Sonoma County Bounty - Farm Business Incubator
University of California
Sonoma County Bounty - Farm Business Incubator


Producing with the seal of IPM is a practical and sustainable strategy for agriculture

Seal of IPM - a practical and sustainable crop production system

Arthropod pests or diseases cause a variety of damages to crops.  Some by reducing plant vigor resulting in lesser yields and some by causing direct damage to the produce which can be unmarketable due to deformity, unpleasant taste, damaged tissue due to insect feeding, presence of insects and/or frass, decay due to secondary infections, and other factors.  It is quite understandable when the produce is not accepted because of the taste or potential health risk.  For example, citrus fruit with huanglongbing or citrus greening disease transmitted by Asian citrus psyllid gives a bitter taste to citrus juice.  Navel orangeworm larvae bore into almonds and feed on the nut causing complete or partial damage and leave frass and cause fungal infections.  Brown marmorated stink bug damage on fruits and vegetables change the texture and taste of the damaged area.  Such damage certainly makes the produce unmarketable and applying pesticides or administering other control measures to prevent the damage is warranted. 

Brown marmorated stink bug damage to apple (above - Photo by Chris Bergh, Virginia Tech) and navel orangeworm damage to almond (below - Photo by Jack Kelly Clark, UC IPM)

On the other hand, certain damage is only cosmetic with no reported change in taste or quality of the produce.  One example would be fruit deformity caused by the lygus bug in strawberries.  Strawberry is a high value fruit appreciated for its taste, shape, color, and flavor.  Lygus bug feeding on young green berries results in uneven growth and deformity of mature berries.  While there is no record of the impact of lygus damage on strawberry fruit quality, millions of pounds of pesticides are applied to control lygus bug or similar pests that cause cosmetic damage in strawberries and other crops.

Cosmetic damage to strawberry by lygus bug (Photo by Surendra Dara)

The preference of consumers for perfectly shaped fruits and vegetables creates a need for intensive pest management practices and results in associated financial and environmental costs.  Since chemical pesticides are generally economical and effective tools to manage pests, they are widely used.  The overuse of certain effective pesticides causes development of resistance in pest populations. This, in turn, leads to increased use of the same or other pesticides.  Excessive use of chemical pesticides can have a harmful effect on beneficial arthropods resulting in secondary pest outbreaks.  Organic agriculture is gaining popularity due to environmental and human health concerns from chemical pesticide use.    “Organic agriculture produces products using methods that preserve the environment and avoid most synthetic materials, such as pesticides and antibiotics” according to USDA.  But organic agriculture is not necessarily the only sustainable solution.

Before agricultural industrialization, there was a better balance between pests and their natural enemies (beneficial arthropods such as predators and parasitoids that attack pests).  Once agriculture was industrialized, thousands of acres of monoculture now provide an unlimited supply of food for a variety of pests.  When the natural balance is disrupted, natural enemies alone are not sufficient to manage pest populations.  This is where an Integrated Pest Management (IPM) strategy plays an important role in bringing a sense of balance into pest management.  IPM employs multiple tools that include selecting resistant varieties, modifying planting dates, changing irrigation and nutrient management practices, conserving or releasing natural enemies, applying chemical, botanical, and microbial pesticides, or using mechanical tools.  Each of these tools contribute to reducing pest numbers, complement each other, and result in pest management in an environmentally sustainable manner.

Organic agriculture, on the other hand, relies on biopesticides instead of chemical pesticides, which can sometimes be less effective or slow in achieving desired control.  For example, an effective chemical pesticide with a specific mode of action could kill pest populations within a few hours of application.  However, using a biopesticide based on an insect-pathogenic microorganism like the bacterium Bacillus thuringiensis or the fungus Beauveria bassiana, can take a few days to allow the microorganism to infect and kill the pest.  When pest numbers are low, non-chemical solutions may provide required control to minimize damage. However, with heavy pest infestations, chemical pesticides are often needed to provide timely control that prevents further buildup of pest populations and the resulting damage to crops.

