alone does not de
termine the movement of moisture in the soil. 

Case I (fig. 47) represents a soil column whose capillary or pressure po
tential (equivalent throughout to AfP) is uniform throughout. In other 
words, the tension in the moisture, as measured by a porous bulb atmom-
eter immersed in the soil for a long period until equilibrium has been 
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established, is the same throughout. This involves the assumption that 
the solution has the same concentration inside the porous bulb as in the 
soil moisture immediately outside the bulb. That is, the capillary poten
tial at A equals that at B. A gradual increase of salinity occurs, however, 

I 
ùecreas/nf Sa//nify >■ 

Afs 

Fig. 47.—A given free-energy gradient pro
duced (I) by varying salinity and uniform 
capillary potential, and (II) by uniform salinity 
and varying capillary potential. 

in going along the soil column from Bio A. This gives rise to^a gradient 
of the osmotic potential (equivalent to the gradient of Af0) and conse
quently of the free energy Afs of the soil moisture. The gradient or force 
per gram acting on soil moisture at some point P and tending to cause 
movement in the direction A is given by the slope of the curve S at the 
point P . There is, in other words, a uniform tendency of moisture to move 
in the direction from B to A, although the capillary or pressure potential 
is the same throughout. 

Case II somewhat resembles case I in that the free energy Afs at cor-
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responding points in the two soil columns have the same values as shown 
by the graphs. In case II, however, the salinity or osmotic potential 
(equivalent throughout to Δ/0) is uniform throughout the soil column; 
but the soil moisture content is so adjusted along the soil column that the 
capillary or pressure potential mil vary in such a way that corresponding 
points in the two soil columns have the same value for the total free 
energy Afs. The gradient of the free energy and, in consequence, the force 
acting on the soil moisture is the same at corresponding points in the two 
cases. The tendency of soil moisture to move from B to A in case I is 
therefore the same as in case II even though the factors giving rise to the 
movement are entirely different. I t does not follow, of course, that the 
flow density will be the same in the two cases since the moisture contents 
are not the same. 

To be sure, the variation in salinity in the soil column of case I will 
eventually decrease to zero, while the salt concentration will become uni
form throughout by diffusion. No tendency towards movement of mois
ture will then exist. These considerations lead one to conclude that the 
porous bulb as generally used for measuring the capillary or pressure po
tential of soil moisture does not measure the capillary potential, the total 
potential, or the free energy. It would measure capillary potential only 
when sufficient time had elapsed to obtain equality in concentration of 
dissolved material between the soil solution and the water inside the 
atmometer. I t would measure total potential or free energy only if one 
could get an equilibrium reading before any dissolved salts of the soil 
solution had moved into the inside of the atmometer. This is impossible 
because considerable time is required for pressure equilibrium to be estab
lished. In practice the porous-bulb technique usually gives a value some
where between the capillary potential and the total potential, or free 
energy. For most soils, which are not very saline, this measured value is 
probably not far from the capillary potential, or the total potential, or 
the total free energy. 

If we are to determine the total energy required to remove water from 
soil as well as its tendency to move from one point to another, we should, 
it seems, determine the total free energy Afs. The error caused by the dif
fusion of soil solutes made in measurements of the capillary or pressure 
potential by the porous-bulb technique will of course depend upon the 
circumstances, and in some cases will be negligible. 

In the discussion above, we have considered the effect of dissolved 
substances on the osmotic pressure only, and therefore on the free energy 
Δ/β. Dissolved material affects Afs in still another way in that it changes 
the surface tension of water. Practically all salts cause a slight increase, 
and many organic substances a considerable decrease, of surface tension. 
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Such changes of the surface tension will affect the component of the free 
energy due to hydrostatic pressure. Since the salts as found in soil solu
tions change the surface tension by a very small percentage, the effect of 
changes in surface tension caused by dissolved material has been neg
lected in the foregoing treatment. 

As mentioned above, the total free energy Afs plays, in a more com
prehensive way, the same role in soil-moisture movement as has the po
tential in many former treatments of the subject (20, SO, 1^.5, 55, 57, 58, 
59, 81, 111, 125,126). I t is worth while, therefore, at this point, to restate 
some of the hydrodynamic equations of soil moisture in terms of free 
energy Afs. In such slow motion as that of water in soils, there is consider
able evidence to justify the assumption that the frictional forces are 
proportional to the velocity. This may be expressed mathematically by 

V = KF, (485) 

where V represents the mean velocity of the soil moisture; K the pro
portionality factor, whose magnitude depends on the frictional forces set 
up by the soil; and F the driving force on the moisture per unit mass of 
moisture. 

