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In most forestry operations, estimates must be made. If those
estimates are to be applied properly in making decisions, the
forester must be able to determine their accuracy and their rela-
tive efficiency. Better methods are needed to help the decision-
maker design forest sampling systems.

The study reported here was designed to demonstrate the use
of the computer to simulate a forest sampling problem. Somewhat
empirical in nature, the investigation sought to provide those
engaged in forest sampling with a method of analysis to help in
making decisions in a state of uncertainty.

In addition to providing limited answers to a specific problem—
that of optimum combination of number and size of plots in
sampling forests—the study suggests an approach to solving prob-
lems of this and a similar nature by introducing concepts from
production economics and by using computer simulation.
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INTRODUCTION

IN ANY SAMPLING procedure, either the
cost or the reliability of the information
desired must be determined, the main
objective being to obtain either maxi-
mum information about a given popu-
lation for fixed expenditure, or a speci-
fied amount of information at minimum
cost.

It is common knowledge that the
larger the plot size and the greater the
number of plots, the better the estimate
(in terms of smaller variance). Reduc-
tion of variance, however, is not the
complete solution. Since large samples
are more costly, some accommodation
between reliability and cost is required.

Much of the research in sampling,
over the past 30 yvears, has concerned
methods of determining the best plot size
for obtaining estimates of population
parameters. Many workers have con-
ducted numerous experiments (mainly
in agriculture or ecology) to provide
guidelines for practical applications
and to develop supporting theories
(Mahalanobis, 1940, 1944, 1946; Yates,
1935; Sukhatme, 1946; Bormann, 1953;
Cornfield, 1951).

Other work on sampling that has had
a pronounced effect on forest estimation
procedures includes: Neyman’s (1934)
study on optimum allocation in strati-
fied sampling; Cochran’s (1963) con-
sideration of ratio and regression esti-

1 Submitted for publication October 25, 1965.

mates; Hansen, Hurwitz, and Madow
(1953) on the theory of sampling pro-
portional to some measure of size;
Mahalanobis’ (1944) investigation of
problems in surveys; Sukhatme and
Seth (1952) on nonsampling errors;
Bitterlich’s (1948) idea of variable
plot; Grosenbaugh’s advancement of
point (1958) and 3P sampling (1963);
and the study by Palley and Horwitz
(1961) on properties of some random
and systematic point-sampling esti-
mators.

Although sampling is an important
factor in forest management, research
on sampling as it relates to forestry has
been fairly limited. Some of the work
done over the past 10 years may be
summarized as follows:

Mesavage and Grosenbaugh (1956)
used the reciprocal of the produet of the
squared sampling error (as per cent)
multiplied by the cost as a criterion to
determine plot size for volume estimate.

Grosenbaugh and Stover (1957) eom-
pared sampling estimates of basal area,
cubie-foot volumes, and board-foot
volume derived from 1/4-acre plots with
those derived from points of basal-area
factor® ten, in southeast Texas, and con-
cluded that “it is merely a question of
the magnitude of point sampling’s su-
periority.” However, since these work-
ers had not secured cost data for the

2 Basal-area factor (for sq. ft. per acre) is defined as 43,560 x haversin of critical angle,
i.e., the angle at the sampling point which is subtended by the diameter of a tree at breast

height.
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1j-acre plots, they were not able to
calculate the relative efficiency between
points and plots.

Strand (1959) showed that, among
various methods of estimation, stratified
sampling with allocation of sample
trees in proportion to the sum of their
basal areas gave better results (in terms
of smaller variance) for basal-area
growth which, in turn, was less accur-
ately estimated than was volume
growth.

Hall (1959), disregarding cost, re-
ported the gain in precision for growth
estimates obtained by using measure-
ments from permanent sample plots.

Strand (1957) found that, for Nor-
wegian conditions, the coefficient of
variation of basal area or volume de-
creases approximately in proportion to
the inverse of the square root of the plot
size. Something similar was reported by
Freese (1961) who suggested an ap-
proximation useful in many forests in
the southern United States—namely,
that the squared coefficient of variation
is inversely proportional to the square
root of the relative plot size. This ap-
proximation was tested against a
variety of species by Boon (1962) who
pointed out that “In most cases the
formula as proposed by Freese does not
seem to be justifiable, as not only may
different tangent values be expected for
the different species, but there is also a
slight indieation of curved forms” (of
the coefficient of variation over the
plot size when plotted on logarithmic
paper). Boon (1962) also criticized
Prodan’s (1961) statement that, in
rather irregular forest stands in which
trees tend to group, “small plot sizes
should have a greater rate of efficiency
compared with larger plot sizes.” Fol-
lowing the change in skewness caused
by changes of plot size, Boon argued
that what Prodan has reported is due to
the asymmetric distribution of trees,
and concluded that ‘“‘apart from the
influence of plot shape and strip ori-
entation . .. the nature of the popula-
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tion will finally determine the plot size
and variability relation.”

Bickford (1962) stated that growth
estimates derived from point sampling
would be less efficient than those from
fixed-area plots sinece points include
fewer smaller trees than do plots.

Shiue (1962), on the other hand,
pointed out that “since the point sam-
pling system has the effect of reducing
the sampling error caused by larger
trees, net growth estimates of over-
mature, all aged stands will be better
than those estimates obtained from a
fixed size plot system.”

In forest sampling procedures, use of
very small plots often results in bias,
either because border plants are in-
cluded in the sample (Sukhatme, 1946),
or because sampling units tend to be in-
stalled in areas of relatively good
growth (Mahalanobis, 1946; Yates,
1935). Such practices can result in
overestimation of the population pa-
rameters.

Very large plots, on the other hand,
are free of border bias, and show lower
variance per unit area. Furthermore,
regardless of the distribution of the
parent population, distributions of
measurements based on large sampling
units approach the normal distribution
at a faster rate than do those derived
from small plots (Evans and O’Regan,
1963). Large plots cost less per unit
area than do small ones sinee plot loca-
tion and establishment are independent
of plot size. What this amounts to is
that the properties of estimates are
controllable by the number and size of
random-sampling units. The optimum
design for a given set of conditions is a
function of the cost and variance fune-
tions.

Before 1947, the usual practice in
forestry sampling studies was to estab-
lish a point on the ground, construet a
sampling unit of fixed size in its neigh-
borhood, and measure all elements in-
side the perimeter of that unit. Under
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this sampling procedure, equal proba-
bilities of selection are assigned to all
elements of the sample, regardless of
their location and size (except for
border effect). Bitterlich (1948) initi-
ated a new sampling rule—that of un-
equal probabilities of selection—which
was further developed by Grosenbaugh
(1958). This new rule has both advan-
tages and disadvantages, depending on
the particular objective of a given
study.

In the present study, the authors
used simulation techniques to obtain
variance funetions for various param-
eters and forests. Cost functions were
devised for each estimator, and eco-
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nomically efficient sampling plans were
discovered.

