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ABSTRACTS

I. Analysis of Property Variation and Spatial Structure
with Statistical Models

This review presents and examines relevant information from exist
ing spatial variability studies of soil water and solute transport proper
ties. Although most of the information available allowed only a
conventional statistical analysis (mean and variance) of the pertinent
properties, the field studies of Nielsen, Biggar, and Erh (1973) and
Russo and Bresler (1981) were also suitable for spatial structure analy
sis. Detailed structural analysis of the saturated hydraulic conduc
tivity (Ks ) of these two fields demonstrated how this type of analysis
may reveal field characteristics that are not apparent from conven
tional statistical analysis.

Using the Akaike Information Criterion for model discrimination,
the three-dimensional spatial distributions of InKs of both fields were
shown to be described best by a spherical covariance function and a
linear drift function. The Hamra field of Russo and Bresler (1981) had
a much larger deterministic drift component and a smaller stochastic

Continued inside back cover.
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II. Scaling Models of Water Transport

INTRODUCTION

TILLOTSON AND NIELSEN (1984) and Sposito and Jury (1985) have shown that the
behavior of water in the vadose zone may be analyzed by more than one scaling
technique. The philosophy behind the application of scaling methods to water in field
soils has been either to simplify the task of making replicate measurements on a field or
to help calibrate a field-wide transport model formulated from scaling relationships
(Warrick and Nielsen 1980). Current scaling approaches to the unsaturated zone have
evolved principally from the theory of microscopic geometric similitude first proposed
by Miller and Miller (1956). In this theory, two porous media, or two regions of a
single porous medium (as in a field soil) are termed "similar" if their microscopic
geometric structures are identical except for a difference in magnification, and if the
same physical mechanisms underlie the behavior of water in them. To represent the
relative magnification in quantitative terms, each region is assigned a scaling length A
that represents a characteristic microscopic dimension. Since both porous media, or
both regions in a porous medium, are assumed to obey microscopic transport laws
based on viscous flow and capillary forces (Miller and Miller 1956), the macroscopic
transport coefficients for the two media or regions are related by known functions of
their scaling lengths. These functions can be deduced from the microscopic transport
laws. To remove the explicit dependence of scaled transport coefficients on the micro
scopic length parameter, the transport coefficients in a given medium or at a given
point in a medium are related to the coefficients at an arbitrary reference point (denoted
by an asterisk) through scaling length ratios a == A/A*" (scaling factors). Functional
relationships for soil water properties that follow directly from this scaling theory are
given in table 1 (Miller 1980).

Tests of microscopic geometric similitude have been performed in the laboratory on
packed columns of spherical glass beads, well-sorted sands, and soils (Miller 1980;
TIllotson and Nielsen 1984). In the experiments with glass beads and sands, the
microscopic characteristic length A was determined directly by preparing each column
with particles from a different predetermined size fraction. Separate tests of functional
relationships (Klute and Wilkinson 1958) and dynamic transport behavior (Elrick,
Sandrett, and Miller 1959; Wilkinson and Klute 1959) were described successfully by
microscopic scaling theory. In tests of microscopic scaling theory using columns of soil,
however, the parameter A could no longer be measured directly, but had to be inferred
from texture measurements. These tests indicated that microscopic scaling theory does
not apply well to soils containing a broad range of particle sizes or exhibiting a
significant variability in water content (TIllotson and Nielsen 1984).

In respect to field soils, the difficulties faced in the microscopic geometric similitude
technique are compounded by the requirement of this approach that the water content
at saturation have a uniform value throughout the field (Miller 1980), a condition that
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is seldom, if ever, met in practice (Jury 1985). Because of these fundamental problems,
a scaling approach termed functional normalization by TIllotson and Nielsen (1984) or
macroscopic Miller similitude by Sposito and Jury (1985) has been developed. In this
approach, no hypotheses concerning the microscopic geometric structure of a porous
medium are made, but the formal scaling relationships in table 1 are retained for soil
water potentials and transport coefficients. The volumetric water content is not
assumed to be a uniform property and is scaled by the porosity, so that the relative
saturation s = ()/ ¢> (or an equivalent variable) is used as a water content parameter in
scaling relationships. Scaling factors determined by measurements of different soil
water properties at the same location may be compared as a test of the validity of mac
roscopic Miller similitude for real soils (Bresler, Russo, and Miller 1978; Reichardt,
Libardi, and Nielsen 1975; Reichardt, Nielsen, and Biggar 1972; Youngs and Price
1981). This kind of test has indicated that macroscopic scaling theory can apply
well to column studies of soils comprising a broad distribution of particle sizes and
water contents (Sposito and Jury 1985; TIllotson and Nielsen 1984).

Table 2 presents the results of field studies (Rao et al. 1983; Russo and Bresler 1980;
Sharma, Gander, and Hunt 1980; Simmons, Nielsen, and Biggar 1979; Warrick,
Mullen, and Nielsen 1977) in which scaling factors were determined indirectly by two
different methods, then normalized and compared by examining their degree of statisti
cal correlation. The high degree of correlation observed in most studies may seem to
support the hypothesis of macroscopic Miller similitude for the fields investigated.
With the exception of the studies by Russo and Bresler (1980) and Simmons, Nielsen,
and Biggar (1979), however, the statistical relationship between the two scaling factors
was not linear, and the sample variances of the two scaling factor distributions were not
the same.

In table 3, the sample log mean (J.L) and log standard deviation (a) for scaling factors
measured in field studies are compared. Each distribution was fitted to a lognormal
distribution and normalized to have unit mean value. Along with the statistics J.L and a,
table 3 gives the sample coefficient of variation (CV) and the range of values (a.05'

TABLE 1. FUNCTIONAL RELATIONSHIPS FOR SOIL PROPERTIES
BASED ON MICROSCOPIC GEOMETRIC SIMILITUDE

Soil property

Porosity

Volumetric water content

Bulk density

Matric potential

Hydraulic conductivity

Water diffusivity

Sorptivity

Philip A pararneterf

Steady-state infiltration rate

Scaling relationshipt

¢>. = ¢>
(). = ()

Ph· = Ph
h·((}·) = ah((})

K.((}.) = a -2K((})

D.((}.) = a -1D((})

S.((}.) = a - YzS((})

A.((}.) = a -2A((})

i~ = a -2ioo

tBased on microscopic geometric similitude and the scaling length ratio a = 1\/1\., where •
denotes a reference location.

:J:See equation 2 and Philip (1969).
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a.95) which encompass 90 percent of the probability distribution, the latter being
calculated from the formula

a~6~ = exptrz ± 1.64a) [1]

(Hald 1952). Comparing the same studies in tables 2 and 3, we find large differences
between scaling factor distributions estimated by different procedures that are not
reflected in the high correlation coefficients given in table 2. For example, the hydrau
lic conductivity and matric potential scaling factors determined in the study of Warrick,
Mullen, and Nielsen (1977) are highly correlated (r 2 = 0.83), but have very different
log variances (a 2 = 1.17 and a 2 = 0.51, respectively) and different limits bounding 90
percent of their probability distribution ([0.07, 3.42] and [0.38, 2.02], respectively).
Similarly, the highly correlated (r2 = 0.83) S and A scaling factors in the study of
Sharma, Gander, and Hunt (1980), which were obtained from scaling the infiltration
rate i based on the Philip equation

[2]

(Philip 1969), have log variances a? = 1.06 and a? = 0.33, respectively. For these two
parameters, the range of a-values encompassing 90 percent of the distribution are,
respectively, (0.10, 3.25) and (0.55, 1.62).