Organic agriculture is expensive because of generally higher losses due to pests and higher cost of agronomic and pest management practices.  Sometimes, ineffective control of pests on organic farms may result in their spread to neighboring fields and increase the risk of pest damage.  Organic agriculture does not mean pesticide-free farming, and biopesticides used on organic farms also require safety guidelines similar to chemical pesticides used on conventional farms.  Organic agriculture may require a higher number of pesticide sprays increasing the risk of exposure for workers.  In some pest and disease situations in certain crops, organically registered products are not available and yield losses could be higher.  Exporting organic produce, in light of exotic and invasive pests spreading to other areas, is also a challenge due to limited options for shipping organically produced pest-free fruits and vegetables.

Using cultural practices to reduce the risk of pest infestations and applying biopesticides when pest populations are low and chemical pesticides when populations are high can be components of an IPM strategy where multiple tools are exploited in a balanced manner.  Combining and rotating chemical pesticides with non-chemical alternatives strengthens the effectiveness of IPM by providing desired control without the excessive use of chemicals.  Chemical pesticides can be used during early stages of the crop growth while biopesticides can be used closer to harvest.

Considering the challenges and risks associated with organic agriculture and the practicality of IPM-based agriculture, a couple of ideas could be worth pursuing to maintain environmental and human health, reduce harmful chemicals, and ensure food security for the growing world population.

Acceptance of imperfect produce: When consumers are tolerant of imperfectly shaped fruits and vegetables with no health risk from pathogens or arthropod pests, a significant amount of pesticides of all kinds could be avoided.  This would translate into saving millions of dollars otherwise spent on pesticides and their application costs, and money earned on selling otherwise unmarketable produce.  This may also reduce the disposal of unpicked produce at the grocery stores.  When consumers accept imperfect fruits or vegetables, the cost of produce, both to produce and purchase, could come down.  I recently came across Imperfect Produce, a company that sells imperfect produce and End Food Waste, an organization that started the Ugly Fruit And Veg Campaign.

IPM: Considering the difficulty in ensuring food security exclusively through non-chemical agriculture for the growing world population (projected to be 9.6 billion by 2050), IPM is an effective, practical, and sustainable tool that uses a balanced approach. While organic agriculture is encouraged and supported, and there are several organizations that certify organic production around the world, IPM hasn't caught the attention of marketers yet. Perhaps a seal of IPM should be considered and promoted in the near future.

Organic certification agencies from around the world.  Source

Opinions expressed in this article are my own and based on my experience in IPM, microbial control, biological control, and from discussions with several growers and scientists.




Posted on Saturday, December 12, 2015 at 11:51 AM

An update on the zoophytophagous tomato bug 

Tomato bug on a tomato plant.  Photo by Surendra Dara

The bug that is commonly referred to as the tomato bug might have been around for a while, but it was in the spring of 2014 that a homeowner in Goleta (Santa Barbara County) reported infestations and damage to tomatoes in their home garden for the first time.  In August, 2015, an organic vegetable grower in the Lompoc area had severe tomato bug infestations in tomatoes and zucchini.  In a tomato field intercropped with zucchini bugs were found on both hosts, but more on the younger zucchini plants which have developing flowers and fruits compared to mature tomato plants.  This incidence suggests the potential of tomato becoming an important pest of vegetables in commercial fields and home gardens.  In September, 2015, tomatoes and yellow squash plants at the University of California Davis vegetable garden also had moderate tomato bug infestations.  Younger tomato plants in the Davis garden had more tomato bugs than the squash plants next to them.

More tomato bugs were seen on younger zucchini than on older tomato plants (above) while more bugs were seen on younger tomato than on older yellow squash plants (below)  Photos by Surendra Dara

It appears that tomato bugs can infest multiple hosts other than tomatoes and probably have a preference for plants with actively growing flowers and fruits. 

Tomato bugs on zucchini flowers.  Feeding damage appears as depressed spots on the fruit.

A field study planned for managing tomato bugs on organic tomatoes and zucchini with several botanical and microbial pesticides could not be executed, but the grower reported effective control with Pyganic+OroBoost and Pyganic+DebugTurbo+OroBosst when they tried some products on their new zucchini plantings under hoop houses.  Other treatments that included Entrust, Trilogy, Pyganic, and DebugTurbo did not appear to suppress tomato bug populations.  This input from the grower can be useful until scientifically conducted field study results are available in the future.

