
Recent Advances in Viticulture and Enology ARC, UC Davis December 9, 2016 UCDAVIS

VITICULTURE & ENOLOGY

//7e6250539e5e4676ad4cd888051164

UC DAVIS VITICULTURE AND ENOLOGY

Introduction

Red Blotch disease spread
 Widespread occurrence of Red Blotch

disease indicate primary spread through propagation (1)

- Increase incidence in young healthy vines adjacent to infected vineyards suggest vector (3)
- 3-cornered alfalfa treehopper (*Spissistilus festinus*) have recently be shown to be able to spread the disease (Bahder and Zalom)
 - (1) Al Rwahnih et al., (2013) Phytopath. 103: 1069-1076 (3) Poojaric et al. (2013) PLosONE 8: e64194

• **† T**A

· Current research - show not always true

• ↑ Malic acid

True for CH and CS, not Zin

UC DAVIS VITICULTURE AND ENOLOGY

Impact of RB disease on grape & wine composition

· Much not known

- · Influence of cultivar and site?
- · Influence of stress?
- · Seasonal/climatic impact?
- · No well documented influence on grape
- development
- Effect on wine composition and quality? • Wine ageability?

UC DAVIS VITICULTURE AND ENOLOGY

Study objectives

- To determine the impact of GRBaV on the composition of grapes at harvest and the resulting wines
- To investigate potential sensory and quality differences between wines made from GRBaV positive and negative grapes

UCDAVIS

UC DAVIS VITICULTURE AND ENOLOGY

Experimental layout

- Virus testing (GRBaV and GRLaV) of subset vines to determine GRBaV (+) and (-) sample plots
- · Sample grapes at harvest
 - · Basic chemical panels (Brix, pH, TA)
 - \cdot Metabolomics analysis (primary and
 - secondary metabolite profile)
 - · Phenolic profile (AH-assay, RP-HPLC)
 - · Tannin composition (SPE isolation,

UCDAPhloroglucinolysis)

UC DAVIS VITICULTURE AND ENOLOGY

Experimental layout

- Winemaking from GRBaV (+) and (-) grapes
 - Chemical analyses similar to grapes (previous slide)
 - · Descriptive sensory analysis
 - · Correlate wine composition with sensory
 - attributes
 - \cdot Impact of GRBaV on wine style/quality

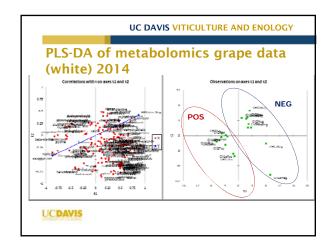
UCDAVIS

Experime	ental lay	out	
Variety (site #)	Source County	Grape Sampling	Winemaking
Chardonnay 1a	Sonoma	Yes	Yes
Chardonnay 1b	Sonoma	Yes	No
Chardonnay 2	Sonoma	Yes	No
Merlot 1	Napa	Yes	No
Merlot 2	Napa	Yes	Yes
Cab Sauv 1	Napa	Yes	Yes
Cab Sauv 2	Napa	Yes	Yes

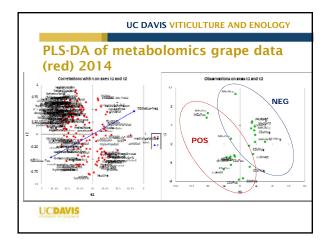
Sample	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
Chardonnay 1a	-	12-Sep-14	24.4	34	6.0
	+	12-Sep-14	23.0	↓6%	6.7
Chardonnay 1b	-	11-Sep-14	23.0	3.4	6.6
	+	11-Sep-14	22.5	↓2%	6.9
Chardonnay 2	-	16-Sep-14	24.1	23 0%	7.8
	+	16-Sep-14	24.2	3.5	8.9

Results.		hemical o	Jointhe	51110	
CH 1a	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
2014	-	12-Sep-14	24.4	3.4	6.0
	+	12-Sep-14	23.0	√6%	6.7
2015	-	9-Sep-15	25.7	2 5	5.3
	+	9-Sep-15	23.6	↓8%	6.3
2016	-	12-Sep-16	23.7	3.4	6.1
	+1	12-Sep-16	22.7	↓ 4%	5.9
	+2	19-Sep-16	23.7	3.7	5.6

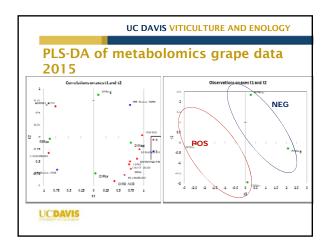
Results: F		pe chem	ical		
Sample	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
Merlot 1	-	29-Aug-14	25.0	3.6	3.2
	+	29-Aug-14	21.1	↓16%	3.6
Merlot 2	-	26-Sep-14	24.9	↓ 6%	4.2
	+	26-Sep-14	23.5	3.5	4.7
Cab Sauv 1	-	18-Sep-14	25.7	↓20%	7.8
	+	18-Sep-14	20.6	↓20% 3.5	8.6
Cab Sauv 2	-	7-Oct-14	26.3	4%	4.8
	+	7-Oct-14	25.2	3.0	4.9

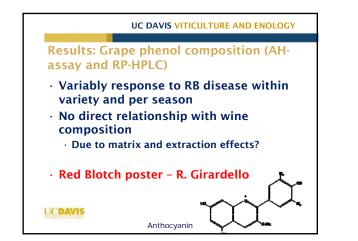


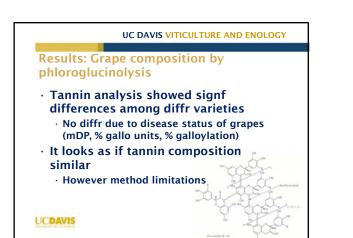
CS 2	GRBaV Status	Harvest Date	°Brix	рН	TA (g/L)
2014	-	7-Oct-14	26.3	3.6	4.8
	+	7-Oct-14	25.2	↓4%	4.9
2015	-	21-Sep-15	26.0	↓ 14%	4.3
	+	21-Sep-15	22.4	3.7	4.4

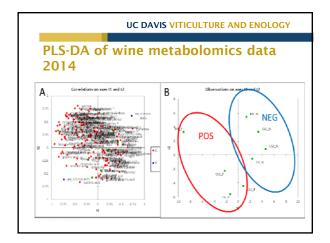


Results: composit		pe chemi 016	cal		
Sample	GRBaV Status	Harvest Date	⁰Brix	рН	TA (g/L)
Merlot	-	15-Sep-16	25.2	4 2	4.2
	+1	15-Sep-16	22.1	↓12%	3.4
	+2	28-Sep-16	24.5	4.0	3.3
Cab Sauv	+	20-Sep-16	25.7	↓ 15%	3.8
110 R	+1	20-Sep-16	21.8	3.5	4.8
	+2	28-Sep-16	23.8	3.6	4.5
Cab Sauv	+	20-Sep-16	24.3	19%	4.2
420 A	+1	20-Sep-16	22.2	3.5	4.5
	+2	28-Sep-16	23.8	3.5	4.6

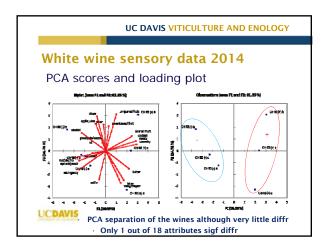




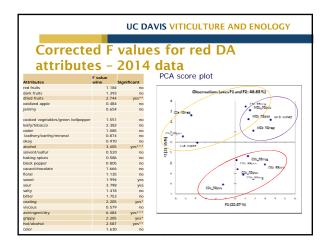


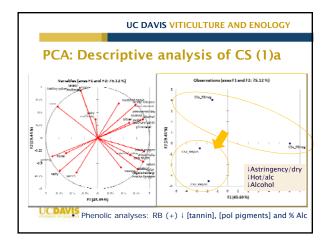


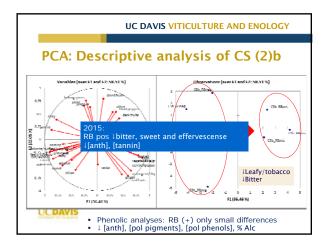
		UC D	AVIS VIT	ICULTU	RE AND EI	NOLOGY
Res	ults:	Wine cl	hemio	al co	mposi	tion
Wine	GRBaV Status	EtOH% (v/v)	рН	TA (g/L)	RS (g/L)	AA (g/L)
CH 1a	-	16.1 ± 0.2*	3.6 ± 0.2*	5.2 ± 0.1	1.9 ± 0.2*	0.1 ± 0.0*
	+	15.4 ± 0.0*	$3.8 \pm 0.2^{*}$	5.6 ± 0.0	1.1 ± 0.2*	0.1 ± 0.0*
ME 2 (b)	-	15.3 ± 0.1*	3.7 ± 0.2	5.2 ± 0.1	0.2 ± 0.0	0.0 ± 0.0
	+	14.1 ± 0.1*	3.7 ± 0.2	5.3 ± 0.0	0.1 ± 0.0	0.0 ± 0.0
CS 1 (a)	-	14.6 ± 0.3*	$3.2 \pm 0.2^{*}$	7.4 ± 0.0	0.1 ± 0.0	0.1 ± 0.0*
	+	13.0 ± 0.1*	$3.2 \pm 0.2^{*}$	7.1 ± 0.4	0.1 ± 0.0	0.1 ± 0.0*
CS 2 (b)	-	15.8 ± 0.1*	3.9 ± 0.2*	4.8 ± 0.0*	0.3 ± 0.0	0.1 ± 0.0*
	+	4.9 ± 0.0*	$3.7 \pm 0.2^{*}$	$5.5 \pm 0.5*$	0.2 ± 0.0	0.1 ± 0.0*
CH = Chardonn	ay; CS = C	abernet Sauvig	non; ME = N	lerlot		

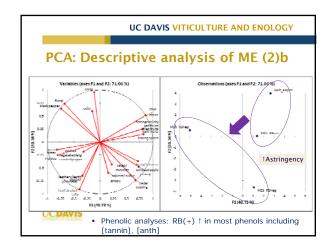


3.45	6.23	27.7	0.10
3.75	6.26	27.0	0.10
3.82	5.56	32.3	0.34
3.62	6.0	34.0	0.31
	3.82 3.62	3.82 5.56	3.82 5.56 32.3 3.62 6.0 34.0



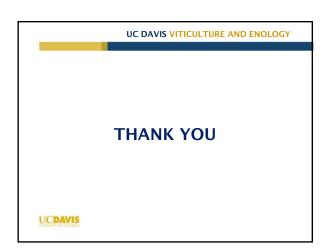






UC DAVIS VITICULTURE AND ENOLOGY

In Summary


- Results indicate RB impact is not variety but site specific
 - \cdot Seasonal impact
- Untargeted metabolomics indicated large impact on primary metabolites
 - · Organic acids
 - · Sugars
 - · Amino acids
 - · Polysaccharides
- Some volatile and non-volatile secondary metabolites (phenols, aroma precursors) also
- impacted

UC DAVIS VITICULTURE AND ENOLOGY

Next Steps

- \cdot Make wines from RB (+) and (-) grapes with the same sugar content
- · Sequential harvesting 2016
- Continue to explore impact of site on variety
- · Find correlation with soil, nutrients.....
- · Targeted analysis combined with
- transcriptomics to identify metabolic
- pathways altered by RB disease resulting
- in changes in biochemical composition
- Use impact on gene expression to develop
- UCDApotential counter measures

UC DAVIS VITICULTURE AND ENOLOGY ACKnowledgements AVF - funding Napa Valley Grapegrowers Agri Analysis, Inc. Monica Cooper Rhonda Smith Raul Girardello Larry Lerno Sean Eridon Martina Sokolowsky Vanessa Rich Karen Block Hildegarde Heymann Cenik Brenneman Lab assistants