The comprehensive field experiment of Nielsen, Biggar, and Erh (1973) provides an
opportunity to illustrate the limited applicability of macroscopic Miller similitude to
their study. At each of the 20 sites and 6 depths in their investigation, four different
properties were measured from which scaling factors could be calculated. These
methods are listed as the first four entries in table 3. Each of the scaling factor
distributions derived from the four methods may be used to calculate the distribution of
soil properties using the relationships given in table 1. The procedure may be illus
trated by focusing on two properties of interest: the unsaturated hydraulic conductivity

TABLE 2. CORRELATION BETWEEN SCALING FACTORS
OBTAINED BY TWO EXPERIMENTAL METHODS FOR THE SAME FIELD

Method A Method B N* r2ABt Reference

Scale matric Scale hydraulic 120 0.83 Warrick, Mullen,
potential conductivity and Nielsen 1977

Scale matric Scale hydraulic 8 0.80 Simmons, Nielsen,
potential conductivity and Biggar 1979

Scale matric Scale hydraulic 120 0.86 Russo and Bresler
potential conductivity 1980

Scale matric Scale hydraulic 50 :::::0 Rao et al. 1983
potential conductivity

Scale S in Scale Philip A 26 0.83 Sharma, Gander, and
Philip equation parameter Hunt 1980

Scale wetting Scale wetting 120 0.57 Russo and Bresler
front by K(h) front by Philip 1980
model function equation

:lfFN = number of measurements.

t r2A B = serial correlation coefficient.
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K(s) and the matric potential h(s) at 90 percent saturation. From table 1, we learn that
K(s) is related to the reference-state hydraulic conductivity K*(s) by the equation

K(s) == a 2 K*(s). [3]

Since a is assumed to follow a lognormal distribution, K (s) is also lognormally
distributed. Lettingy == Ina and z == InK(s) be normal variates with mean and variance
(J.1y, a;) and (J.1z, a;), respectively, the following relationships may be deduced from
equation 3:

and

E[lnK(s)] == J.1z == In[K*(s)] + 2J.1y, [4a]

Var[lnK(s)] == a; == 4a~. [4b]

The reference conductivity K*(s) is defined by the requirement that a have unit
mean value and that A == 1 at the reference location, which results in the condition

00

K*(s) == i J [K(s)]Y2 f[K(s)]dK {2
o

[5a]

[5b]

(Peck, Luxmoore, and Stolzy 1977; Russo and Bresler 1980). The integral in equation
5a may be evaluated directly using equation 4

K*(s) == exp(J.1z + a;/4) == E[K(s)] exp( -a;/4)

(Hald 1952), or, using equation 4b,

K*(s) == E[K(s)] exp(-a~), [5c]

where J.1y == -a~/2 from the requirement that E[a] == 1.
The relationships in equation 4, together with known properties of the lognormal

distribution (Aitcheson and Brown 1976), can be used to derive the major statistical
properties of the K (s) distribution in terms of the parameters of they distribution and K*:

Median[K(s)] == exp(J.1z) == K*(s) exp( -a~) [6]

Mode[K(s)] == exp(J.1z - a;) == K*(s) exp(-5a~) [7]

Mean[K(s)] == exp(J.1z + a;/2) == K*(s) exp(a~) [8]

Var[K(s)] == exp(2pz + a;) [exp(a;) - 1]

== [K*(S)]2 exp(2a;)[exp(4a;) - 1] [9]

CV[K(s)] == [exp(a;) - 1]Y2

== [exp(4a~) - 1]Y2. [10]

Similar results may be derived for h(s) using the scaling relationship

h(s) == a-I h*(s) [11a]

where h* is defined by the equation

h*(s) == i
oJ [h(s)]-l f[h(s)]dh {-I

-00

[lIb]
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(Peck, Luxmoore, and Stolzy 1977; Russo and Bresler 1980), or, using equation 11a,

h*(s) = E[h(s)] exp( -oj). [llc]

The data in table 4 summarize the statistical properties of K (s) and h(s) at s = 0.9,
calculated for each of the four scaling-factor distributions determined with data ob
tained in the study of Nielsen, Biggar, and Erh (1973). For each of the four methods,
K*(0.9) and h*(0.9) were calculated from equations 5b and 11c, using E[K(0.9)] =
0.122 ern per hour and E[h(0.9)] = -64.4 em, respectively. The large differences in
the statistical properties offer convincing evidence that macroscopic Miller similitude
was not applicable in this study. Furthermore, the scaling factor distribution obtained
by scaling K(s) in the study of Warrick, Mullen, and Nielsen (1977) (method B in
table 4) produces K(s) and h(s) distributions that have coefficients of variation (CV)
five to ten times larger than any sample CVs observed previously for these properties
in any field reviewed in Part I of this study (Jury et al. 1987) or by Jury (1985).

It is apparent that the assumptions underlying macroscopic Miller similitude may
not be valid for describing typical field soil heterogeneity. Although it has been pointed
out (Sposito and Jury 1985; TIllotson and Nielsen 1984) that macroscopic Miller
similitude represents but one hypothesis that can be made in scaling soil water
phenomena, several theoretical models that have been proposed for describing field
scale water and chemical transport are based explicitly on the assumption that macro
scopic Miller similitude is a valid means of coalescing spatially variable characteristics
into a unified representation. Warrick and Amoozegar-Fard (1980) scaled the Richards

TABLE 4. STATISTICAL PROPERTIES OF K AND h AT 90 PERCENT SATURATION
CALCULATED FROM SCALING FACTOR DISTRIBUTIONS (y = InA) FOR

THE FIELD OF NIELSEN ET AL. ( 1973 )t

Method* J.1y Oy K* Mode[K] Med[K] Var[K] CVS

--------------------------em h - 1__________________________ em 2h - 2 '70
A -0.13 0.51 0.094 0.026 0.072 0.027 135

B -0.62 1.17 0.027 3.27 X 10- 5 0.008 3.539 1,542

C -0.49 0.99 0.046 3.42 X 10-4 0.017 0.731 701

D -0.14 0.59 0.080 0.015 0.061 0.045 174

Method* J.1y Oy h* Mode[h] Med[h] Var[h] CVS

-------------------------em H 20------------------------- em 2 '70
A -0.13 0.51 64.4 56.5 73.3 1,231 54.5

B -0.62 1.17 60.4 28.6 112.2 12,155 171.2

C -0.49 0.99 64.4 39.4 105.1 6,902 129.0

D -0.14 0.59 62.2 50.5 71.5 1,727 64.5

""Actual K"" and h"" are defined in equations 3 and 11a, b, and c.

tActual sample variances of K(0.9) and h(0.9) are 0.0589 cm2h - 2 and 1,106 (ern H20)2,
respectively.

*See table 3.

SCV = coefficient of variation.
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equation for water flow and showed that a single numerical calculation for representa
tive soil water processes, such as infiltration or drainage, could be used along with a
distribution of scaling factors to produce a fieldwide description of the processes, using
the assumption of one-dimensional flow. Bresler and Dagan (1979, 1981, 1983a, b;
Dagan and Bresler 1979, 1983) have proposed stochastic water and solute transport
models in which a theoretical scaling probability distribution was used together with a
local one-dimensional vertical water and solute transport model to produce stochastic
expectation and variance values for solute concentrations averaged across the entire
cross-sectional area of a field at a given depth. Neither of these theories has had
quantitative experimental confirmation. The only direct test of the predictive capability
of soil water transport models that use macroscopic Miller similitude was conducted by
Luxmoore and Sharma (1980), who obtained scaling factors for six watersheds, and
then simulated drainage, evaporation, and runoff processes using the regional-scale
hydrologic water balance model of Huff et al. (1976). They reported poor agreement
between observed streamflow and predicted runoff for the fields they studied.