It is not clear if tomato bug is emerging as a new vegetable pest in California or the warm and dry conditions in recent years are contributing to the secondary pest outbreaks.  Considering significant yield losses caused due to organic zucchini in the Lompoc area, it is important for growers and PCAs to know about the pest so that tomato bug can be added to their monitoring program.

Information on tomato bug origin, biology, and damage can be found at:

Identity crisis

There is some discrepancy about the identity of what is commonly referred to as the tomato bug.  Entomological Society of America listed Engytatus modestus (Distant) as the tomato bug and it is referred to as such and considered as a biocontrol agent in some literature (Parrella et al., 1982).  However, Nesidiocoris tenuis (Reuter) is referred to as the tomato bugn in other reports where it is considered as a pest (El-Dessouki et al., 1976, Santa Ana, 2015). 

N. tenuis is generally considered a beneficial insect and Arnó et al. (2006) characterized the damage to tomato plants.  This insect is considered as a potential predator for controlling the tomato borer, Tuta absoluta (Meyrick), which has emerged as a serious pest in Spain and other European countries (Urbaneja et al., 2008).  Another study in Spain reported N. tenuis both as a predator and a pest (Calvo et al., 2009).  As a predator, tomato bug caused a significant reduction in sweetpotato whitefly, Bemisia tabaci Gennadius, populations under greenhouse conditions, but also caused necrotic rings on the petioles of leaves.

Regardless of the taxonomic status, tomato bug can both be a predator of several arthropod pests and a pest of tomatoes, yellow squash, and zucchini.  Since it can feed on insects and plants, it is considered zoophytophagous.

surendra feedback logo 


Arno´ J, C. Castañé, J. Riudavets, J. Roig, and R. Gabarra.  2006. Characterization of damage to tomato plants produced by the zoophytophagous predator Nesidiocoris tenuis. IOBC/ WPRS Bull 29:249–254

El-Dessouki, S. A., A. H. El-Kifl, and H. A. Helal.  1976.  Life cycle, host plants and symptoms of damage of the tomato bug, Nesidiocoris tenuis Reut. (Hemiptera: Miridae), in Egypt. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 83: 204-220.

Parrella, M. P., K. L. Robb, G. D. Christie, and J. A. Bethke.  1982.  Control of Liriomyza trifolii with biological agents and insect growth regulators.  California Ag. 36: 17-19.

Santa Ana, R.  2015.  Humans may be culprit in latest South Texas invasive insect problems.  AgriLife Today, 14 September, 2015. (

Urbaneja, A., H. Montón, and O. Mollá.  2008.  Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis.  J. Appl. Entomol. 4: 292-296.



surendra feedback logo
surendra feedback logo

Posted on Wednesday, December 9, 2015 at 5:51 PM

Conserving irrigation water in strawberries with micro-sprinklers

Micro-sprinklers in strawberries. Photo by Surendra Dara

Strawberry is an important commercial crop in California primarily grown on the Central Coast in Watsonville, Santa Maria, and Oxnard production areas.  Strawberry crop requires 24-29” of irrigation water for a typical production season based on fall plantings.  Irrigation is primarily administered through drip tapes installed under plastic mulch during bed preparation.  In addition to the drip irrigation throughout the crop life, supplemental irrigation through overhead aluminum sprinklers is administered during the first few weeks after transplanting.  Overhead irrigation is practiced to leach out salts from the root zone and to support the establishment of new transplants.  Strawberries are sensitive to salinity and this supplemental irrigation is believed to reduce or prevent salt injury.  In the Oxnard area, overhead aluminum sprinkler irrigation is considered very important to prevent dry conditions which could result from Santa Ana winds.  However, overhead aluminum sprinkler irrigation requires a significant amount of water and can be an inefficient system.  Evaporation, limited surface area for water penetration due to plastic mulch on the beds, and potential run off are some of the disadvantages associated with this overhead sprinkler system.

               Water is an important resource for growing plants and it has become scarce due to epic drought conditions in California.  Conserving water through improved irrigation practices is a critical area for maintaining acreage of a lucrative commodity such as strawberry.  Micro-sprinklers, which are commonly used in orchard systems could offer an efficient alternative to conventional aluminum sprinklers.  Micro-sprinklers, established on strawberry beds, can deliver water in a more targeted manner with minimum or no run off.  They could also help modify the microclimate in the strawberry canopy and create humid conditions that discourage spider mite pest populations and promote predatory mites which are sensitive to dry conditions.