The effect of plot shape was not con-
sidered. We worked with circular plots
of various radii and with variable
plots with different basal-area factors
(BAF). Although some difference of
opinion concerning plot shape exists
among investigators (Christidis, 1931;
Sukhatme, 1947a, b), except for long,
narrow plots, the effect of shape on the
accuracy of the estimate is apparently
less important than are size and num-
ber of sampling units. We hope to re-
port soon on some aspects of the rela-
tionship between plot shape and vari-
ance.

THE SAMPLING PROBLEM

A forest is an aggregation of trees
fixed on a given land area. In this study,
we have assumed that the area is rec-
tangular. The position of any tree and
the location of any sampling point can
easily be given in Cartesian coordinates.

Sampling rules are chosen so that
each tree has some (non-zero) proba-
bility of being observed in a random
sample. This probability is obviously a
function of the chosen rule, and may
depend on the position of the tree, the
tree dimensions, and the like.

Depending on the sampling pro-
cedure employed, the elementary sam-
pling units could be defined as con-
sisting of (1) only one tree—for
example, when sampling is done with
probability proportional to prediction;
or (2) of one or more trees—for ex-
ample, when the elementary sampling
unit is a cluster of trees. Definition (2)
is used in the present investigation. A
rule to define clusters, and the number
of clusters to be drawn (at random) are
decisions to be made.

Trees of a given forest area can be
partitioned into elementary sampling
units (clusters) depending on the dis-
tribution of the trees on the ground and
the sampling rule being used (O’Regan

and Palley, 1965). Suppose that fixed-
area circular plots are to be used in a
survey. A sampling rule which takes a
point at random (from a large number
of possible points on the forest floor)
and, with this point as a center, con-
struets a circle of radius, R (1), gener-
ates a set of elementary sampling units
(clusters) which is, in general, different
from that created by some other radius.
By the same token, the same sampling
rule, B(1), applied to an area with a
different spatial distribution of trees,
groups them into clusters in a different
way. The same holds true for sampling
rules which do not refer to a specified
area of the sampling unit, such as
point sampling (Bitterlich’s procedure)
where the clustering can be changed by
altering the angle gauge.

In the present study, quantitative
measurements of interest are: number
of trees, sum of diameters (or of a
function of diameters, such as basal
area), and volume, all on a per acre
basis. These measurements are to be
taken either at a specified point of time
or as increments during some period of
time. The latter covers the growth of a
forest.

That this procedure of sampling
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points at random and clustering trees
about points on the basis of a rule re-
sults in unbiased estimates can be
demonstrated as follows:

Suppose that there are M elements in
the population (trees in a forest, for
example), each of which has measurable
characteristies X; and a probability of
P; of being observed in a random draw-
ing, where 0 < P; < 1.

Suppose that there are N possible
sampling points, and let M; be the num-
ber of the population elements associ-
ated with a single randomly drawn
point, j.

Define:

where T is the sum of measurements
over all M elements in the population.

For the jth random point, define a
measurement:

where W; is a weight associated with
the ith tree.

Now,
N

BT) =5 %

=1 7

=

J

X W;

I
~

The double sum will be over only M
values of X;W; because there are only
M elements.

Suppose that the ith element occurs
N; times in the sum, then:

1 &
E(T;) = N ;NiXiWi

For an unbiased estimate,

ET) =T
and
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which implies,

1
% NW;=1
and
N
W, = N,
but,
N: _
N P
therefore,
1
W, = .

This derivation can easily be extended
to more than one random point. In the
case of circular plots, large N, and no
edge effect, P; is approximately propor-
tional to plot area.

It is apparent from the preceding
discussion that every sampling rule gen-
erates a (conceptual) probability dis-
tribution of measurements that is a
funection of the number and the spatial
distribution of the trees on the ground
and of the rule selected.

Probability distributions can be des-
cribed by means of a set of parameters.
The central problem of sampling is to
control the values of such parameters
(mainly variances) of the resulting
sampling distribution by proper sample
design. Almost always, the interest is
centered on the nature of the sam-
pling distribution. Terms such as “un-
biased,” “minimum variance,” and the
like refer to the sampling distribution
of the estimate.

Choice of a probability framework in
sampling is important because it affects
both the reliability and the economic
efficiency of estimators. We shall show
that economieally efficient designs are
determined by the interaction of vari-
ance and cost functions.



HILGARDIA -« Vol. 38, No.2 + March, 1967

VARIANCE

The relationship between variance
and plot size was studied empirically by
Smith (1938). He examined a large
number of published uniformity trials,
and found that for many field experi-
ments this relationship can be deseribed
by the equation:

log,V, =log,V, - b’ log. X

where

V= variance of yield expressed per
unit area among plots of size X
units.

V., =variance of yield among plots of
size unity.

b’ = regression coefficient, the magni-
tude of which reflects the rela-
tionship between measurements

based on adjacent small areas of
land.

This logarithmie relationship was
linear in most cases. However, Smith
found that several fields yielded cur-
vilinear forms. He argued that since, in
most populations, the elements of area
making up the sampling unit (plot)
have measurements that are positively
correlated, plots of a given area will
differ in their values more than would
equal amounts of areas made up of
randomly selected elements. That is,
they will have larger variances. Smith
refers to two papers by Harris (1915,
1920) in which he appears to have pro-
posed using the intraclass correlation
coefficient of yields from adjacent areas
as a coefficient of heterogeneity.

According to Whittle (1956), the
variation of yield variance with size of
plot may be explained by allowing for
the possibility of spatial correlation be-
tween yield of any two points in the
plot. This correlation decreases ‘“‘rela-
tively slowly with inereasing distance
between the two points as a power
function of the distance rather than as
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FUNCTION

an exponential.” Whittle went on to
point out that ‘“for small regions
(plots), the variance is proportional to
the square of the area, while for large
regions, the variance is proportional to
the area.”

Koch and Rigney (1951) pointed out
that if larger plots were constructed by
choosing at random X units to form
each plot, the variance of the plot
measurement would be:

V.=V./X

If the plots were formed (as they
usually are) by choosing adjacent units,
there would tend to be a correlation
among these units in each plot, and the
varianee of plot means would be larger
than if they were uncorrelated. In such
cases, the formula above would be
changed to:

V.=V,/X?
Expressed in logs, this becomes:
log.V,=1log.V,— b log.X

which is identical with Smith’s variance
funection.

For purposes of estimating optimum
plot size, the coefficient b’ alone is of
interest. Smith recommended that for
uniformity data in estimating the re-
gression coefficient b’, the variances of
the different-sized plots should be
weighted by their respective degrees of
freedom. Koch and Rigney (1951)
pointed out that this procedure is not
feasible with experimental data since
the variance estimates for different-
sized plots are built up from common
components, and are frequently highly
correlated so that a simple weighting
by the degrees of freedom is not ac-
curate.