Since, as pointed out earlier in this article, the force F equals the nega
tive of the gradient of the free energy Afs, we may write (eq. 467) 

F = -V(Afs) = - ν ( Δ / σ * + Afps + Afos + Afps) , (486) 
where 

V =i \-3 hfc —, 
dx dy dz 

i, j , and k being unit vectors in the positive direction of the x, y, and z 
axes. Here the component free energies have the same meaning as in 
equation 467. 

Substituting F from equation 486 into 485, we have 

V = -KV(Afs) = -KV(Af*s + Afps) + Afos + àfrs). (487) 

The factor K may be regarded as a transmission function. Equation 487 
is simply Darcy's law and states that the force acting on soil moisture 
and, consequently, the velocity of movement of the soil moisture at a 
given point are proportional (at a given moisture content) to the greatest 
space rate of change of the four component free energies and have a 
direction proportional to the greatest space rate of change of the four 
component free energies. 
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Now the equation of continuity, which is simply a statement of the 
law of conservation of mass, is 

^ = V · (PV), (488) 
dt 

where the dot indicates the scalar product of the vector operator V and 
the vector (pV) and where p is the moisture density in grams per cubic 
centimeter at any point in the soil. Since we wish to express at any point 

r) n 
the rate of change of the moisture density with time — , in terms of the 

dt 
free energy at that point, let us substitute equation 487 into 488, from 
which we get 

^ = V . [pXV(Afs) ] . (489) 
dt 

The transmission function K depends on the moisture density p, on the 
viscosity of the water (which depends on the temperature), and on the 
nature of the soil. For a given soil at a given temperature, we may 
therefore write 

pK = pF'{p) = F(p), (490) 

where F(p) denotes a function of the moisture density p. Equation 489 
may therefore be written 

^=V-[F(P)V(Afs)]. (491) 
at 

A solution of this equation obviously gives the moisture density as a 
function of time and position in the soil mass. 

Under steady conditions of flow, including zero flow, we have 

0 = V-[F(p)V(4f s ) ] . (492) 

A solution of equation 492 gives the distribution of moisture as a function 
of position under the conditions of steady flow, including zero flow. It 
gives, for example, the moisture density as a function of height above a 
water table when equilibrium has been established between the upward 
movement from the water table and the evaporation from the surface 
of the ground. 

The foregoing discussion in this article has been made on the assump
tion that the kinetic energy of the water is negligible. Where this is not 
the case, it must be included as another component of the total free 
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energy. If it is remembered that the total specific free energy represents 
the maximum amount of useful work possessed by, or obtainable from a 
substance at constant temperature and external pressure, it is obvious 
that the kinetic energy term should be included in Afs. 

In view of the above, let us consider Bernoulli's theorem, which is of 
great importance in hydrodynamics. To our knowledge, this has never 
been discussed in terms of free energy. When dealing with incompres
sible liquids in steady streamline flow, the theorem may be stated as 
follows: 

- + ^ + gZ = K=Af. (493) 
P 2 

The first term represents the component of the free energy due to pres
sure, as can be shown from equation 156, since P here equals ΔΡ and 

- equals v; the second, that due to the kinetic energy of the water; the 
P 
third, that due to its position in the gravitational field (art. 26) ; and K 
is a constant (since we are considering a tube of flow in which the amount 
of water passing through any cross section in the tube of flow is always 
the same) equal to the free energy Δ/. The equation merely states that at 
any point along a streamline of flow, the sum of the three component free 
energies is constant, although the component free energies may vary 
considerably among themselves. 

Suppose we are considering a reservoir from which water is flowing out 
through an orifice. At the bottom of the reservoir in the orifice, the com
ponent free energy due to kinetic energy is a maximum, and that due to 
position in the earth's gravitational field, a minimum according to equa
tion 493 above; at the top of the reservoir, the component free energy 
due to kinetic energy is zero, whereas that due to the gravitational field 
is a maximum; finally, at the bottom of the reservoir far back from the 
orifice where the water is at rest, we find both the component free energy 
due to kinetic energy and that due to position in the earth's gravitational 
field equal to zero, leaving the entire free energy equal to the term 

p 
Δ / = Κ = - . 

P 

We thus notice that even for dynamic systems for which Bernoulli's 
theorem is applicable, wrîere we are dealing with an incompressible liquid 
under steady flow, the free energy of the liquid is constant throughout a 
tube of flow, just as was shown to be the case for static systems in equi
librium in article 22. 



DEFINITION OF PRINCIPAL SYMBOLS USED 

In the definitions of the following series of terms, some will be found 
to have several meanings. The context in the articles will indicate which 
is to be used. A few terms have been omitted from this list since they are 
used so seldom in the articles and are defined at the place where they are 
used. 

a maximum work per gram (specific) 
A surface area 
c specific heat ; in Raoult's Law, the constant of proportionality 
cp specific heat at constant pressure 
cv specific heat at constant volume 

C moisture content in soil 
d differential 
e base of natural logarithms 
e internal energy per gram 
e/ efficiency 

E total internal energy; total energy 
f function 
/ absolute value of the free energy per gram (absolute specific 

free energy) 
F total free energy of a system; force per gram acting on soil 

moisture 
Δ/ specific free energy with respect to a datum 
Δ/D total specific free energy of saturated soil in the dilatometer 

with respect to the datum 
AfFD component specific free energy of soil moisture in the dila

tometer due to its presence in the adsorptive force field 
surrounding the soil particle 

àfoD component specific free energy of soil moisture in the dila
tometer due to the presence of dissolved material which 
creates an osmotic pressure 

A/PD component specific free energy of soil moisture in the dila
tometer due to the hydrostatic pressure in the soil moisture 

Δ/s total specific free energy of soil moisture in the normal state 
with respect to the datum 

kfps component specific free energy of soil moisture in the normal 
state due to its presence in the adsorptive force field sur
rounding the soil particle 

Δ/os component specific free energy of soil moisture in the normal 
state due to the presence of dissolved material which creates 
an osmotic pressure 

[284] 



Feb. 1943] Edlef'sen-Ander son : Thermodynamics of Soil Moisture 285 

Afps component specific free energy of soil moisture in the normal 
state due to the hydrostatic pressure in the soil moisture 

Afcs component specific free energy of soil moisture in the normal 
state due to the surface-tension effects in the soil moisture 

Afsr total specific free energy of soil moisture at the temperature T 
g acceleration due to gravity ; also gravitational force 
g volume of individual compartments of phase space 
G dry weight of soil in grams 
h heat content per gram = e + pv ( m some literature, notably 

that of mechanical engineering, the term "enthalpy" is some
times used in place of what we here call "heat content"); a 

constant in the Maxwell distribution equation = ; 
height 2kT 

H total amount of heat 
k molecular gas constant, that is, Boltzman's gas constant 

K degrees Kelvin or degrees Absolute 
K force vector 
K component of a force 

I heat of transition from one phase to another; distance or 
path of integration in a field of force 

In natural logarithm 
m mass of a molecule;, total mass; number of mois; mass (in 

grams) of water in soil 
nu number of mois of ¿th constituent in a solution 
M molecular weight ; weight of a mass 
m weight in grams of ¿th component of a solution 

N total number of molecules; number of molecules per gram 
(Loschmidt's number) 

N% number of molecules lying in the zth cell, interval, or com
partment of phase space 

p vapor pressure, or gas pressure 
po vapor pressure of datum 
P hydrostatic pressure (may include vapor pressure in general 

equation) 
APp, APo hydrostatic pressure, osmotic pressure, respectively, with 

reference to some datum 
APos,APoD osmotic pressure of soil moisture in the normal state and in 

the dilatometer, respectively 
APps,APpo hydrostatic pressure in soil moisture in the normal state and 

in the dilatometer, respectively 
q heat energy per gram 
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q heat of wetting when dry soil is wetted to moisture content m 
Q heat evolved when the soil, whose dry weight is G grams, is 

dropped into an excess of water 
r radius of curvature 

R gas constant per gram 
s entropy per gram (specific entropy) 
S total entropy of system 
t time ; total thickness of water film 

At thickness of a liquid surface layer whose total thickness is t 
T temperature 

ATo, ATp freezing-point depression due to osmotic pressure and hydro
static pressure, respectively 

u velocity of molecule 
v specific volume 
v partial specific volume 

VL, VV specific volume of liquid and of vapor, respectively 
V total volume ; velocity of flow 
w work performed by a system or working substance 
Wi fraction of the total number of molecules N whose represen

tative points fall in the ith compartment or cell in phase 
space 

W thermodynamic probability of a given macroscopic state 
Xi, x2, Xz positional coordinates in phase space 

Xi mol fraction of ith constituent in a solution 
Xi weight fraction of the ith component of a solution 
y height 
δ mathematical symbol for a variation 
Δ symbol for a small part or element of a quantity; symbol for 

a finite change 
en total energy of a molecule in the nth state, compartment, or 

cell of phase space 
Θ angular measure in degrees; also, in some parts of the dis

cussion, multiple-valued function 
λ heat of condensation ; osmotic potential 
p density of moisture in the soil, in grams per cubic centi

meter of soil; density of air in grams per cubic centimeter; 
density of water 

σ surface tension 
r thickness of the surface layer of water in which properties 

are different from main body of the liquid 
Φ total potential of soil moisture 
ψ pressure potential of soil moisture 
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ω gravitational potential 

V = i h i — + k — operator gradient (i, i, and k being unit 
dx dy dz 

vectors in the xy y, and z directions, respectively) 
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