               A study was conducted at Manzanita Berry Farms in Santa Maria during 2014-2015 production season to evaluate the potential of micro-sprinklers in strawberry production.  Objectives of this study included i) conservation of irrigation resources without affecting strawberry plant growth and fruit yield, ii) impact on pest and predatory mite populations, and iii) impact on powdery mildew and botrytis fruit rot.

Experimental design

A block of strawberry (variety BG-6.3024 planted on 6 November, 2014) was divided into two parts with beds aligned from south to north direction.  The west half of the block was assigned for micro-sprinklers and the east half for the grower standard with aluminum sprinklers.  Each block had about 60 beds (about 306-365' long) and aluminum sprinklers were established in furrows every 40' (7-8 beds in between) while micro-sprinklers were established on every third bed.  Micro-sprinklers were placed 16' apart (on every fourth bed) and had a 15' spacing within a bed.  Within each treatment section six 20' long plots were marked to measure plant, pest, and disease parameters. 

Installing micro-sprinkler system (Field crew at Manzanita Berry Farms, Santa Maria)

Micro-sprinkler (left) and grower standard with aluminum sprinklers (right) sections of the field

Data collection and results

IrrigationConventional sprinkler irrigation was made 14 times from 6 to 29 November, 2015 at a rate of 125 gallons per minute while micro-sprinkler irrigation was made 1-3 day interval at a rate of 40 gallons per minute using 35 PSI pressure.  During this period, aluminum sprinklers delivered 120,000 gallons of water over 16 hours of total irrigation while micro-sprinklers delivered 81,600 over 34 hours of total irrigation.   This translates to 32% of water saving in just 3 weeks and could be more in situations where overhead irrigation is administered for extended periods.  Micro-sprinkler irrigation was continued for 15 min twice a week for the rest of the production period.  Distribution uniformity could not be measured in grower standard treatment in this study, but it is believed to be between 50-60% at 70 PSI based on other studies.  Distribution uniformity for the micro-sprinklers was 74% at 35 PSI when measured on 16 January, 2015.  When electrical conductivity (EC) was measured on January 1 and February 1, 2015, it varied between 0.47 and 0.49 dS/m in grower standard treatment and was at 0.54 dS/m in micro-sprinkler treatment.  Although EC in micro-sprinkler plots was significantly higher (P < 0.0007) than in grower standard plots, it was within the safe limit of 0.7 dS/m.

Cumulative volume of water delivered in micro-sprinkler and grower standard sections of the field.  There was a saving of 38,400 gallons per acre in just about three weeks. 

Yield Total and marketable berry yield data were collected 2-3 times a week between 7 February and 12 June, 2015 for a total of 34 sampling dates.  There was no significant difference in total or marketable berries (P > 0.05) when the seasonal averages for grower standard and micro-sprinkler plots were compared.   During the observation period, 44,322 gr (97.7 lb) and 43,452 gr (95.8 lb) of marketable berries/plot were produced in grower standard and micro-sprinkler treatments, respectively.  

Plots were covered with netting for exclusive harvest data collection.

Marketable berry yields per plot in micro-sprinkler and grower standard sections from February to June, 2015

Total strawberry yields (marketable and unmarketable) per plot during the study period.

Plant canopy and health– Growth was recorded by measuring the width of the plant canopy across and along the bed from 20 random plants per plot on the 6th of each month from January to March, 2015.  Plant health was monitored at the same time by on a scale of 0 to 5 where 0 = dead, 1 = weak, 2 = moderate-low, 3 = moderate-high, 4 = good, and 5 = very good.  Plants in micro-sprinkler treatment had significantly smaller canopy in January (P = 0.004) and February (P =0.0006), but caught up with the grower standard by March (P = 0.14).  Plant health rating during this period also followed a similar trend, but the differences were significant only in February (P = 0.02).

Size of the plant canopy and plant health condition from January to March, 2015.