In order to calculate the regression
coefficient b’, Wright and Freeland
(1960) used weights equal to the re-
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ciprocal of the variance of N-tree plot
means, because “the reliability of a
variance varies inversely with its size.”

Hatheway and Williams (1958) de-
veloped efficient estimates of the con-
stants of the relationship between plot
size and variability, and worked out a
general method of determining efficient
linear estimates when the data are cor-
related and are of unequal variability.
Their suggestion for estimating b’ by
means of unweighted regression coeffi-
cients could sometimes result in values
less than minus one—a result unaccept-
able on physical grounds. Instead, these
workers used a minimum variance, un-
weighted estimate. However, the unac-
ceptable values eould also be attributed
to sampling error of the variance.

Matern (1960) obtained a good ap-
proximation of Smith’s formula by us-
ing the variance of an isotropic set
function.

Recent investigations by the authors
indicate that forest variance funections
take the following form:

log.Vy=1log.V,—b,log.X + b, (log.X)?

There are two possible bases for this
form of the variance function—first,
the correlation between measurements
on a plot and measurements on the in-
crement to that plot usually increases
with plot size (authors’ unpublished
data). Second, this result is deduecible
if the per plot measurement follows a
negative binomial distribution.

In this study the very high correla-
tion between log of variance, log of plot
size, and square of log of plot size in the
formula above seemed to make it un-
necessary to consider the problem of
weights.

For the same subject, Whittle (1956)
indicated that “any model which is to
provide a satisfactory explanation of
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the power law decay observed in agri-
culture must be non-linear. . ..”

Mahalanobis (1944) pointed out that
there are two ways to study the vari-
ance functions: (1) to carry out an ex-
tensive and expensive field experiment
using plots of various sizes, and (2) to
prepare a complete inventory of an area
and investigate the variance function in
the laboratory by means of a model. The
latter, which is cheaper than the first
and permits a large number of trials,
was used for the present investigation.

Size of field (or forest) is another
aspect of the sampling problem, i.e.,
how stable is the variance—plot size
relationship as field size increases. Ac-
cording to Smith (1938), if the ob-
served field is assumed to be a block of
some infinitely large field “the above
law can be generalized (so as to be ap-
plicable to any size of field) by apply-
ing a certain adjustment to the regres-
sion coefficient b’ so as to give a modi-
fied coefficient b applicable to an in-
finite field.” Following Smith’s discus-
sion, in the case of an infinitely large
field, the variance law could be ex-
pressed:

log.Vx=1log.V;—b log.X

where V; means “variance of unit plot
size for an infinite field.”

A series of corrections for b’ (for
finite field) were graphically deter-
mined by Smith to convert b’ to b for
infinite field.

As part of this study, a 20-acre forest
was subdivided into smaller blocks for
which separate regressions of variance
on plot size were calculated. Although
this forest does not approach Smith’s
infinite field, it is of interest to note that
the curves for blocks of various sizes
have the same general shape, and the
regression coefficients differ only
slightly (fig. 1).
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44(2) of the Blacks Mountain Experimental Forest.
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COST FUNCTION

Economice efficieney in sampling pro-
cedures implies a cost function to relate
total expenditure to sampling activities.
If the amount to be spent is fixed, the
aim would be to minimize the variance
of the estimate, thus obtaining the
maximum possible information, under
given conditions, about the quantity
being estimated. However, if for some
reason the expense is not limited, it
might still be desirable to keep the cost
as low as possible while still achieving
a certain degree of reliability.

According to Hatheway and Wil-
liams (1958), departure from linearity
of variance over plot size may create
problems in some cases. However, if
cost data are available, optimum plot
size may be estimated with reasonable
accuracy without the assumption that
Smith’s (1938) empirieal relationship
between variance and plot size holds.
Hatheway and Williams stated that if
the cost funection is:

B:Cl+02X

where C; is the cost of a plot (regard-
less of size), C, is the cost per unit of
plot, and X is the number of units per
plot, then V, can be minimized for a
given budget B,. In this case,

B,=n[C,;+ C.X]

where n is the number of plots, becomes
a side condition.

In modern forest sampling problems,
office expense can probably be taken as
independent of the number, size, and
pattern of field plots. In econsequence,
this investigation econfined itself to the
field component of the budget. We chose
as a cost function:

C = Cr\/ﬂ + Cz’n + CanTX
where

C =the cost of survey

C, = cost of walking a unit
distance, in erew-minutes
n = total number of plots
A = area to be sampled
C, = cost of plot establishment
(identifying plot
center, ete.)
T = average number of elements
per unit area
X =plot “size”
C; = cost of measuring an element
on the plot

In the case of point sampling, the
third term of the budget equation be-
comes CynT, where T is the average
number of trees observed at a point.
Magnitudes of T, ecorresponding to vari-
ous basal-area factors, were counted
and printed by computer. The follow-
ing least-squares estimate of T as a
funection of basal-area factors was then
inserted into the third term of the
budget equation:

T =0.169436 + 53.8135 (1/BAF),
with B?=0.999

The reasoning behind the second and
third term of the cost function is fairly
obvious. In adopting the first term, the
authors benefited from previous re-
search work dealing with determination
of travel distance through a number of
points (see, for example, Hansen, Hur-
witz, and Madow, 1953).

Numerical values for cost of walk-
ing a unit distance C,, cost of establish-
ment of a plot, C;, and cost of measur-
ing a tree in the plot, C,, all expressed
in erew-minutes (for a two-man erew)
were based on data from Hornibrook
(personal communication), Thus C, was
estimated to be 32 crew-minutes per
mile, C,, 15 crew-minutes for plots and
12 crew-minutes for points, and C;, 5
crew-minutes for measuring the diam-
eter of a tree and 1 crew-minute for
counting a tree. Although, in practice,
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several measurements are usually taken
at each random point, we have re-
stricted ourselves to procedures de-
signed to estimate one parameter. For
discussion of the multiparameter prob-
lem, see Jagannathan (1965) and
O’Regan and Arvanitis (1966).
Obviously, the formula is not uni-
versally applicable. Cost components
may be added, changed, or dropped, de-
pending on the purpose of the investi-
gator. What is more important here is
the fact that, given a reasonably good
cost function and assuming that enough
is known about the variance funection,
a relationship between variance, size
of plots, number of plots, and budget
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would be secured for any given expen-
diture. (Tables could be used in lieu of
formulas.)

In general, the effect of a cost fune-
tion is not easy to see. A few large, but
widely spaced plots decrease the total
travel required, and increase the meas-
uring time. On the other hand, and for
the same degree of accuracy, many ran-
dom plots of smaller size will cut down
the travel time from plot center to plot
center, but will increase the total travel
time and the time required for plot es-
tablishment. Therefore, choosing the
best combination of size and number
of sampling units for a given budget is
important in forest sampling design.

ANALYTICAL PROCEDURE

A solution to the problem of sampling
efficiency requires study of the relation-
ship between input (number and size of
plots) and output (the resulting vari-
ance or confidence-interval width of the
estimate).