Russo and Bresler (1982) compared solutions of stochastic-conceptual flow prob
lems by utilizing the scaling factor a as a single stochastic parameter, with solutions
obtained by using a multivariate parameter distribution to describe the spatial variabil
ity of hydraulic properties. They analyzed two cases of one-dimensional vertical flow:
(1) piston flow of solute under a steady and, over the horizontal plane, uniform surface
water application rate; and (2) transient water flow under a uniform surface water
application rate. Using the measured hydraulic properties of the Hamra field (Russo
and Bresler 1981), they concluded that, for case 1, expressing the variability in K(O) by
the single stochastic variable a gives essentially the same results as when the variability
in K(O) is expressed by three stochastic variables. In case 2, they found that in
expressing the variability in K(O) and h(f}) only by a they failed to reconstruct the
distribution of the O-profiles obtained by expressing the spatial variability in h( 0) and
K (f}) by five stochastic variables.

A common feature of all scaling models used up until now for field applications is
the assumption of statistical independence for the measured scaling factors. Yet, both
water transport and retention properties have been observed to correlate spatially over
distances of many meters (Jury et al. 1987), so that the assumption of statistical
independence may be contributing to the lack of success of these models.

In the remainder of this paper, we will develop a more general scaling analysis that
includes spatial correlation structure, illustrated with data from two comprehensive
field studies (Nielsen, Biggar, and Erh 1973; Russo and Bresler 1981).

SCALING AND SPATIAL CORRELATION

We will apply the methodologies presented in Part I (Jury et al. 1987) for selection of
a model to describe the spatial variability of the scaling factors derived from measure
ments of the soil hydraulic conductivity or water retentivity functions. The results of
the selection process for the Hamra (Russo and Bresler 1981) and Panoche (Nielsen,
Biggar, and Erh 1973) fields will be demonstrated. As in Part I, we view the scaling
factor as a realization of a three-dimensional, isotropic stochastic function. Two
different models (equations 25a and 25b of Part I) will be considered for the covariance
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function, and constant and linear drift functions (equation 26 with K == 1 and K == 3,
respectively, from Part I) will be used for both u == a and u == Ina. The Akaike
Information Criterion (AIC) will be used to discriminate among the different proposed
spatial variability models.

Hamra Field

With the 120 measured values (Russo and Bresler 1981) of the saturated hydraulic
conductivity K s , air entry value hw , saturated water content ()s, and residual water
content f) r» calculations were made of the water retentivity function h( ()) and the soil
hydraulic conductivity function K(f)) from the model functions

and

K(()) == K s8 (2 + m + 2//3) == K s8 f ,

where () is the effective water saturation given by

[12a]

[12b]

[12c]

f3 is a model parameter, and m is a constant (positive or negative) that accounts for
correlation between pore size and flow path tortuosity. Based on laboratory tests of
equation 12, Russo and Bresler (1981) used m == 0, which is identical to the
series-parallel model of Childs and Collis-George (1950).

Values of K(f)) and h(f)) calculated from equations 12a and 12b at 11 values of the
water saturation s == ()/ ()s (Si == 1.0 - 0.025 [i - 1], for i == 1 to i == 11) were used
to calculate two sets of scaling factors as: and at; respectively. The data in table 5
summarize some statistical properties of the calculated K(s) and h(s) values and their
logarithmic transformations. The scaling factor sets were calculated using a procedure
similar to that of Warrick, Mullen, and Nielsen (1977), but with K* and h* defined by
equations 5a and Llb, respectively, and estimated from a sample size of n using either
the equation

or the equation

n
](*(s) == [ L, [Kj (s )] Y2 / n ]2

j==1
[13a]

[13b]
n

6*(s) == n[ L, l/hj(s)]-1

j==1

instead of the arbitrary functional relationships used by Warrick, Mullen, and Nielsen.
Also, since both h(s) and K(s) are highly variable (table 5), transformed values of
lnh(s) and InK(s) (as in Russo and Bresler 1980) were used instead of h(s) and
InK(s), as in Warrick, Mullen, and Nielsen (1977), to estimate ai, and ax. respectively.

In table 6, we summarize the results of a conventional statistical analysis of ah,

lnah, aK and InaK based on a sample size of n == 120. Both the chi-square test and
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the Kolmogorov-Smirnov (KS) test results accept the null (normal distribution)

hypothesis for ai, and ax, but reject the null hypothesis for both lnah and InaK.

Generally, the two sets of a vary between 0.0 and 2.7 and are relatively highly

correlated (R2 = 0.66, with intercept -0.1802 and slope 1.180). Note, however,

that this regression analysis assumed both ai, and ar: to be independent variates. In

the following analysis, we will see the methodology described in Part I (Jury et al.

1987) to investigate the spatial correlation structure of both ai, and aK. We will then

use the selected structural models to transfer the vector a of each of the sets to a

vector of uncorrelated residuals.

TABLE 5. STATISTICAL CHARACTERISTICS (MEAN, COEFFICIENT OF VARIATION
CV, AND VARIANCE 0 2 OF THE LOG-TRANSFORMED PARAMETER)

OF THE HYDRAULIC PROPERTIES OF HAMRA FIELD FOR DIFFERENT DEGREES
OF WATER SATURATION s*

Water
K h

saturation
Mean cv" a21nK Mean cvt a21nh

em/hr em H20

1.0 13.19 0.69 1.033 7.44* 0.24 0.0653*

0.975 11.11 0.77 1.457 8.28* 0.24 0.0577*

0.950 9.45 0.84 2.018 9.40 0.31 0.0786*

0.925 8.08 0.92 2.734 10.96 0.47 0.1315*

0.900 6.94 0.98 3.623 13.23 0.72 0.2204

0.875 5.97 1.04 4.709 16.71 1.06 0.3502

0.850 5.14 1.10 6.019 22.35 1.49 0.5265

0.825 4.43 1.16 7.583 32.10 2.01 0.7561

0.800 3.81 1.22 9.442 49.84 2.57 1.047

0.775 3.27 1.27 11.640 84.36 2.66 1.409

0.750 2.80 1.33 14.230 155.80 3.70 1.854

*Based on sample of n == 120.

t CV == coefficient of variation.

*Null (normal) hypothesis is not rejected at the 0.05 level of significance (X
2

test).

TABLE 6. CONVENTIONAL STATISTICAL ANALYSIS OF THE SCALING FACTOR
SETS (HAMRA FIELD) CONSIDERING ALL FOUR DEPTHS JOINTLY (n == 120)*

Parameter p 02 ks kc X 2 (d f ) D

ah 1.000 0.2157 0.293 4.183 2.80 (3) 0.0641

lnah -0.1667 0.4684 -1.740 6.231 39.40 (3)t 0.1580*

aK 1.000 0.4558 0.334 2.183 7.20 (3) 0.08122

InaK -0.426 1.401 -1.496 4.965 49.30 (3)t 0.1354*

*Mean u , 0 2
, skew coefficient ksk, coefficient of kurtosis kc, chi-square X 2, and KS statistic D.

tNull (normal) hypothesis is rejected at the 0.05 level of significance.

*Null (normal) hypothesis is rejected at the 0.10 level of significance.
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Based on the results of the conventional statistical analysis (table 6), the spatial
structures of ai, and aK were analyzed instead of their logarithmic transformations.
As in Part I, four candidate structural models were applied to the a -sets: exponential
covariance plus constant drift (E + C) and linear drift (E + L) and spherical covariance
plus constant drift (5 + C) and linear drift (5 + L). The restricted maximum
likelihood (RML) estimation procedure (Kitanidis and Lane 1985) was used to esti
mate the parameters of the assumed covariance function, and the weighted least
squares analysis (WLS, equation 27 in Part I) was used to estimate the parameters of
the assumed drift function. We performed cross-validation tests and an analysis of the
uncorrelated residuals to evaluate the performance of each of these models; the most
appropriate model was selected as the one that minimized the value of the AIC
(equation 28 in Part I). For ah, the E + C, 5 + C, E + L, and 5 + L models
produced AIC values of 77.6, 76.5, 38.3, and 38.5, respectively. For ax. the same
models produced AIC values of 123.2,120.8,61.5, and 60.7, respectively. Thus, the
E + L and the 5 + L models were selected for ai, and ax, respectively.

In table 7 the results of structural analysis, the cross-validation test, and the analysis
of uncorrelated residuals for these two models are compared. Evidently, the spatial
structures of ai, and ax are quite distinct. The cross-validation test and the analysis of
the uncorrelated residuals suggest that, in both cases, the models selected are consis
tent with the data. The latter test also accepts the assumption of normality for both ai,

and a K. In both cases, the linear drift model was found to be highly significant (R2 =

TABLE 7. ANALYSIS OF THE SPATIAL VARIABILITY OF ai; AND ax USING n = 60
VALUES OF BOTH a-SETS RANDOMLY SELECTED FROM THE FOUR DIFFERENT

SOIL DEPTHS (HAMRA FIELD)'*'

a. Structural analysist

Parameter Model Cn Co a

ah E+L 0.0592 (.025) 0.0399 (.019) 2.095 (2.42)

aK S+L 0(-) 0.1446 (.028) 0.761 (.199)

b. Cross validation*

Parameter Model ME MSE MRE

ah E+L 0.0251 0.3579 1.246

aK S+L -0.0110 0.3777 1.142

c. Analysis of uncorrelated residuals S

Parameter Model f1 0 2 ksk kc X 2 (df ) D SSR

ah E+L 0.1496 0.9396 0.315 2.23 2.3 (3) 0.07512 57.08

aK S+L 0.1441 0.9791 -0.210 2.63 5.1 (3) 0.1032 5.00

'*'Values in parentheses are the standard error of estimation (SE). If the value is zero, there is
no standard error.

t c; is nugget variance, Co is covariance, ais covariance shape parameter.

*ME is mean error, MSE is mean square error, MRE is mean reduced error.

SSSR is sum of squares of residuals. Other symbols are defined in table 6.
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0.901 and R2 = 0.895 for ai, and ax, respectively). In the case of ai; the deterministic
low-frequency variations (LFV, the drift contribution) of ah are characterized by the
variance contribution CD = 0.1093 (52 percent of the total variability of ah). The
stochastic high-frequency variations (HFV) of ah are characterized by a variance
contribution C(O) = 0.099 and a correlation length J = 2.96 m. Note that about 60
percent of the HFV occurs at a scale smaller than the smallest lag distance of the
sample set (Dm in = 0.30 m), and therefore appears as "white noise" or a "nugget
effect:' In the case of ax, the LFV of ar: are characterized by CD = 0.3185 (69 percent
of the total variability of aK); stochastic HFV of as: are characterized by C(O) = 0.145
and a correlation length J= 0.34 m. There was no indication of variability at a scale
less than Dm in (i.e., no nugget variance).

Linear regression analysis between the two sets of the uncorrelated residuals of a«
(N[0.144, 0.979]) and ai, (N[0.150, 0.940]) (slope = 0.62, intercept = 0.051, and R2
= 0.37) implies that only 37 percent of the variability in a« may be explained by the
variability in ai; These results suggest that the relatively good agreement between the
two sets of the measured scaling factors is probably a joint consequence of the
significant drift in the Hamra field and of spatial correlation between nearby measure
ments. The relatively poor agreement between the two sets of uncorrelated residuals of
a reflects some basic differences between the spatial behavior of the h(f)) and the K(f))

functions, as indicated by the difference in structural models fitted to the sets of ai,

and ax-

Panoche Field

We analyzed the 120 laboratory-determined soil water retentivity h( f)) functions and
the 120 field-determined soil hydraulic conductivity K (f)) functions from the study of
Nielsen, Biggar, and Erh (1973) on the Panoche field, and the results are listed in table
8 as a summary of some statistical properties of the values of K and h and their
logarithmic transforms for 11 discrete values of s = f) / f)s- These values of InK (s) and
lnh(s) were used to calculate the two sets of as: and ai., respectively, using procedures
described above.

The data in table 9 are the results of a conventional statistical analysis of ai; lnah' ax,
and InaK. Based on the chi-square test and on the KS normality test, we conclude that
both ai, and lnah are normally distributed variates. As for aK, both tests reject the null
hypothesis but accept lnah as normally distributed. Generally, for the range 0.75 ::5 S

-s 1, ai, varies between 0 and 2.5, and as: varies between 0 and 5.5. Linear regression
analysis between the two sets (slope = 1.456, intercept = -0.456, and R2 = 0.41)
implies that only 41 percent of the variability in ar: may be explained by the variability
of ai; These results differ from those of Warrick, Mullen, and Nielsen (1977), who
found a higher degree of correlation in the analysis of the same data set using a
different fitting procedure.

Using conventional statistical analysis, we analyzed the spatial variability of lnah and
InaK instead of ai; and ax. In the model-fitting process for lnah' the E + CJ S + CJ

E + LJ and S + L models yielded AIC values of 66.9, 67.2, 70.48, and 70.35, respec
tively. For InaK, the same models yielded AIC values of 131.6, 132.8, 124.7, and
126.1. Thus we selected the E + C model and the E + L model for lnah and InaK'
respectively.
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In table 10, we summarize the results of structural analysis, the cross-validation test,
and analysis of the uncorrelated residuals for these two models. Again, as in the case of
the Hamra field, the spatial correlation structures of InaK and lnah are quite distinct.
The cross-validation test and the analysis of uncorrelated residuals suggest that, in both
cases, the selected models are consistent with the data on lnah and InaK, and that the
assumption of normality for lnah and InaK is accepted (table 10c). In the case of lnah'
the variability stems entirely from the stochastic HFV, characterized by C(O) = 0.251
and a correlation length J = 4.82 m. About 80 percent of this variability, however,
occurs on a scale smaller than the smallest lag distance of the sample set (Dmin = 0.3 m)
and appears as a nugget effect. In the case of InaK, for which a linear drift was
identified (with R2 = 0.435), the deterministic LFV are characterized by CD = 0.658
(30 percent of the total variability in InaK). The stochastic HFV are characterized by
C(O) = 1.574 and a correlation length of J= 0.305 m. Only 3 percent of the HFV
appears as a nugget effect at a scale less than Dmin = 0.3 m.

Linear regression analysis between the uncorrelated residuals of InaK (N[0.0328,
0.9989]) and lnah (N[ -0.0308, 0.9922]) (slope = 0.662, intercept = 0.0367, and
R2 = 0.44) shows that only 44 percent of the variability of InaK may beexplained by the
variability of lnah. Again, this relatively poor correlation between the two sets of Ina
values reflects some basic differences between the spatial structure of h(s) and K(s) as
indicated by the different models that fitted the sets of lnah and InaK data (table 10).

TABLE 8. STATISTICAL CHARACTERISTICS (MEAN, COEFFICIENT OF VARIATION
CV, AND VARIANCE 0 2 OF THE LOG-TRANSFORMED PARAMETER) OF THE
HYDRAULIC PROPERTIES OF PANOCHE FIELD FOR DIFFERENT DEGREES OF

WATER SATURATION s*

Water
K h

saturation
Mean CVt b21nK* Mean Cyt a21nh*

cm/hr em H20

1.0 0.858 1.20 1.932 0

0.975 0.432 1.47 3.387 17.8 0.51 0.223

0.950 0.277 1.64 4.003 33.2 0.45 0.153

0.925 0.187 1.85 4.594 48.2 0.48 0.143

0.900 0.122 1.99 5.241 64.4 0.52 0.162

0.875 0.0815 2.23 6.250 82.6 0.55 0.194

0.850 0.0572 2.46 7.501 101.5 0.56 0.223

0.825 0.0414 2.69 9.183 120.2 0.56 0.236

0.800 0.0307 2.91 11.190 140.5 0.56 0.250

0.775 0.0226 3.13 13.390 160.2 0.55 0.251

0.750 0.0163 3.46 15.880 180.5 0.53 0.250

*Based on sample of n = 120.

t cy = Coefficient of variation.

*For all water saturations but 1.0, null (normal) hypothesis is not rejected at the 0.05 level of
significance (X 2 test).

SNo values were calculated.
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TABLE 9. CONVENTIONAL STATISTICAL ANALYSIS OF THE SCALING FACTOR
SETS (PANOCHE FIELD) CONSIDERING ALL SIX DEPTHS JOINTLY (n = 120)

Parameter P- a2 ksk kc X 2 (df ) D

Qh 1.000 0.223 1.350 7.297 4.6 (3) .0777

InQh -0.1089 0.229 -0.309 3.051 5.2 (3) .0759

QK 1.000 1.150 1.916 7.113 93.2 (3)t .1799*

InQK -0.607 1.622 -0.994 5.455 3.7 (3) .0714

*Symbols are defined in table 6.

tNull (normal) hypothesis is rejected at the 0.05 level of significance.

*Null (normal) hypothesis is rejected at the 0.10 level of significance.

TABLE 10. ANALYSIS OF THE SPATIAL VARIABILITY OF ai, AND QK USING n = 60
VALUES OF BOTH a-SETS RANDOMLY SELECTED FROM THE SIX DIFFERENT

SOIL DEPTHS (PANOCHE FIELD)*

a. Structural analysis

Parameter Model Cn Co a

InQh E+C 0.2052 (.014) 0.0464 (.076) 3.41 (3.51)

InQK S+L 0.0535 (1.42) 1.521 (1.45) 0.681 (.72)

b. Cross validation

Parameter Model ME MSE MRE

InQh E+C -0.0904 0.6337 1.272

InQK S+L -0.0771 1.5840 1.146

c. A nalysis of uncorrelated residuals

Parameter Model j1 a2 ksk kc X 2 (df ) D SSR

lnah E+L -0.0308 0.9922 -0.515 2.423 4.56 (3) 0.0987 57.6

InaK S+L 0.0328 0.9989 -0.923 5.144 4.21 (3) 0.1076 56.0

*Values in parentheses are the standard error of estimation (SE). Symbols are defined in tables
6 and 7.

ESTIMATION OF SCALING FACTORS
WITH RELATIVE HYDRAULIC PROPERTIES

In principle, macroscopic Miller similitude should be applicable over the entire range
of water content. In field soils, however, the saturated hydraulic conductivity may be
controlled by water flow through large structural voids, or macropores, which drain at
very small negative values of water pressure head, and therefore have little or no
influence on water flow under unsaturated conditions. The models that we proposed
for calculation of the soil hydraulic conductivity from data on the water retention
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function commonly fail to predict the saturated hydraulic conductivity, and this indi
cates indirectly that the saturated hydraulic conductivity value is controlled to a great
extent by flow in macropores. This conclusion applies to models based on the Kozeny
approach (Averjanov 1950; Brooks and Corey 1964) as well as those based on capillary
bundle theory (Burdine 1953; Childs and Collis-George 1950; Mualem 1976).

In our study, we analyze the correlation between the saturated hydraulic conductivity
and the relative hydraulic conductivity Kr(s) = K(s)IKs of the Panoche field. The
results of linear regression analysis (for 120 pairs of points) show that correlation
between K, and Kr(s) decreases as s decreases. However, even at relatively high water
saturation (s = 0.975), the correlation between K, and Kr(s) is barely significant
(R2 = 0.038). These results support the hypothesis that saturated hydraulic conductiv
ity in field soils is controlled by structural voids, rather than by the entire continuum of
pore sizes that controls the unsaturated hydraulic conductivity. Given these findings,
scaling factors should be estimated from relative hydraulic properties instead of from
the hydraulic properties themselves.

Hamra Field

For the Hamra field, using equation 12 with m = 0, we may define the relative
properties as

and

hr ( (} ) = ~() = e- lI{J

w

[14a]

[14b]Kr(O) = K(O) = e 2 + (2/ /3) = eE.
K s

Values of Kr(O) and hr(O) calculated for 10 different values of s = OIOs (s, = 0.975 
0.025 [i - 1] for i = 1 to i = 10, table 11) were used to determine the two sets of
scaling factors by procedures already described.

The data presented in table 12 summarize the results of conventional statistical
analysis of ai.; and QKr and their logarithmic transformations. Both the chi-square
test and the KS test reject the null (normal) hypothesis for Qh r , ax, and their log
transforms. The sample variances of the scaling factors derived from the relative
hydraulic properties are smaller than those derived from the hydraulic properties and
are very similar to each other (table 5). Linear regression analysis (R2 = 0.9976, with
intercept -0.0246 and slope 1.025) indicates that the two sets are highly correlated
but not identical.

As mentioned above, proper application of linear regression analysis requires that
each of the Q sets comprises independent variates. The statistical estimation and
validation procedures outlined above were used to analyze the correlation structures
of these scaling sets. In table 13 we summarize the results of these analyses for the E
+ L model, which produced the minimum value of AIC in the two cases. In contrast
to the analyses of the original hydraulic properties, the spatial statistical characteris
tics of both sets of Q derived from relative properties are very similar. Results of the
cross-validation test indicate that the models selected are consistent with the data on
the scaling factors. Analysis of the uncorrelated residuals demonstrates that, in both
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cases, these residuals are distributed normally with zero mean and unit variance. This
is in contrast to the results of the conventional statistical analysis of the original sets
of Q, which were skew-distributed (table 12). For both sets of Q, linear drift was
highly significant and contributed substantially to the total variation (LFV > HFV). The
stochastic HFV of both Qh r and QKr are characterized by a similar correlation length
() == 0.476 m and} == 0.460 m, respectively) and show no nugget effect (table 13).
The estimated variances of each distribution are very similar, and linear regression
analysis between the sets of uncorrelated residuals of QKr and ai.; (R2 == 0.996 with a
slope of 1.006 and an intercept of 0.00003) implies that the two sets are highly
correlated and almost identical.

The fact that both sets of Q can be represented by the same structural model with
essentially the same correlation length and with only slightly different variances C(0)

TABLE 11. STATISTICAL CHARACTERISTICS (MEAN, COEFFICIENT OF VARIATION
CV, AND VARIANCE 0 2 OF THE LOG-TRANSFORMED PARAMETER) OF THE

RELATIVE HYDRAULIC PROPERTIES OF HAMRA FIELD FOR DIFFERENT DEGREES
OF WATER SATURATION s'*'

Water K r h rsaturation
Mean CV 02 1nK Mean CV O'21nhr

em/hr em H20

0.975 0.7716 0.196 0.0567 1.124 0.129 0.0135

0.950 0.6138 0.336 0.2360 1.293 0.298 0.0562

0.925 0.4981 0.445 0.5533 1.529 0.519 0.1317

0.900 0.4095 0.533 1.027 1.878 0.808 0.2442

0.875 0.3394 0.610 1.677 2.420 1.18 0.3985

0.850 0.2828 0.679 2.530 3.308 1.63 0.6004

0.825 0.2363 0.743 3.615 4.849 2.16 0.8567

0.800 0.1978 0.804 4.966 7.685 2.75 1.176

0.775 0.1655 0.862 6.629 13.230 3.34 1.567

0.750 0.1384 0.920 8.655 24.750 3.91 2.042

*Based on sample of size n = 120.

TABLE 12. CONVENTIONAL STATISTICAL ANALYSIS OF THE SCALING FACTOR
SETS DERIVED FROM RELATIVE HYDRAULIC PROPERTIES (HAMRA FIELD)'*'

Parameter p 0'2 ksk kc X 2(df ) D

Qh r 1.000 0.1890 -0.671 2.235 19.40t 0.1345*

InQhr -0.1794 0.5339 -1.823 5.901 100.80t 0.2141 *

QKr 1.000 0.1989 -0.620 2.172 16.01t 0.1308*

InQKr -0.1889 0.5634 -1.780 5.711 107.40t 0.2040*

*Based on sample of size n = 120. Symbols are defined in table 6.

tNull (normal) hypothesis is rejected at the 0.05 level of significance.

*Null (normal) hypothesis is rejected at the 0.10 level of significance.
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suggests that Qhr and QKr are proportional variables whose spatial variations are related
to a unique spatial characteristic, represented by a unique or intrinsic variogram yo(h)

YUi(h;s) == yo(h) a~i(s), for i == 1 to i == 2 [15]

(Russo 1986), where u, == Ui(S) denotes either QKr or ah r , and a~.(s) is the variance
of Ui. Equations 3 and l1a, when used with relative hydraulic properties, lead to the
values of ax; and ai; given by the equations

[16a]
and

[16b]

where K~s) and h:Xs) are defined by equations 13a and 13b, respectively, but using
relative properties. The variances of QKr and Qhr may beestimated from equation 16 by
the expressions

[17a]
and

ailhr(s) == a1-ds) [h~S)]2 [17b]

(Clifford 1973), where a kY2 is the variance of K As) Y2 and a1- 1 is the variance of
hr(s)-l (equation 16). For the relevant range of water saturation (Smin, smax), an
estimate of the total variance of Q may be obtained from the equation

ns

a~(Smin,Smax) == L a~ (s) • ~w,
i== 1

[18]

TABLE 13. ANALYSIS OF THE SPATIAL VARIABILITY OF Qhr AND QKr USING n = 60
VALUES OF BOTH a-SETS RANDOMLY SELECTED FROM THE FOUR DIFFERENT

SOIL DEPTHS (HAMRA FIELD)*

a. Structural analysis

Parameter Model Cn Co a

as, E+L 0(-) 0.0712 (.144) 0.3365 (.150)

a«, S+L 0(-) 0.0722 (.146) 0.3255 (.148)

b. Cross validation

Parameter Model ME MSE MRE

as, E+L -0.01234 0.2548 1.124

QKr S+L -0.00867 0.2565 1.118

c. Analysis of uncorrelated residuals

Parameter Model {L 02 ksk k c X 2 (df ) D SSR

ahr E+L 0.1213 0.9853 -0.353 3.06 1.0 (3) 0.0620 56.0

QKr S+L 0.1258 0.9842 -0.297 3.12 2.1 (3) 0.0591 56.0

*Symbols are defined in tables 6 and 7. Values in parentheses are the standard error of estimation
(SE). If the value is zero, there is no standard error.
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where a~(s) is the variance of a at a given s (equation 17a or equation 17b) and l::1w is
an error-free weighting factor defined as l::1w = l/ns , where n, is the number of s
values used in the calculation of K(s) or h(s) and a~(s).

In the case of the Hamra field, where equations 12a and 12b were used to describe h( (})

and the K((}), K r(s)Y2 and hr(s)-1 are given by the equations

and
[K r(s )] 112 = [B (s )] E12

[h r(s)] - 1 = [B (s )] 1/,LJ .

[19a]

[19b]

The variances of these functions may be evaluated approximately with the procedure
for expanding the total differential of a two-valued function (Clifford 1973) to first
order as

a 2 112 = [~B(s)(EI2)-1]2 a 2 + [B(s)EI2 InB(s)]2 a 2
K (s) 2 8(s) EI2

E+ 2[-B(s)E- 1 InB(s)]· covje/Z, B(s)] [20a]
2

and
1

0h-1(s) = [j38(s)(l/f;ll- l F o~(S) + [8(s)l/f;lln8(s)]2 ol/f;l

1+ 2[- B (s )(2/,LJ) - 1 InB (s )] • cov[1/,8, B (s )] .
,8

[20b]

Examination of equations 17 to 20 reveals three basic points relative to scaling
hydraulic properties: .

1. Soils whose properties can be represented by equation 14 at different spatial
locations may be regarded as "strictly similar media," if and only if E/2 = 1/,8.
According to equation 12, this equality is satisfied only when m = - 2, which means
that the relative hydraulic conductivity KAhr) is a deterministic function everywhere
equal to Kr(hr) = h-2. In general, however, when m =1= -2, KAhr) is a stochastic
function characterized by the relationship

[21]

where 11 = 2(,8 + m) + 2 is a stochastic variable (Russo and Bresler 1981).
2. The strict applicability of the macroscopic Miller similitude (validated by examina

tion of the agreement between the sets of as: and ah) is improved as the value of ,8
decreases (e.g., in a medium with a relatively wide and continuous pore size distribu
tion). Even for very small values of,8 > 0, however, the two sets of a are not identical so
long as m =1= 2.

3. Both ah r and ax; are functions of the degree of water saturation s, since the
variances of both KY2r(s) and hr - l (S ) depend on s. The higher the range of saturation,
the larger are the variances of ai; or ax.. This means that the application of scaling
.factors to transport processes (e.g., Bresler and Dagan 1979; Dagan and Bresler 1979)
should be limited to the same range of water saturation as was used to estimate scaling
factors.

The above analysis suggests that a second stochastic parameter in addition to a is
required to scale both hr(s) and Kr(s). For media in which the functional relationship in
equation 21 applies at any given location, the stochastic parameter 11 may be used as a
second scaling factor.
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To determine whether media scaled by equations 16b and 21 account for all of the
observed variability in K, and hr , one may define a new QKr by the equation

QKr == Qh r == [KAs)/K~s)]l/11,

where K~s) is defined by the requirement that E[ QKr ] == 1 as

oc

K~s) == i J [KAs)] 1/11 f[Kr(s)]dKr r"
o

or

[22]

[23a]

[23b]

Note that K~ is no longer a "reference site," but is now dependent on 'I. Alterna
tively, K; could be used as the second scaling factor using equation 23b to generate it
from YJ. With either approach, we are left with two scaling factors for b, and K r • The
validity of each approach is ascertained by the degree to which QKr defined by equa
tion 22 is similar to a i; defined by equation 16b.

The analysis of spatial structure for Kr(s) was repeated using equation 22 to define
Q x; in terms of YJ. For the Hamra field, the results of conventional statistical analysis
of 'I (j1 == 3.355, fJ2 == 1.412, ks == 1.83, kc == 7.69 and x 2 [3] == 60) suggest that YJ

is highly skewed and cannot be described by either a normal or a lognormal (X 2[3] ==
14) distribution. Results of structural analysis (validated by the cross-validation test
and analysis of the uncorrelated residuals) imply that the spatial variability of YJ is
described best by the E + L model (Ale == 158.7). The stochastic HFV of YJ are
characterized by C(O) == 0.7125 (with no nugget effect) and by an integral scale of J ==
0.47 m. The deterministic linear drift was highly significant (R2 == 0.941) and the
LFV of 'I are characterized by CD == 0.8394 (54 percent of the total variability of in
YJ, with 0 2 == 1.552). Note that the spatial structures of YJ and ai.; (or QKr ) are very
similar, in the sense that about 50 percent of the total variability of each one stems
from the presence of a deterministic drift, whereas the rest of the variability is
characterized by essentially the same correlation scale. Measured 'I values were used
to calculate a new set of QKr using equation 22. The set of values thus obtained was
statistically identical to the Qh r set (table 12).

Panoche Field

In the Panoche field experiment, water retention curves were determined in the
laboratory over a very limited range of water pressure heads (0 to -200 em water),
which for this soil essentially resulted in a linear ()(h) relationship. Therefore, to
define a relative hAs) function, h(0.98) was selected arbitrarily as an air-entry value
hw so that hAs) == h(s)/ h(0.98). The field-measured hydraulic conductivity values K,
from the steady state infiltration phase of the experiment and the K (()) values from
the redistribution phase were used to define a relative hydraulic conductivity, KAs) ==
K (s)/ K s' The data in table 14 summarize the mean and variance of K rand hr for 10
different degrees of water saturation. As was the case for the Hamra field, the
variability in KAs) is smaller than the variability in K(s), since the contribution of K,
to the variance has been removed.
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Values of the relative hydraulic properties for the 10 values of water saturation
shown in table 14 were used to calculate a set of scaling factors ahr and ax; as defined
by equation 16. In table 15, we summarize the results of a conventional statistical
analysis of the a-sets and their logarithmic transformations. It is clear that the re
sultant a-sets using relative properties are less variable than the ai, and a« values
determined previously with h((}) and K((}) (table 9). Moreover, relative property a-sets
are distributed normally, as in the Hamra field. Linear regression analysis (slope 1.045,
intercept -0.04487, and R2 == 0.41) suggests that the use of relative hydraulic

TABLE 14. STATISTICAL CHARACTERISTICS (MEAN, COEFFICIENT OF VARIATION
CV, AND VARIANCE a» OF THE LOG-TRANSFORMED PARAMETER) OF THE

RELATIVE HYDRAULIC PROPERTIES OF PANOCHE FIELD FOR DIFFERENT DEGREES
OF WATER SATURATION s (n == 120)

Water K r h rsaturation
Mean CV 02 InK Mean CV 02Inhr

em/hr em H20

0.975 0.4514* 0.535 0.918 1.227 0.055 0.0030

0.950 0.2821* 0.736 1.673 2.436 0.268 0.0624*

0.925 0.1851 0.945 2.310 3.655 0.391 0.1289*

0.900 0.1204 1.068 2.989 5.012 0.497 0.1976*

0.875 0.0798 1.268 3.951 6.577 0.593 0.2712

0.850 0.0561 1.482 5.215 8.181 0.627 0.3255

0.825 0.0403 1.729 6.842 9.816 0.652 0.3640*

0.800 0.0295 2.020 8.699 11.600 0.670 0.3981*

0.775 0.0214 2.271 10.86 13.370 0.671 0.4192*

0.750 0.0153 2.458 13.32 15.110 0.672 0.4262*

*Null (normal) hypothesis is not rejected at the 0.05 level of significance (X 2 test).

TABLE 15. CONVENTIONAL STATISTICAL ANALYSIS OF THE SCALING FACTOR
SETS DERIVED FROM RELATIVE HYDRAULIC PROPERTIES (PANOCHE FIELD)*

Parameter p 0 2 ksk kc X 2 (d/== 3) D

a) a-; 1.000 0.1981 0.695 3.19 3.1 0.0623

lnahr -0.103 0.2167 -0.253 2.34 8.3 t 0.0833

b):j: QKr 1.000 0.464 0.856 3.38 7.6 0.0843

InQKr -0.3282 1.022 -2.15 11.71 14.6t 0.1173 S

c)~ QKr 1.000 0.2278 0.631 3.03 3.8 0.0716

InaKr -0.0131 0.2985 -0.581 3.11 2.9 0.0761

*Based on sample of size n == 120. Symbols are defined in table 6.

tNull hypothesis is rejected at the 0.05 level of significance.

:j:Ca1culatedusing equation 16a.

SNull hypothesis is rejected at the 0.10 level of significance.

~Ca1culated using equation 22.
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properties to estimate the a-sets only slightly improved the agreement between the
two a-sets, as compared with the agreement between the as: and the ai; sets (slope
1.456, intercept -0.456, and R2 = 0.41).

To test the applicability of equations 21 and 22 to the Panoche field, values of 11 =
-dlogKr/ dloghr were estimated by linear regression analysis of the log-transforms of
K; and hr. For most of 120 locations in the Panoche field, the model Kr{h r) function
in equation 21 adequately describes the actual Kr{h r) data, as indicated by the rela
tively high values of the coefficient of determination (R2 > 0.85). The resultant
distribution of 11 values (J1 = 2.544, &2 = 1.439, ks = 3.086, kc = 19.6) was highly
skewed and the null (normal) hypothesis was rejected (x 2 [3] = 34.2). Conversely, In1]
was found to be normally distributed (x 2 [3] = 4.7) with J1 = 0.8516, &2 = 0.1539,
ksk = 0.325, and kc = 4.76.

The structural analysis suggests that the spatial variability of Inl1 is described best
by the E + L model (AIC = 160.1) with zero correlation scale ("pure nugget effect").
The stochastic HFV of In1] are characterized by C(O) = en = 0.1294, which stems
entirely from property variations at a scale less than 0.3 m. A significant linear drift
(R2 = 0.88) was detected, whose contribution to the total variance is characterized
by CD = 0.0282 (18 percent of the total variability of Inn),

Values of 1] were used to estimate another set of ax; using equation 22. Results of
the statistical analysis of the resultant ax; are given in table 15c, which indicates that
the new ax, set is normally distributed and less variable than that derived by the
traditional approach assuming a deterministic 11 = 2 for all sites (table 15b). Linear
regression analysis (slope 0.833, intercept 0.152, and R2 = 0.60) suggests that the use
of equation 21 improved considerably the agreement between ah r and the ax; sets.

We then conducted a detailed structural analysis of the scaling factors derived from
the relative hydraulic properties. Based on table 15, the spatial structures of the a-sets
were analyzed instead of their logarithmic transforms. Results of structural analysis
and the associated validation tests of the three a -sets in table 15 are summarized in
table 16. A comparison of the results in table 16 with those in table 10 suggests that
the spatial structures of the a -sets derived from the relative hydraulic properties are
different from those derived from the hydraulic properties themselves. A significant
linear drift was detected for ah r and aKr , both when the original scaling equations
were used (equation 16) and when the scaling factor 11 was introduced to define ax;
(equation 22). In contrast to the Hamra field, significant differences in the spatial
structures of as, and ax, still exist even when 11 is allowed to vary at each measurement
site. One possible explanation for these differences is that, in the Panoche study, K (())
was measured in the field and h( ()) in the laboratory, whereas all measurements in the
Hamra study were made with a permeameter.

In spite of the failure to achieve perfect agreement between ahr and ax; with equation
22, the improvement over traditional scaling (equation 16) was significant. Analysis of
the uncorrelated residuals of ax; and ah r that were determined from equation 16 gives
R2 = 0.29 with a slope of 0.887 and an intercept of 0.014, whereas the set defined
with equation 22 gave R2 = 0.61 with a slope of 0.946 and an intercept of -0.002.
Since the values of 11 were independently determined from the data, this improved
agreement offers convincing evidence that the more general scaling model is applicable
to the Panoche field as well.
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TABLE 16. STRUCTURAL ANALYSIS OF SCALING FACTORS
DERIVED FROM RELATIVE HYDRAULIC PROPERTIES (PANOCHE FIELD)""

a. Structural analysis

Parameter Model Cn Co Ii Ale

ai; S+L 0.1063 (.035) 0.0232 (.021) 15.121 (9.8) 55.6

aKr
t E+L 0.3199 (.125) 0.0255 (.117) 4.637 (22.3) 116.0

aKr+ S+L 0.0878 (.039) 0.1127 (.057) 3.315 (3.34) 74.0
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b. Cross validation

Parameter Model ME MSE MRE

a», S+L 0.0756 0.4464 1.266

aKr
t E+L -0.0580 0.7645 1.245

aKr+ S+L 0.0383 0.4087 1.181

c. Analysis of uncorrelated residuals

Parameter Model p 02 ksk kc X 2 (df ) D SSR

ahr S+L 0.1747 0.9395 0.540 3.43 1.21 (3) 0.078 55.95

aKr
t E+L 0.1088 0.9843 0.219 2.56 1.86 (3) 0.084 55.80

aKr+ S+L 0.1729 0.9453 0.396 2.67 2.29 (3) 0.059 56.00

""Values in parentheses are the standard error of estimation (SE). Symbols are defined in tables
6 and 7.

tCalculated using equation 16a.

+Calculated using equation 22.

SUMMARY AND CONCLUSIONS

We analyzed the possibility of introducing a single stochastic scaling parameter a to
describe the spatial variability of soil hydraulic properties, using the soil hydraulic
properties of the Hamra field (Russo and Bresler 1981) and the Panoche field (Nielsen,
Biggar, and Erh 1973). In the traditional approach (Peck, Luxmoore, and Stolzy 1977;
Russo and Bresler 1980; Warrick, Mullen, and Nielsen 1977), sets of scaling factors
are estimated from the h(s) and K(s) functions. For "perfectly similar media," the two
sets of a should be identical. Even though the sets of a in these studies were found to be
correlated (table 2), they possessed different statistical properties, and were not identi
cal. Results of structural analyses of the sets of a from the two fields suggested that the
spatial structures of the two a-sets are quite distinct, reflecting the different spatial
behavior of the h(f}) and the K(f}) functions. Moreover, there was poor correlation
between the uncorrelated residuals of the a-sets, indicating that part of the high
correlation between the a-sets found in earlier work must stem from the presence of an
undetected drift and from correlation between nearby measurements.

Under field conditions, the saturated hydraulic conductivity is controlled by the flow
of water through large structural voids (macropores), which drain at very small
negative values of water pressure. Because of this, we tried eliminating K, by using
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relative hydraulic properties instead of the hydraulic properties themselves to estimate
the scaling factor sets. For the Hamra field, for which we assumed that the hydraulic
properties could be described by the model of Brooks and Corey (1964), we found the
resultant sets of scaling factors to be highly correlated (R2 = 0.996) with the same
spatial structure, but with slightly different variance. By examining the relationships
between the two a-sets implied by the Brooks and Corey (1964) model we saw that (1)
in general, both sets will be functions of the range of water saturation values used to
estimate them, (2) the correlation between the two sets can be improved for media with
broad pore-size distributions, and (3) the two sets will be identical if and only if the
relative hydraulic conductivity function K r(hr) is described by the deterministic func
tion Kr(hr) = b,-2 ("strictly similar media").

This analysis suggests that, for media that are not well described by K; = b,- 2, a
scaling factor would be required in addition to a in order to achieve agreement between
scaled values of hr(8) and K r(8) at all points. A general model K; = b, -YJ was proposed,
with 11 as a second stochastic scaling factor for media that do not obey the restrictive
assumptions of macroscopic Miller similitude. In the Hamra field, this modified
scaling procedure produced perfect agreement between the scaling hydraulic proper
ties. In the Panoche field, with values of 11 determined from linear regression analysis of
the logarithmic transformations of K, and hn agreement was improved considerably
between the scaled hydraulic properties as compared to the more restrictive scaling
procedure. In contrast to the Hamra field, however, there remained some significant
differences between the scaled properties. These differences may have been artifacts of
the different methods used to estimate the h(s) and the K(s) functions for the Panoche
field.

The results of our analysis suggest that in any transient transport problem involving
both K(s) and h(s), the description of their spatial variability requires the use of at least
three stochastic variates-i-Kj, a, and 11-not a alone.
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component than the Panoche field of Nielsen, Biggar, and Erh (1973).
The stochastic component of InKs in the Bet-Dagan field possessed a
large nugget variance (40 percent of total) and was characterized by an
integral scale of J = 14.5 m, as compared with J =8.1 m and a small
nugget variance (13 percent of total) in the Panoche field.

II. Scaling Models of Water Transport

In this paper, we examine the possibility of introducing a single sto
chastic scaling factor a, derived from macroscopic Miller similitude, to
describe the spatial variability of soil hydraulic properties. Most of the
information available allowed only a conventional statistical analysis
of the scaling factors derived from different soil properties. The field
studies of Nielsen, Biggar, and Erh (1973) and Russo and Bresler (1981)
were suitable also for more detailed structural analyses. Results of
these analyses suggested that the spatial structure of the a-set derived
from the hydraulic conductivity function K(O) is different from that of
the a-set derived from the water retentivity function h(O), reflecting
the different spatial structures of the K (0) and the h(0) functions.
Consequently, the statistical relationship between the uncorrelated
residuals of the two a-sets was rather weak. For the Hamra field of
Russo and Bresler (1981), the use of relative hydraulic properties to
estimate the scaling factor sets considerably improved the correlation
between the a-sets, which had essentially the same spatial structure
but slightly different variances.

In this study, where the soil hydraulic properties are assumed to be
described by the model of Brooks and Corey (1964), analytical ex
pressions for the variances of the two different a-sets indicated that
(1) both a-sets are dependent on the range of water saturation that is
used to estimate them, (2) the correlation between the two sets will
improve in media with a wide pore-size distribution, and (3) the two
sets will be identical if and only if the relative hydraulic conductivity
function Kr(hr) is described by a deterministic function, Kr(hr) = b;-2.

This result suggested that, in general, a second scaling factor for K; is
required for media that are not characterized by this single determin
istic relationship.

A more general Kr(hr) relation, defined by K; = b,"", was intro
duced using " as a second stochastic variable. In this representation,
the a scaling factor for K; is defined by Kr/Kr* = a" instead of a 2 as in
macroscopic Miller similitude. For the Hamra field, the resultant new
a-set was identical to the a-set derived from the relative retentivity
function. For the Panoche field, using the values of " to estimate the
scaling factor from the relative hydraulic conductivity function con
siderably improved the correlation and the similarity between the two
a-sets, but did not render them identical. The results of our analysis
suggest that, for transient water flow, describing the spatial variability
of K(O) and h(O) requires at least three stochastic variates: K s' a, and n,
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