Both micro-sprinkler and grower standard plants look equally healthy and productive (Photo taken on 26 May, 2015)

Twospotted spider mite and predatory miteOne mid-tier leaflet was sampled from each of the 10 random plants within each plot and the number of eggs, nymphs, adult pest and predatory mites were counted using a mite brushing machine.  Sampling was made once a month from February to April, 2015, but due to sparse numbers and uneven distribution useful data could not be obtained.

Powdery mildew– One trifoliate leaf from 20 random plants within each plot were collected and checked under microscope for mycelial growth and powdery mildew severity was rated on a 0 to 4 scale where 0 = absent, 1 = 1-25%, 2 = 26-50%, 3 = 51-75%, and 4 = 76-100% of leaf area with infection.  Sampling was made on 15 April and 16 and 24 June, 2015.  Powdery mildew severity was significantly less in micro-sprinkler treatment on 15 April (P = 0.009) and June 24 (P = 0.01).

Severity of powdery mildew on three observation dates.

Botrytis fruit rot – Berries harvested from each plot were kept at room temperature in plastic clamshell boxes and disease severity was measured 3 and 5 days after harvest using the 0 to 4 scale used for powdery mildew.  Observations were made on 26 March, 13 April, 22 May, and 16 June, 2015.  In general, botrytis fruit was less severe in micro-sprinkler treatment, but significant difference were seen 3 days after harvest for samples collected on 22 May and 16 June (P = 0.02).  

Severity of botrytis fruit rot when observations were taken 3 and 5 days after harvest.


Micro-sprinkler system contributed to a significant reduction in overhead irrigation water without affecting the marketable berry yield.  With less pressure required to deliver water through micro-sprinklers, they could also contribute to energy savings.  EC value of below 0.7 dS/m suggests that micro-sprinklers were as effective as aluminum sprinklers in leaching out salts. Due to the lack of sufficient mite infestations, the benefit of micro-sprinklers in spider mite management could not be determined.  Data also suggest that powdery mildew and botrytis fruit rot could be reduced by micro-sprinklers, but additional studies are required to confirm these preliminary observations.  An initial estimate by the vendor suggests that equipment and handling costs of the micro-sprinklers are more or less similar to those of the aluminum sprinklers.

Chris Martinez and rest of the field crew, Manzanita Berry Farms, Santa Maria after transplanting

Acknowledgements: Thanks to Dave Peck, Manzanita Berry Farms for his collaboration, Chris Martinez for his field assistance, Manzanita field crew for help with planting, irrigation, and yield data collection, Danilu Ramirez, Fritz Light, and Tamas Zold for their technical assistance, and RDO Water and Netafim for partial funding of the study. 

Dara. S. K. 2012.  Salt injury in strawberries. UCCE eNewsletter, Strawberries and Vegetables.

Posted on Tuesday, December 8, 2015 at 6:42 PM

Strawberry IPM study 2015: Managing insect pests with chemical, botanical, microbial, and mechanical control options

Western tarnished plant bug (Lygus hesperus), which is generally referred to as lygus bug, is a major pest of strawberries on the California Central Coast.  Lygus bug feeding on developing berries causes fruit deformity.  Deformed or ‘cat-faced' berries are not desirable for fresh market and lygus bug damage results in significant yield losses.  Lygus bugs typically move into strawberry fields in early to mid-spring and thrive in fall-planted and summer-planted fields during the following months through multiple generations.  Degree-day calculations and timing of treatments is difficult for lygus bug management in strawberries due to multiple sources (wild and cultivated hosts) and continuous movement of populations among different hosts.  Conventional growers typically rely on pesticide applications and use of bug vacuums is gaining popularity in the recent years.  Lygus bug management continues to be a challenge with these tools and emphasizes the need for IPM strategies that use several control options.

Studies conducted in 2012, 2013, and 2014 in commercial Santa Maria strawberry fields showed that non-chemical alternatives such as azadirachtin, entomopathogenic fungi, and bacteria-based pesticides can play an important role in managing lygus bug and other insect pests.  Such botanical and microbial alternatives were also critical in managing twospotted spider mites.  IPM approach beyond rotating chemicals among different modes of action groups is necessary for obtaining effective control, maintaining environmental sustainability, and reducing the risk of pesticide resistance.