In production economics the mathe-
matical relationship between output
and variable inputs is termed the pro-
duction function. Denoting the output
by @ and the r variable inputs by X,
X, ..., X,, the production function is
expressed as:

Q:f(X17X2’ L 7XT)
3 Actually we have chosen:
W' = to/v/w
where

t =student’s ¢

In this study, the function takes the
simple form:

Q=7(X,, X;)

The variable inputs are the number
and size of the plots, and the output is
a confidence-interval width.®

In production economics, an isoquant
is defined as the locus of all ecombina-
tions of variable inputs (in our ecase,
plot size and number of plots) that
yield a specified output level (confi-
dence-interval width).

By setting

Q=Q=f(Xy...,X,)

o?=variance of plot measurements (dependent upon plot size)

7 =number of random points.

This is slightly different from the expected value of the usual confidence interval half-width:
¢ PO I
EW) = Tn Ve = V(S.)

where 8, is the estimated standard deviation of the plot measurement and V(S,) is the
variance of the estimate. We could have used one of several measures of effectiveness. The
choice of the half-width as a criterion also implies that the chooser can tolerate the random
nature of the result. In a more sophisticated solution we could, of course, place probability
limits on exceeding the criterion level.
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Fig. 2. Isocosts, confidence interval iso-half-widths for 0.95 confidence level, and expansion path
of the estimate of basal area per acre from plot sampling.

we can solve for different sets of values where
Xi, ..., X, which .comb%ne to give the f; = derivative of f(X,, X») with
output Q,. By setting different Q’s we tto X
could obtain a family of isoquants for respect to 4
any given production function (see dX ; = differential of X;
figs. 2, 3).

In our case of two inputs, we have

Qo=1(X4, X>), therefore,

and X, is obviously a function of X,. AdX./dX:=—f1/fs
Taking the total differential

By the definition of isoquant,
dQ,=0;

which gives the rate of change of X, on -
dQo=f1d X, + f.dX, X, for the isoquant Q,.
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Fig. 3. Isocosts, confidence interval iso-half-widths for 0.95 confidence level, and expansion path
of the estimate of number of trees per acre from point sampling.

According to Carlson (1956), this
means that this slope “at any particular
point is equal to the relationship be-
tween the marginal productivities of
the services (inputs) with a minus
sign.”

The slope at a point on an isoquant
is the rate at which one variable input
must be substituted for the other (for
example, number for size of plots) to
maintain the corresponding output
level (interval width) (Henderson and
Quandt, 1958). This rate is called the
“marginal rate of substitution” (Hiteh,
1953).

Given a cost funection:
B = g(Xl: X2) )

where X,, X, are as above, a system of
isocost lines can be derived. An isocost
line (or curve) represents combinations
of inputs obtainable at a given total
cost.

The isocost expression
B,=9g(X,, X3)

gives X, as a funection of X,. By differ-
entiation as before, we find

dX,/dX1=~g1/9:
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where g; is the derivative of g(X,, X,)
with respect to X ;.
For linear cost functions

B=k+01X1+02X2

“...the isocosts are straight and paral-
lel lines with negative slope propor-
tional to Cy, C,....” (Carlson, 1956).

For nonlinear cost functions, the iso-
costs are convex or concave according
to the sign (positive or negative) of the
second cross derivative.

‘When these two systems of isoquant
and isocost lines are combined, and the
input along a given isoquant is varied,
the minimum cost solution for a given
output is found at the point where the
given isoquant is tangent to the lowest
possible isocost (Carlson, 1956). A
given level of X, is optimally combined
with X, at the point where

fi/f2=91/9-

If all minimum-cost points for differ-
ent outputs are connected, a curve is
obtained—the “expansion path.” The
most favorable input combination for
any output is found along this line
(figs. 2, 3).

In production economics, a criterion
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of maximum net revenue or minimum
average cost determines the choice of a
point, on the expansion path, that de-
fines the amount to be produced, the
quantity of each factor to be used, and
the budget. In sampling, no such eri-
terion is available. A point is deter-
mined by choice of the budget or the
confidence-interval width.

In the present investigation, the cost
funection is not linear in the two vari-
able inputs (size X and number n of
the plots). The second (cross) deriva-
tive of the cost function is

dB/dX, dn=C,T,

which is obviously positive, thus giving
convex isocost curves.

‘Whenever convexity is present, a
whole range of tangent points might
exist between the isocost and isoquant
lines. In such cases the expansion path
may not be uniquely determined.

In addition to the above, we should
keep in mind that nonsampling errors
are always encountered in forest sam-
pling work. These, unless properly con-
trolled, can lessen the true meaning and
importance of the resulting sampling
information.

A COMPUTER-SIMULATED PROBLEM

In the more rigorous sciences, mathe-
matical models are used to explain and
to study the phenomena of interest.
‘When the variables in a system are not
too numerous, when their interrelation-
ships are reasonably simple and well
known, and when the mathematician is
sufficiently skillful, this procedure fre-
quently is successful in achieving un-
derstanding, predictability, and con-
trol.

A forest, however, is a complex eco-
system involving numerous environ-
mental factors acting in different direec-
tions and reacting in an unknown num-
ber of combinations and at various
levels. This complexity usually creates

difficulties in specifying variables and
their relationships with sufficient exact-
ness for use in mathematical solutions
to forestry problems. In forest sample
design problems in particular, the rela-
tionships between tree measurements,
tree position, and sampling rules are
not well enough known to allow the con-
struction of a mathematical model of
the variance-sampling rule relationship.
A set of experiments could be carried
out to allow inferences concerning this
relationship, but such experiments
would usually be quite costly. The au-
thors felt that more information per
dollar spent could be obtained by simu-
lating the experiments.
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In our study, a computer, provided
with a stem map of the forest and with
a sampling rule, identifies clusters of
trees at randomly drawn points, and
calculates measurements at those points
and variances between point measure-
ments.

In earlier work, Palley and O’Regan
(1961) and O’Regan and Palley (1965)
used a computer to identify clusters of
trees, to approximate areas of regions
(where a region is defined to be the set
of all points that have a common cluster
of associated trees), and to approximate
the parameters of probability distribu-
tions of measurements associated with
given sampling rules and forests. In
their IBM 704 program, the area of the
regions was approximated by placing
a fine mesh (or grid) of points on the
stand and counting the points that fell
in each region. Such an approximation
can be made as close as desired by con-
trolling the number of points in the
grid. Size of the grid openings is re-
stricted to ensure that every tree has
some non-zero probability of being
measured.

From this earlier work we adopted
and modified a program to allow us to
obtain variances of the coneeptual pop-
ulation discussed in the section “The
Sampling Problem.” We set the num-
ber of grid points at 8,712. For given
plot sizes and measurements, the com-

INPUT-OUTPUT

The empirical results of this study
are based on an analysis of data from
the Blacks Mountain Experimental
Forest, located within the Lassen Na-
tional Forest, in northeastern Califor-
nia. The cover type is what is commonly
called “eastside” pine, consisting of
ponderosa pine (Pinus ponderosa
Dougl.) and Jeffrey pine (Pinus jef-
freyi Murr.) with a mixture of incense
cedar (Libocedrus decurrens Torr.)
and white fir (Abies concolor Lindley
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puter identified clusters of trees and
probabilities, and calculated variances
and covariances of the point measure-
ments.

Defining, as we have,

Pi=Ni/N

automatically adjusts for edge. If, for
example, the kth tree is near an edge,
Ny is smaller than it would be otherwise.

In the case of Bitterlich sampling, the
trees were chosen on the basis of their
diameter at breast height (d.b.h.) at
the time of first measurement, for sur-
vivor and mortality trees, and on the
basis of their d.b.h. at the time of sec-
ond measurement, for ingrowth trees.
This is one of several possible alterna-
tives. The reader is asked to bear this
choice in mind when evaluating our
results.

Aside from certain limitations in
storage capacity or existing computer
units, the program can be modified to
include any sampling rule. Increase in
storage capacity and development of
more accurate, rapid, and economical
methods of constructing stem maps of
large forests (by means of aerial photo-
graphs and electronic devices) would
increase the efficiency of the computer-
ized approach and would help to solve
the difficult sampling prohlems -cur-
rently facing the forest manager.

INFORMATION

and Gordon). At the time of the first
inventory (1933-1934), the percentage
distribution (board-feet volume) by
species was: pines, 90; white fir, 7; and
incense cedar, 3.

The forest covers an area of approxi-
mately 10,000 acres, at elevations rang-
ing from 5,600 to 6,800 feet. Experi-
mental work related to management was
begun in 1910, and was intensified fol-
lowing establishment of the forest as
an experimental area in 1934. A num-
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ber of permanent experimental units
were established, and detailed tree and
block records are kept. The primary ob-
jective was to develop new theories of
management, silviculture, and insect
control, resulting from early research,
“...into a system of management and
to test, demonstrate, and improve the
system through continuous operation of
a timber tract on a commercial scale”
(Hallin, 1959).

Although the forest may not have
been ideally suitable for the present in-
vestigation, it has the advantages of
size, availability of stem maps, and a
consistent, long-range procedure for
measurement and recording. For pur-
poses of the present study, measure-
ments from several 20-acre experimental
units (blocks) were analyzed. Only re-
sults from block 44 (2) are presented
here.

This block, a rectangle 660 x 1,320
feet, was established in 1944. At that
time, all trees larger than 11 inches
d.b.h. were measured to the nearest 0.1
inch and recorded, along with certain
qualitative characteristiecs (log grades,
crown class, susceptibility, ete.). Each
tree was given an identification number,
and its relative location was marked on
a fairly accurate stem map prepared
on the spot. The block itself is part of
a larger unit of 80 acres divided into
four 20-acre blocks, all established at
the same time but treated differently
afterward.

Following establishment and first
treatment, a certain number of trees
were removed by logging, and the block
was remeasured in 1946, 1949, and
1964. The last two measurements served
as a basis for this study.

In 1949, 354 trees were present in the
block. In 1964, 141 new trees (which
had grown beyond the minimum diame-
ter limit) were measured, and their po-
sition was marked on the stem map. For
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the 15-year period, 341 trees survived
(present in both measurements), 13
died, and 141 were ingrowth (new)
trees (present only at the last meas-
urement, fig. 4).

For each tree in the block, a separate
IBM card was prepared with the fol-
lowing entries: tree number, species
code, rectangular coordinates, and
d.b.h. and volume for 1949 and 1964.
An indicator variable was also neces-
sary to distinguish the ingrowth trees
in point sampling. Data about tree
height were not available although some
inference could be drawn from the
number of logs recorded. Tree number
and d.b.h. were determined from the
plot sheets. Board-feet volumes were
estimated from loeal volume tables, and
cubie-feet volumes were calculated from
the board-feet measurements. The coor-
dinates of each tree were measured to
the nearest 0.1 foot by means of a spe-
cial electronic chart reader (the Gerber
Digital X, Y Reader) connected with
an IBM key-punch machine. The eards
were sorted by X coordinates, and
cross-checked for punching and other
errors before they were fed into the
computer.

If necessary, additional input tree
variables, such as basal area and growth
(in number of trees, diameter, basal
area, volume, ete.), both for totals and
on a per unit area basis, can be ecalcu-
lated and punched or printed out by
the computer on the basis of the initial
input information.

The computer provided output infor-
mation for eight forest parameters—
number of trees, d.b.h., basal area, vol-
ume, and their corresponding incre-
ments. Results for four parameters are
presented and discussed: (1) number
of trees; (2) basal area; (3) ingrowth
in number of trees; and (4) growth in
basal area.
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RESULTS AND DISCUSSION

Results are cited and discussed for
two sampling rules, fixed-area circular
plots, and variable, or Bitterlich plots.
In the literature, the terms ‘““point sam-
pling,” “variable plot,” and “Bitterlich
plots” are used interchangeably to
mean the same thing, namely, varying
probabilities of tree selection in con-
structing the elementary sampling
units. In the following discussion,
“point sampling” will refer to Bitter-
lich procedures, in which the probabil-
ity of a tree’s being observed at a ran-
domly drawn plot is a function of some
measurement of the tree. “Plot sam-
pling” will refer to the use of circular
plots in which the probability of obser-
vation is constant for given plot size.

As anticipated, increase in plot size
resulted in a decreased variance of per
unit area measurements (tables 1, 2).
This inversely proportional relationship
between variance and plot size was more
pronounced in the left third of the
range of plot sizes than in the right
third (fig. 5). Note that, in the case of
point sampling, increase in plot size is
achieved when the basal-area factor is
reduced.

In general, the findings -confirm
Smith’s variance function. The regres-
sion equations

TaBLE 1

COMPUTER APPROXIMATIONS TO
VARIANCES, BY CIRCULAR PLOT SIZE,
OF FOUR FOREST MEASUREMENTS

Variance of per acre forest measurements
Plot size
(acres) Number | Ingrowth Basal (E’E;::lh
of trees (trees) area* area)*
0.1......... 253.9 122.4 2,869 145.5
0.2......... 138.9 76.2 1,469 85.5
0.3......... 99.1 58.6 1,003 61.1
0.4......... 78.9 45.3 790 47.2
0.7..cecn. 53.8 27.4 531 27.7
1.0......... 43.2 18.9 417 19.4

log.Vx=1log.V,+ blog.X

where X is the plot size, fit the data
fairly well (tables 3, 4). However, the
inclusion of a quadratic expression,

log.Vs=10g.V,+ by logeX + b, (log.X)?

resulted in an even better fit in most of
the cases (tables 5, 6).

In order to compare the relative eco-
nomic efficiency of the two sampling
rules, it is necessary to consider the cost
of the work performed. Since the cost
of traveling from plot center to plot
center is equal for point and plot sam-
pling, the average number of trees in-
cluded at a point or plot might be used
as a measure of the effort expended at
a location. The comparison then is made
at points of equal expenditure of effort
(O’Regan and Palley, 1965). Following
this approach, the coefficient of varia-
tion, plotted over the average number
of trees at a point, can serve as a meas-
ure of the relative economie efficiency in
the use of the two rules (figs. 6, 7, 8, 9).

Under the conditions studied, eircular
plots had lower plot-to-plot variability
for number of trees per unit area than
did points (fig. 6). And point sampling
showed smaller variability for basal

TABLE 2
COMPUTER APPROXIMATIONS TO
VARIANCES, BY BASAL-AREA FACTOR,
OF FOUR FOREST MEASUREMENTS

Variance of per acre forest measurements
Basal-
f:(rzsgr Number | Ingrowth Basal ?ﬂ;‘;ﬁh

of trees (trees) area* area)*

[: TR 95.0 82.8 492 94.0
10........ 159.0 131.6 775 153.5
15........ 221.1 180.5 1,063 211.4
20........ 217.3 219.6 1,334 261.4
25........ 335.7 263.6 1,630 318.8
30........ 394.8 306.0 1,925 371.3
(1 Y O P, 2,491 472.9

* Basal-area measurements are in square feet.

* Basal-area measurements are in square feet.
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Fig. 5. Variance of measurements, on circular plots, of number of trees per acre and ingrowth
in number of trees per acre.

area than did cirecular-plot sampling
(fig. 7).

For both growth variables—number
of trees and basal area— circular plots
showed less variability when compared
with points (figs. 8, 9). Measurement
of ingrowth in number of trees is better,
in terms of smaller variance, when plots
are employed. Basal-area growth con-
sists of two components—the change in
diameters of existing trees during a
certain time interval, and the basal area
of the ingrowth trees. In forests similar

to the one studied, growth in basal area
is more highly correlated with number
of trees than with basal area itself when
estimates are based on point sampling.
The correlation coefficients between
basal area and basal-area growth ranged
from 0.018 to 0.063, while the correla-
tion between number of trees and basal-
area growth was of the order 0.70 to
0.80. This may be attributed to the fact
that, in forests of this kind, and for the
basal-area growth that corresponds to
the site and the stage of the stand devel-
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TABLE 3

LINEAR REGRESSIONS OF LOGARITHM OF VARIANCE OVER LOGARITHM
OF PLOT SIZE*

a, intercepts for: b, regression coefficients for: I;i’ecé”:gfg&;g{o[:‘fgg'
Per acre measurements
Plot Point Plot Point Plot Point
sampling sampling sampling sampling sampling sampling
No.of trees. .......ooovvvnnn. 3.7118 3.2616 —0.7699 —0.7928 0.995 0.999
Ingrowth (trees).............. 3.1036 3.2252 —0.8079 —0.7286 0.993 0.999
Basalareat................... 5.9697 4.8874 —0.8356 —0.7821 0.993 0.995
Growth (basal area)t.......... 3.0123 3.2625 —0.8782 —0.7779 0.997 0.998
* For plots: loge Vz = a +blog X. For points: logs Vear = a + b loge (ﬁ)

t Basal-area measurements are in square feet.

TABLE 4

LINEAR REGRESSIONS OF LOGARITHM OF COEFFICIENT OF VARIATION
OVER LOGARITHM OF PLOT SIZE*

a, intercepts for:

R2, coefficient of multi-

b, regression coefficient for: ple determination for:

Per acre measurement
Plot Point Plot Point Plot Point
sampling sampling sampling sampling sampling sampling
No. of trees............... —1.0176 —1.2432 —0.3848 —0.3966 0.995 0.999
Ingrowth (trees).......... —0.4460 —0.8709 —0.4038 —0.5388 0.993 0.957
Basalareat............... —1.0075 —1.5471 —0.4177 —0.3908 0.993 0.995
Growth (basal area)t...... —1.0485 —0.7578 —0.4394 —0.3890 0.997 0.998

* For plots: loge CVx = a + b log X.
t Basal-area measurements are in square feet.

opment, the peripheral ring of the new
growth added to existing trees becomes
smaller and smaller with the increase
of the diameter of the tree. Thus it does
not appreciably affect the probability
of selection in the case of point sam-
pling. On the other hand, the newly
qualified ingrowth trees are of relatively
smaller size and, unless they happen to
be close to the point center, are not
taken into account, at least within the
range of basal-area factors encountered
in practice. Therefore, on the basis of
the variance of point-to-point (or
plot-to-plot) measurements, sampling
schemes better suited for number of
trees are also shown to be preferable
for estimation of basal-area growth,
when cost is measured by number of
trees at a point.

It is customary, in practice, to esti-
mate growth parameters from observa-

For points: loge CVpar = a + b log. (

Far)
BAF/.

tions taken in sampling units considered
to be of a size appropriate (in some
sense) for estimation of other forest pa-
rameters. That this is not always a good
decision is shown in table 7, where the
same sampling rule and plot size for the
forest studied yield estimates of in-
growth (as number of trees) with larger
relative variability than estimates for
number of trees. Likewise, in point
sampling, and for the same basal-area
factor, estimates of basal-area growth
are less accurate than estimates of basal
area itself.

The authors are aware of possible
changes in the relative efficiency of plot
and point sampling for growth esti-
mates had trees smaller than 11 inches
d.b.h. been included in the sample. The
somewhat artificial truncation of small
trees was unavoidable because of exist-
ing field measurements for this forest.
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TABLE 5

QUADRATIC REGRESSIONS OF LOGARITHM OF VARIANCE OVER LOGARITHM
OF CIRCULAR PLOT SIZE*

Per acre measurement a by b2 R2
Number of trees.................ooooiunn. 3.76249 —0.6035 0.0733 0.999
Ingrowth (trees)................c.oooiiinn 2.94807 —1.0206 —0.0937 0.999
Basalareat...............ooooiiiiiiiiin 6.03462 —0.6185 0.0956 0.999
Growth (basalarea)f..................... 2.96383 —1.0351 —0.0693 0.999

*log.Vx = a + b1 log, X + b2 (loge X)2.
| Basal-area measurements are in square feet.

TABLE 6

QUADRATIC REGRESSIONS OF LOGARITHM OF VARIANCE OVER LOGARITHM
OF PLOT SIZE IN POINT SAMPLING*

Per acre measurement a b b2 R2
Number of trees.......................... 3.52055 —0.5715 0.0442 0.999
Ingrowth (trees). ......................... 3.48862 —0.5036 —0.0449 0.999
Basalareat..................coooiiiil 5.44138 —0.3324 0.0851 0.999
Growth (basalarea)t..................... 3.56975 —0.5285 0.0472 0.999

*log. Vaar =a + b [loge (L)] + b2 [loge ( 1 )]2.

BAF
t Basal-area measurements are in square feet.

BAF

In this study, we were not primarily
interested in the variability of plot
measurements, but rather in a wise allo-
cation of funds to travel time and
measuring time and a wise choice of a
sampling rule. Taking the half-width
of a 0.95 confidence statement as a
measure of production, we wanted to
compare points with plots in the estima-
tion of various parameters. When this
width is plotted over the minimum
budget required to obtain that half-
width, another set of curves is obtained.
These curves, for a given variance and
cost function, illustrate the relative
efficiency of fixed-area and variable
plots for estimating a parameter. For
example, figures 10, 11, and 12 show
that number of trees, ingrowth (in
number of trees), and basal-area growth
were estimated more efficiently with
fixed-area plots than with variable-area
plots over the full range of budgets. The
reverse appears to be true for the esti-
mate of basal area (fig. 13) because
point sampling yielded lower variance,
and the cost of measurement was much
lower than in the case of fixed-area

plots. (Figures 10, 11, 12 and 13 are
based on data from table 8.) However,
we should not lose sight of the fact that
the outecome for growth and variable-
area plots is a function of the proba-
bility framework. Choice of another
probability scheme might have led to a
different result.

These findings indicate that each
parameter requires a separate analysis
in order to find an optimum combina-
tion of size and number of plots. In
practice, a number of parameters are
estimated with a given sample of points
and trees. Optimum procedures in these
cases are beyond the scope of this paper.

As indicated earlier, the whole block
44 (2) was subdivided into smaller for-
ests for which separate regressions of
variance over plot size were fitted by
the least-squares method (table 9).

It is worth noticing that the shapes
of the curves of the logarithm of vari-
ance over the logarithm of plot size,
which correspond to various subdivi-
sions of the forest, are almost identical
(fig. 1, p. 139), and that the regression
coefficients are centered on that of
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TaBLE 7
COEFFICIENTS OF VARIATION FOR PLOT AND POINT SAMPLING

Coefficient of variation for:
Factor I b Growth
ngrowt TOW
No. of trees (trees) Basal area (b:;sal area)
Plot size (acres):
0.0 e 0.9003 1.5691 0.9893 0.9334
0.2, e e 0.6659 1.2380 0.7078 0.7191
0.8, e 0.5626 1.0691 0.5849 0.6079
0.4 i 0.5017 0.9546 0.5190 0.5347
0.7, 0.4146 0.7427 0.4258 0.4090
D P 0.3715 0.6167 0.3773 0.3424
Basal area factor:

7 0.5509 1.2910 0.4097 0.8892
10 e 0.7123 1.6275 0.5142 1.1366
B 0.8409 1.9056 0.6023 1.3337
20, . 0.9408 2.1020 0.6747 1.4832
7 1.0352 2.3030 0.7457 1.6379
B0 i 1.1225 2.4812 0.8014 1.7675
T 0.9218 1.9948

TaABLE 8

EXPANSION PATHS FOR ESTIMATING NUMBER OF TREES AND INGROWTH
IN NUMBER OF TREES ON THE BASIS OF PLOT AND POINT SAMPLING

Number of plots for: Plot size for: Minimum budget for:
Interval
Per acre measurement half-
width Plot Point Plot Point Plot Point
sampling | sampling sampling sampling sampling sampling
acres BAF crew min. crew min.,
No. of trees.................. 4 21.9 33.6 0.392 7.634 1,239 1,801
6 12.1 17.7 0.341 8.627 650 914
8 8.5 1.9 0.296 9.751 443 592
10 6.6 9.1 0.267 11.022 337 436
15 4.5 5.9 0.216 13.757 221 269
20 3.6 4.5 0.183 15.829 173 202
Ingrowth (trees)............. 4 1.1 32.7 0.519 9.305 783 1,549
6 8.3 17.1 0.316 10.440 449 793
8 6.6 11.4 0.232 11.666 317 517
10 5.5 8.6 0.186 12.886 248 384
15 4.1 5.6 0.121 16.176 170 241
20 3.3 4.3 0.099 18.782 136 183
Basal area*....... e 6 73.8 7.7 0.502 8.7111 4,660 3,680
10 29.6 30.7 0.468 9.213 1,844 1,468
15 15.7 16.0 0.417 10.180 942 756
20 10.7 10.7 0.368 11.302 614 497
30 6.7 6.6 0.304 13.507 364 298
50 4.2 4.1 0.233 17.580 215 180
Growth (basal area)*........ 4 10.0 34.8 0.622 8.536 801 1,759
6 7.5 18.1 0.400 9.304 466 892
8 6.1 12.1 0.297 10.485 331 577
10 5.2 9.1 0.239 11.570 261 425
15 3.9 5.9 0.168 14.536 180 263
20 3.2 4.5 0.138 16.790 144 198

* Basal-area measurements are in square feet.
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Fig. 10. Confidence interval half-width (for confidence level 0.95) over minimum budget
corresponding to the best combination of number and “size” of plots for estimating number of
trees per acre.
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Fig. 11. Confidence interval half-width (for 0.95 confidence level) over minimum budget
corresponding to the best combination of number and “size” of plots for estimating ingrowth in
number of trees per acre.
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Fig. 12. Confidence interval half-width (for 0.95 confidence level) over minimum budget
corresponding to the best combination of number and “size” of plots for estimating basal-area
growth per acre.
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Fig. 13. Confidence interval half-width (for 0.95 confidence level) over minimum budget
corresponding to the best combination of number and “size” of plots for estimating basal-area
per acre.



HILGARDIA . Vol. 38, No.2  March, 1967

TaABLE 9

LINEAR REGRESSIONS OF VARIANCE
OF BASAL AREA PER ACRE OVER
PLOT SIZE FOR SUBDIVISIONS OF
BLOCK 44(2), BLACKS MOUNTAIN

EXPERIMENTAL FOREST

Sub- - a, b, regression
division* | Si%¢ | intercept | coefficient R?
acres

) P 5 5.8799 —0.8532 0.98
2 5 5.7651 —0.7023 0.98
Bt 5 5.9831 —0.8702 0.99
4........... 5 6.1976 —0.9219 0.99
Lo.ooooo... 10 5.8407 —0.7878 0.99
Uiovvnennn 10 5.9080 —0.9225 0.99
Foooevrnn 20 5.9697 —0.8356 0.99

*1, 2,3, 4 = quarters (5 acres each).
L, U = lower and upper halves (10 acres each).
F = whole forest (total, 20 acres).
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variance over plot size for the whole
forest. This might be the one further
indication of what Smith (1938) has
found—that when the regression coeffi-
cient is smaller than 0.7, the correc-
tion needed for infinite fields is not very
important over a certain range of the
ratio of plot size to the size of the field.
This point, which needs further inves-
tigation, is of particular interest for
populations covering extensive areas, as
in forestry, where inferences are made
from a portion of the population to the
whole.

For optimum solutions among num-
ber of plots, plot size, and budget, cor-
responding to each subdivision of the
forest studied, see table 10.

TaBLE 10
OPTIMUM SOLUTIONS FOR ESTIMATION OF BASAL AREA PER ACRE FOR
VARIOUS SUBDIVISIONS OF BLOCK 44(2), BLACKS MOUNTAIN
EXPERIMENTAL FOREST

Subdivision*
Illt((ervalf h7lf-w§dth
sq. ft./acre,
1 2 3 4 L U F
Number of plots (rounded)

2 69 67 57 78 70 50 74
100 28 27 25 32 28 22 30
15, 15 14 15 17 15 13 16
200 10 9 10 12 10 9 11
80, i 6 6 7 7 6 6 7
B0 4 4 4 5 4 4 4

Plot size (acres)
B 0.488 0.353 0.744 0.669 0.429 0.843 0.502
0.458 0.337 0.627 0.611 0.403 0.710 0.468
0.412 0.309 0.509 0.534 0.363 0.580 0.417
0.368 0.279 0.427 0.468 0.328 0.487 0.368
0.307 0.235 0.332 0.376 0.276 0.379 0.304
0.237 0.189 0.236 0.285 0.216 0.269 0.233
Minimum budget (crew minutes)

B 4,290 3,371 4,875 6,073 3,954 4,669 4,660
N 1,707 1,357 1,944 2,377 1,578 1,880 1,844
15, i 879 708 1,000 1,197 815 978 942
20, i 577 471 653 769 537 645 614
30, .ciiii 346 289 386 445 324 385 364
B0, .ot 208 179 225 254 196 229 215

*1,2,3, 4 = quarters (5 acres each).
, U = lower and upper halves (10 acres each).
= whole forest (total, 20 acres).
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SUMMARY

The data indicate that although
Smith’s (1938) variance funetion of lin-
ear relationship between the logarithm
of variance and the logarithm of plot
size holds, the addition of a quadratic
term to the variance equation resulted
in an even better fit.

One explanation of the curvilinear
form of the variance law could be the
existing intraplot correlation between
measurements on the plot and measure-
ments on inerements (or decrements) of
the plot size. Another could be the
shape (form) of the distribution of the
measurements themselves, from which
the quadratic expression of the variance
is deducible.

On the basis of the cost of measuring
a number of trees at a point, and for the
forest studied, a better estimate (in
terms of smaller variance) for number
of trees, ingrowth (as number of trees),
and growth in basal area was obtained
from circular plots, while point sam-
pling yielded a better estimate of basal
area.

On the basis of optimum combina-
tions of variance and cost functions,
plots also proved better for estimating
number of trees, ingrowth (as number
of trees), and basal-area growth, while

points were superior for estimating
basal area.

The usefulness of the values corres-
ponding to the optimum solution (plot
size, number of plots, minimum budget)
depends on how far the variance and
cost functions being used deviate from
reality. However, given any pair of
variance and cost funections, an opti-
mum solution can be found by following
the method adopted in the present in-
vestigation.

For the forest studied, the variance
function was not materially affected by
the size of the forest. Differences in
minimum budgets were more pro-
nounced in the smaller confidence-in-
terval half-widths than in the larger
ones.

The diversity of recommendations
concerning sampling optimums for es-
timation of various forest parameters
could be attributed to differences in the
size and spatial distribution of the trees
on the ground, the sample rule em-
ployed, the field arrangement of the
sampling units, and the cost functions,
when used. Thus generalizations should
be avoided unless there is enough evi-
dence to justify them.

SUGGESTIONS FOR FURTHER RESEARCH

Results presented in this study were
derived, essentially, from one budget
equation. Other budget equations were
considered, however—for example, the
inclusion of a cost component for pre-
paratory work in the field, the cost of
moving the camp after a certain number
of plots were measured (or a given area
in square miles was covered by sam-
pling), and the like. This problem
should be studied further in order to
approximate reality as closely as possi-

ble and to provide the necessary in-
formation for more efficient sampling
designs.

There remains also the problem of
finding the shortest path through a
number of points included in the area
to be sampled. Matern (1960) pointed
out some aspects of the problem and
worked out a table for the “average
length per sample point of a path pass-
ing through all sample points in a plane
region.” The same problem was treated
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by several other investigators (Ver-
blunsky, 1951; Few, 1955; Danzig, 1963;
Kaufman, 1963).

Another problem that needs further
treatment is the effect of the forest
edge on the variability of plot measure-
ments. Edge effect has two aspects—one
ecological and one statistical. The eco-
logical effect results from the fact that,
for favorable edges, border trees usually
benefit more than the inner ones from
abundance of light, space, and nutri-
ents, and thus produce more per unit
area. The opposite is of course true for
trees along edges with unfavorable ori-
entation for growth.

The statistical aspect of the edge ef-
fect is due to the fact that edge affects
the probability framework by changing
the probabilities associated with trees
close to the edge. If this change in prob-
ability is neglected, a bias will be intro-
duced into the estimation procedure.
The nature of the ecological edge and
the relative extent of the edge affect
the seriousness of the bias. In the pres-
ent study, it was possible to obtain
unbiased estimates by our choice of
sampling procedures. More than one
procedure is available for avoiding bias
due to edge effect. There is still some
argument among investigators as to the
effect of these procedures on plot-to-plot
variability. Several research workers
have dealt with it. (See, for example,
Finney and Palca, 1949; Masuyama,
1953, 1954; Grosenbaugh, 1958; Haga
and Maezawa, 1959; Zarkovie, 1960;
Barrett, 1965.)

The study of “intraplot correlation”
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(where the term is defined as the corre-
lation between measurements on the
plot and measurements on inerements
to the plot as the plot size changes) is
of special interest in forest sampling.
When clusters of elements are the sam-
pling units, the intraplot correlation
will influence the sampling error. Re-
duction in variability due to increase of
plot size is greater when adjacent units
are not correlated. This was realized by
early research workers (Harris, 1915:
Smith, 1938), and several methods of es-
timating the magnitude and effect of
intraplot correlation were proposed.
Hansen and Hurwitz (1942) pointed
out that the sign (positive or negative)
of the intraplot ecorrelation could serve
as a guide for choosing single elements
or clusters of elements as elementary
sampling units. A computer approach
now seems appropriate for study of the
whole problem of intraplot correlation
and its impact on sampling designs.

The problem of variance behavior
over large forests, as it eould be in-
ferred from smaller ones, is of both
theoretical and practical interest. Re-
sults from previous and similar research
should be expanded with the aid of
computers and the development of fast,
accurate, and economical methods of
constructing stem maps (possibly from
aerial photographs and electronic de-
viees).

Finally, the use of mathematical pro-
gramming as a means of finding the best
combination of size and number of
sampling units in multiparametric cases
also deserves additional study.
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