An IPM study was conducted in 2015 at Sundance Berry Farms in the Santa Maria area using almost all available IPM tools.  The following groups of options were used in different combinations and rotations and evaluated for their efficacy against lygus bug, western flower thrips, and greenhouse whitefly.

Chemical pesticides: Pyrethrins (formulations proprietary and Brigade, IRAC mode of action group 3A – sodium channel modulators), neonicotinoids [(formulation Assail 70 WP, IRAC group 4A), sulfoximines (formulation Sequoia, IRAC group 4C), and butenolides (formulation Sivanto, IRAC group 4D) – all of them are nocotinic acetylcholine receptor competitive modulators], flonicamid (formulation Beleaf 50 SG, IRAC group 9C – modulators of chordotonal organs), and benzoylureas (formulation Rimon 0.83 EC, IRAC group 15 – inhibitors of chitin biosynthesis).

Botanical pesticide: Azadirachtin (formulations cold pressed neem, Neemix, AzaGuard, and Debug Turbo), which is an insecticide, insect growth regulator, antifeedant, and a repellent.

Entomopathogenic fungi: Beauveria bassiana (formulation proprietary), Isaria fumosorosea (Pfr-97), and Metarhizium brunneum (Met 52 EC)

Mechanical: Vacuuming twice a week at one pass each time at 2 mph.

The study included 12 treatments that included an untreated control, Assail 70 WP alone and vacuuming alone as grower standards.  Treatments were administered on 26 August, 2 and 9 September, 2015 using a tractor-mounted sprayer.  A spray volume of 100 gpa was used for pesticide treatments.  Each treatment had six 75' long (4 row) beds and four replications distributed in a randomized complete block design.  Before the first treatment and 6 days after each treatment, 20 random plants from the middle two beds in each plant were sampled for insect pests and beneficial arthropods.  Number of young and old nymphs, and adult lygus bugs, thrips, adult whiteflies, big-eyed bugs, minute pirate bugs, lace wings, damsel bugs, ladybeetles, parasitic wasps, predatory thrips, predatory midge larvae, and spiders were counted from each sample plant.  Data were subjected to ANOVA and significant means were separated using Tukey's HSD test.

Pre-treatment and post-treatment (average of three counts) numbers of lygus bug nymphs and adults in different treatments.

Percent change in lygus bug (all life stages) and various natural enemy (all species combined) populations after three spray applications compared to pre-treatment counts

Ranking of the treatments based on percent change in lygus populations by the end of three spray applications

Percent change in western flower thrips and adult greenhouse whitefly populations after three spray applications compared to pre-treatment counts

Lygus bug: Lygus bug populations were very high during the study period (treatment threshold 1 nymph/20 plants) and control was difficult, in general.  Sequoia/Sivanto/Belaf rotation provided the highest control where there was a 29% reduction in all life stages compared to pre-treatment numbers.  Sivanto/Sivanto/Vacuum treatment was the only other treatment that provided a 12% control.  B. bassiana+pyrethrum/Vacuum/Rimon+Brigade treatment prevented the population buildup and lygus numbers increased in all other treatments.  The popular practice of vacuuming was ranked 6th.  Having two passes instead of one pass might increase the efficacy of vacuuming, but results emphasize that multiple tools need to be considered for managing lygus bugs in strawberries.

Natural enemies: Percent change post-treatment indicated that natural enemy populations were relatively higher in Pfr-97+Neemix/Pfr-97+Neemix/Vacuum followed by Sequoia/Sivanto/Beleaf, and Sequoia/Sequoia/Vacuum and B. bassiana+neem/B. bassiana+pyrethrum+neem/B. bassiana+pyrethrum.

Western flower thrips: Post-treatment counts showed that thrips populations were reduced only in Rimon+Brigade/Met52+Debug Turbo/Met52+AzaGuard and B. bassiana+neem/B. bassiana+pyrethrum+neem/B. bassiana+pyrethrum treatments.

Greenhouse whitefly: Adult whiteflies occurred at very low numbers during the study and population reduction from post-treatment counts was seen only in Vacuum/Sivanto+Debug Trubo/Rimon+Brigade, Sivanto/Sivanto/Vacuum, and Rimon+Brigade/Met52+Debug Turbo/Met52+AzaGuard treatments.

This study demonstrates the efficacy of various chemical and non-chemical tools in various combinations against lygus bug, western flower thrips, and greenhouse whitefly and growers can make appropriate treatment decisions based on these results.

Acknowledgements: Thanks to Dave Murray for collaborations with this study, Ted Ponce for coordination, Sundance Berry Farms crew, Chris Martinez, Fritz Light, Tamas Zold, and Kristin Nicole Stegeman for their technical assistance, and industry partners for the supply of materials and/or financial support.

Posted on Monday, November 30, 2015 at 12:38 PM

Role of lygus bug and other factors in strawberry fruit deformity

Lygus bug nymphal and adult stages

Lygus bug or western tarnished plant bug (Lygus hesperus) is a major pest in California strawberries and causes significant yield losses by contributing to the fruit deformity.  Lygus bug is a hemipteran insect and has piercing and sucking mouthparts.  They prefer plant parts rich in proteins and lipids.  Developing berries and achenes offer as a good source of nutrition in strawberries and hence they are normally seen in the inflorescence.  When lygus bug inserts its mouth parts and sucks the plant juices, the tissue at the site of feeding does not grow normally resulting in fruit deformity as berries develop.  Deformed berries are not marketable for fresh market and growers adopt various control strategies to manage lygus bugs and limit damage.  Chemical pesticides are the popular choice for managing lygus bugs and the use of bug vacuums is also increasing in the recent years. 

While the treatment threshold is one lygus nymph/20 plants, infestations are generally very high above the threshold requiring aggressive management practices.  Although treatment decisions are typically made based on lygus sampling, it is not uncommon (based on personal communication with some growers and PCAs) for fruit deformity to influence treatment decisions.  In light of this scenario, it is important to determine the role of lygus bug in deformed strawberries among other causes such as poor pollination, genetic factors, and environmental conditions such as cold temperatures.

Literature suggests that fruit deformity due to lygus and other causes can be determined by the size of achenes (Zalom et al., 2014).  Achenes in the deformed and normal areas of the fruit are more or less of the uniform size if the deformity is due to lygus bug.  Achenes are of different sizes if the deformity is due to factors other than lygus damage.

A study was conducted in September, 2015 to evaluate the role of lygus bug and other factors in strawberry fruit deformity.  Deformed berries were collected from 18 conventional and 10 organic strawberry fields.  Conventional fields were sampled nine times and organic fields were sampled 5 times.  On each sampling date a field block was divided into four quadrants and at least 100 deformed berries were collected from each quadrant.  Each berry was examined categorized as lygus- and non-lygus-related based on the size of the achenes and shape of the berry.  Data were subjected arcsine transformation and statistical analysis and significant means were separated using Tukey's HSD test.

In general, lygus bug damage was significantly higher (P = 0.0002) in organic fields than in conventional fields. When the causes for the deformity were compared, the proportion of deformed berries due to lygus bug damage was significantly higher (P < 0.00001) than those due to other causes in both conventional and organic fields.  It is, however, important to note that 41% of the deformity in conventional fields and 33% in organic fields was due to factors other than lygus bug.  These results are important in understanding the role of various lygus bug and other factors in causing fruit deformity and making appropriate treatment decisions.  Sampling the fields for lygus bugs is always the right way to make a treatment decision rather than counting on deformed berries.

Information on lygus bug biology, sampling, and management can be found at the following resources:

Lygus bug biology and damage video:

Lygus bug monitoring and treatment threshold video:

Lygus bug management video:

UC IPM Pest Management Guidelines:



Zalom, F. G., M. P. Bolda, S. K. Dara, and S. Joseph (Insects and Mites). 2014. UC IPM Pest Management Guidelines: Strawberry.  University of California Statewide Integrated Pest Management Program. Oakland: UC ANR Publication 3468.  June, 2014.

Posted on Wednesday, November 25, 2015 at 3:35 PM
Tags: fruit deformity (1), Lygus bug (1)

Next 5 stories | Last story

UCCE Sonoma County: 133 Aviation Blvd Suite 109, Santa Rosa, CA 95403  Phone: 707.565.2621  Fax: 707.565.2623

Webmaster Email: