Evaluation of Pre-plant & Post-plant Treatments for Replanted Peach Orchards

Roger Duncan

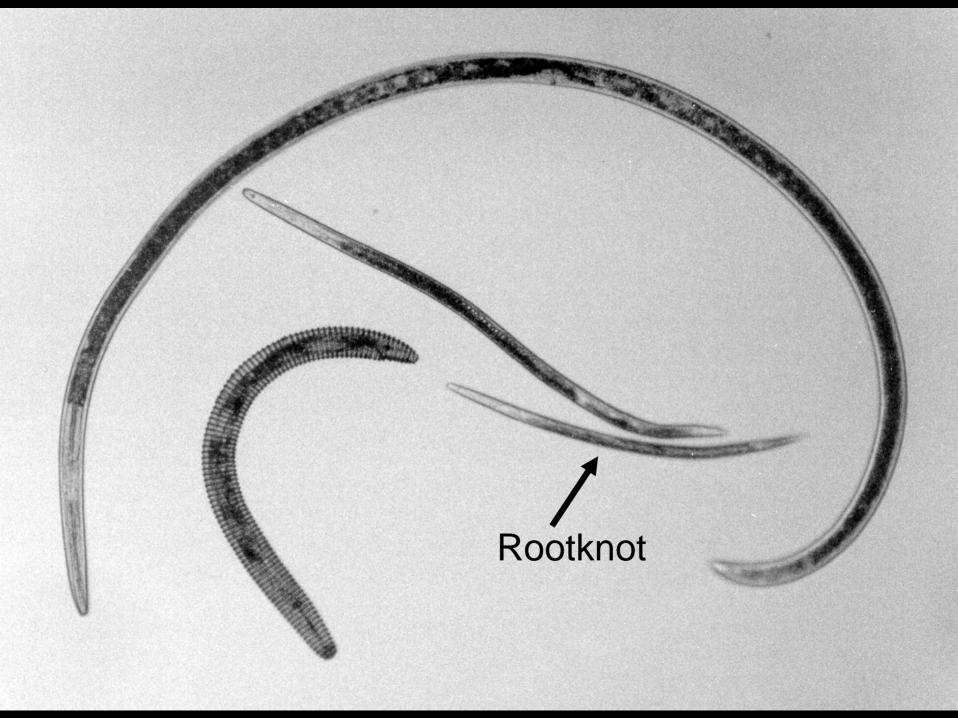
University of California Cooperative Extension,
Stanislaus County

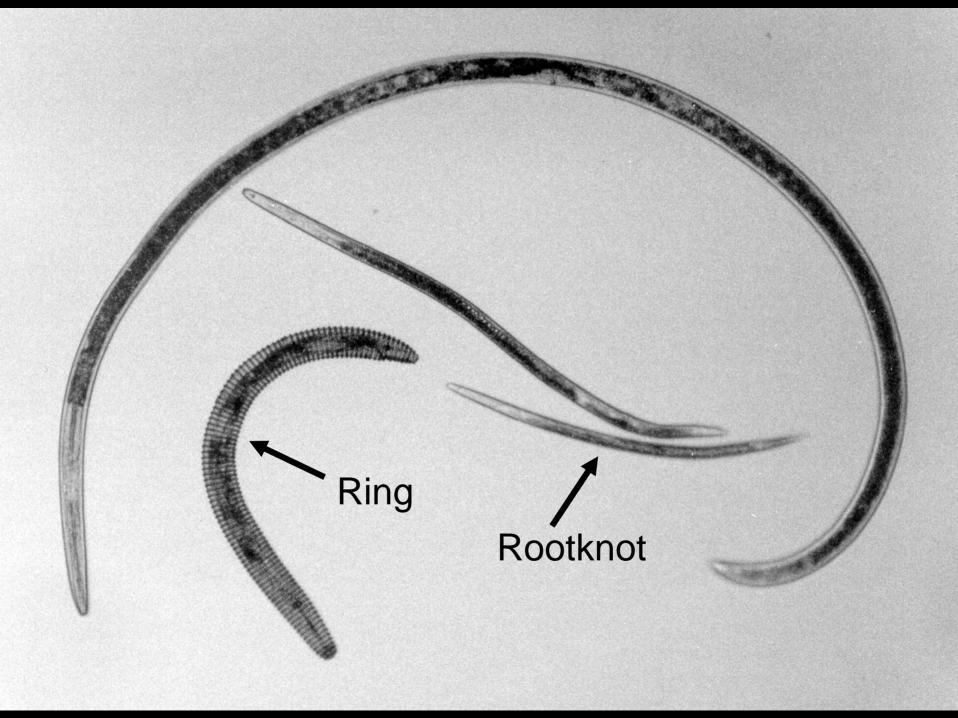
Mike McKenry

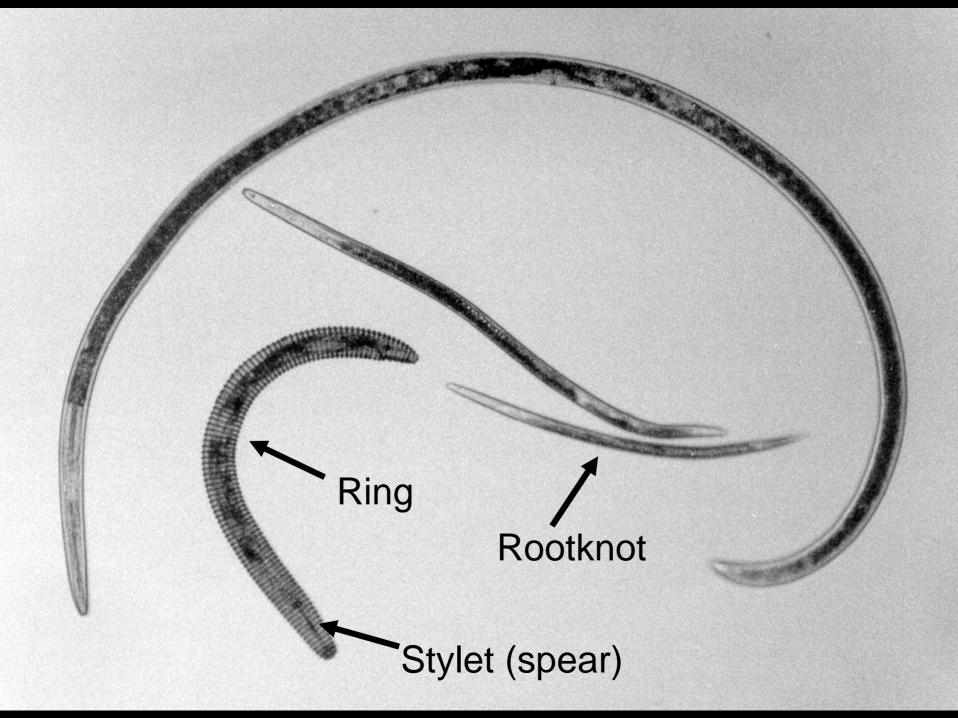
Dept. of Nematology, UC Riverside

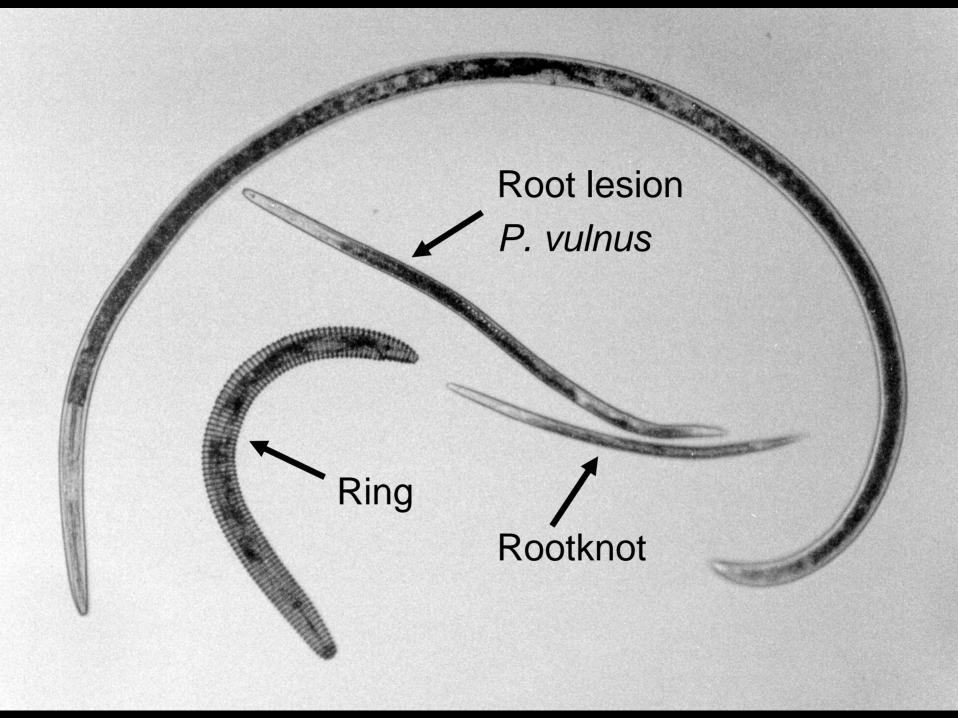
Kate Scow

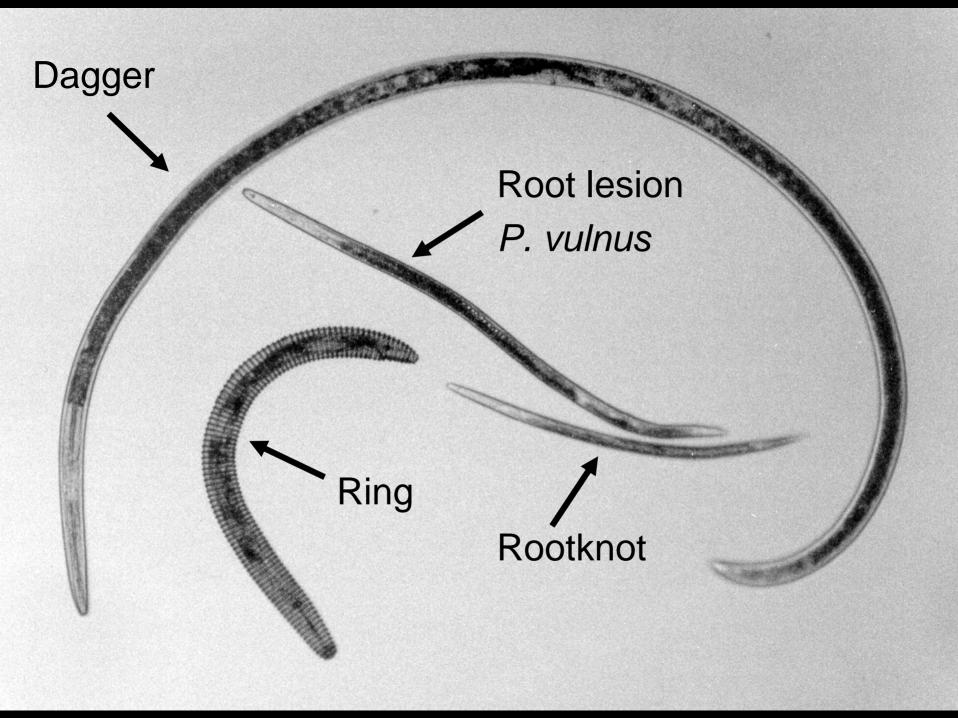
Dept. of Land, Air & Water Resources, UC Davis


Second generation orchards do not grow as well because of...


- Nematodes
 - ring, root lesion (*P. vulnus*), root knot


Poorly defined fungal / pathogenic microorganism complex


Nutrient depletion



How do we fix this?

- Fumigation
 - methyl bromide excellent fumigant
 - addresses all three components of replant problem
 - phased out??
 - very expensive
 - new regulations are very limiting

Questions:

 Can we use a combination of pre-plant and post-plant treatments to obtain results equal to, or better than, methyl bromide fumigation?

 What about microbiological soil amendments?

Cling Peach Replant Trial

Field location:

- ·Third generation peach orchard.
- ·Land fallow for two years prior to planting.
- ·Soil = loamy sand.
- ·History of bacterial canker.
- Moderate / high populations of ring and root lesion nematodes. One rep also has rootknot.

Cling Peach Replant Trial

Pre-plant treatments; October 2000

- Nonfumigated
- Methyl bromide tarped @ 400 lb per acre
- Vapam HL at 250 ppm (75 gpa) drenched
- *Telone II strip shanked @ 32 gpa. Telone applied to ~ 2 acres as observation only.

Applied East - West across rows

Solid, tarped fumigation with methyl bromide @ 400 lb per acre. Other strips treated with Vapam or left untreated. October, 2000

Cling Peach Replant Trial

Pre-plant treatments applied across rows (East - West).

Post-plant treatments applied down rows (North-South).

Allows for combination of pre-plant and post-plant treatments in a checkerboard design.

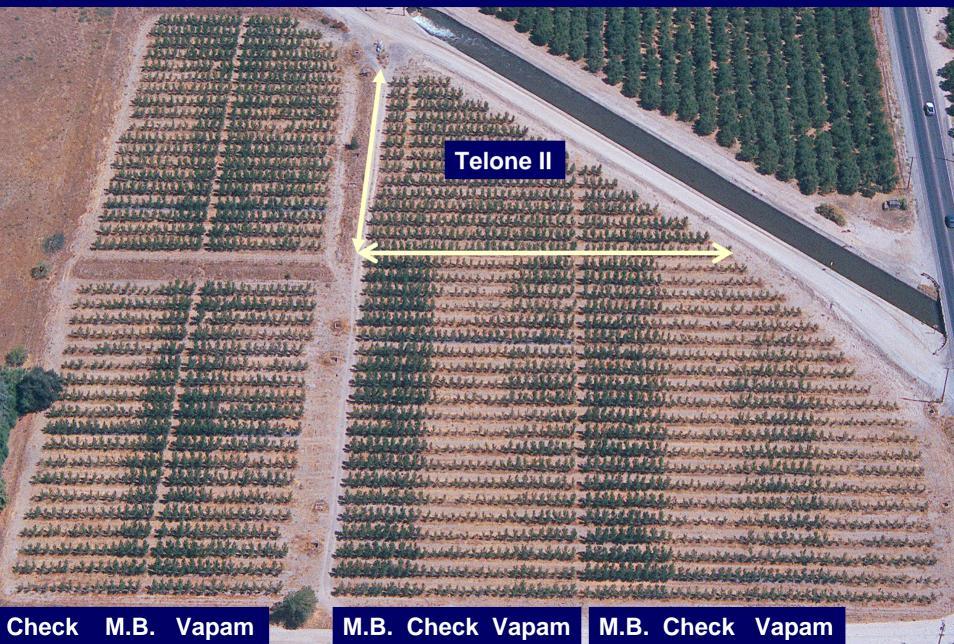
Cling Peach Replant Trial Post-plant treatments

- Enzone @ 1000 ppm twice annually
- Nemacur 3 @ 1 gpa twice annually
- DiTera DF @ 10 lb per acre twice annually
- Applied April & Oct. 2001, 2002, 2003
- Additional N (~50 lb fertigation, fall foliar with 100 lb urea)
- Composted green waste & manure + oyster shell flour at planting, Ca-12 injected 3X, foliar CaCl 3X
- Compost & oyster shell + Tilth ® & lota ® microbial amendments;
 3 apps Apr, June, Sept.
- Compost & shell + humic acid, Shurcrop Supra ® kelp product, Spectrum® microbial amendment; 3 apps Apr, June, Sept.
- Black polyethylene soil covering
- Four annual sprays with foliar micronutrients

Application of compost to berms prior to planting. January 2001

Some trees were dipped in kelp extract and / or microbiological "cocktails"

Compost and oyster shell flour backfilled into planting hole. February 2001.


First-leaf trees in treatment with black polyethylene mulch applied down tree row at planting.

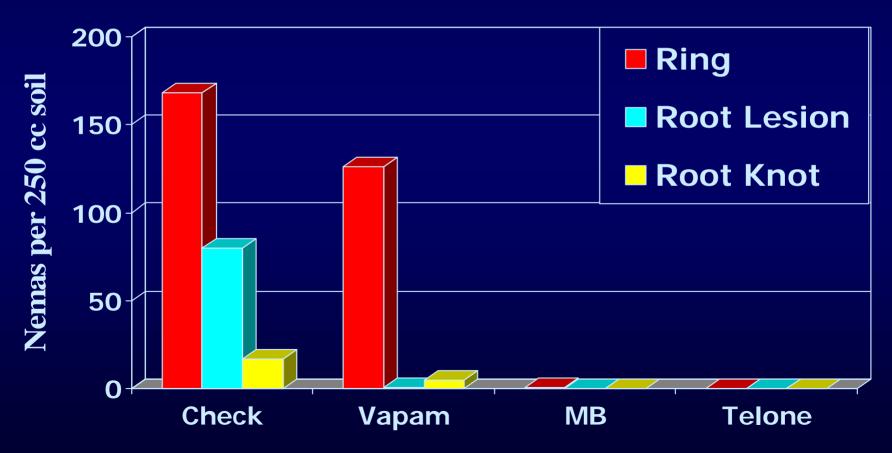
Kline Peach Replant Trial - First-leaf trees
October 15, 2001

Peach Replant Trial, Stanislaus County. Sept. 20, 2002 Second leaf 'Loadel' on Lovell Rootstock

Patterson Road Replant Trial. October 1, 2003. Third Leaf

Patterson Road Replant Trial. October 1, 2003. Third Leaf

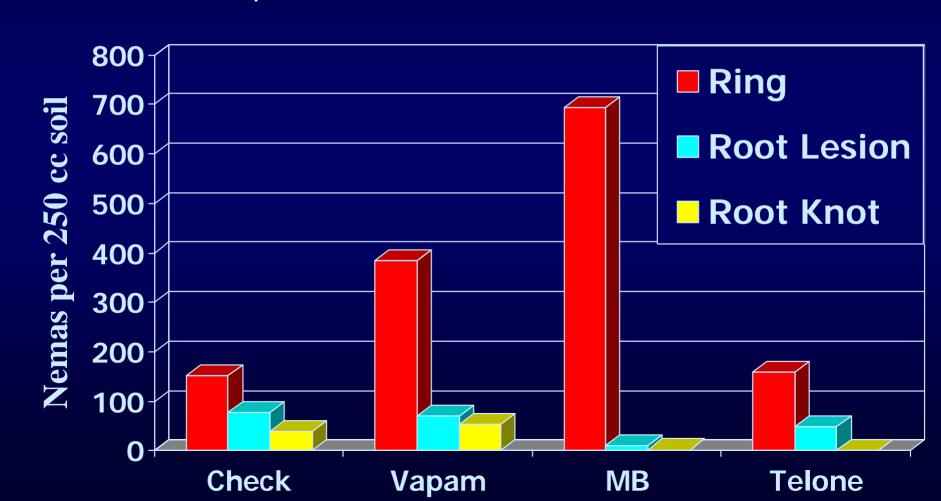
Preplant Fumigant Effects on Native, Pathogenic Nematodes

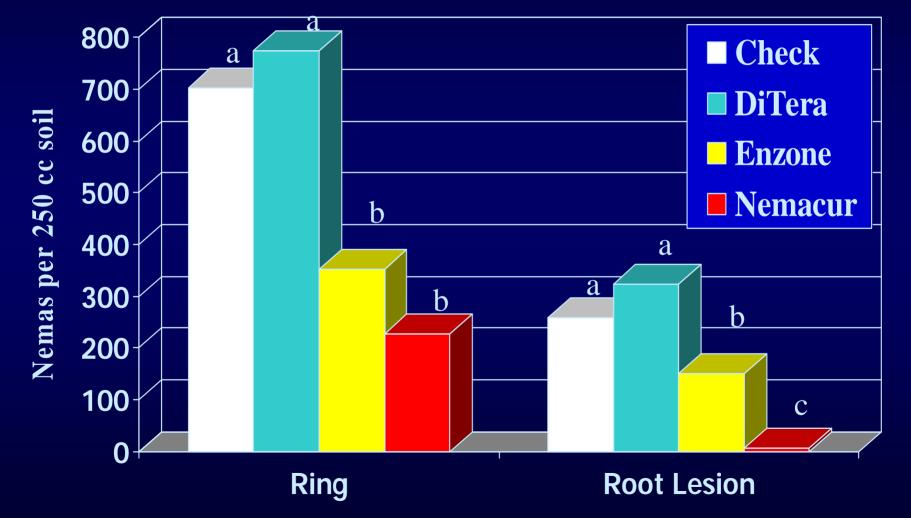

Nematodes per Liter of Soil <u>at Time</u> of Planting							
Unfumed		MB		Vapam			
Ring	Root	Ring	Root	Ring	Root		
	Lesion		Lesion		Lesion		
13	62	15	0	3	0		
165	384	0	0	87	35		
698	596	1	0	79	27		
913	1041	1	0	11	11		
828	588	4	0	0	0		
	Unfu Ring 13 165 698 913	UnfumedRingRoot Lesion13621653846985969131041828588	Of PlaUnfumedMRingRoot LesionRing Lesion13621516538406985961913104118285884	Of Planting Unfumed MB Ring Root Lesion 13 62 15 0 165 384 0 0 698 596 1 0 913 1041 1 0	Of Planting Unfumed MB Var Ring Root Lesion Ring Lesion 13 62 15 0 3 165 384 0 0 87 698 596 1 0 79 913 1041 1 0 11 828 588 4 0 0		

Mean

36 b

Pathogenic Nematodes in the Rootzone One Year After Soil Fumigation

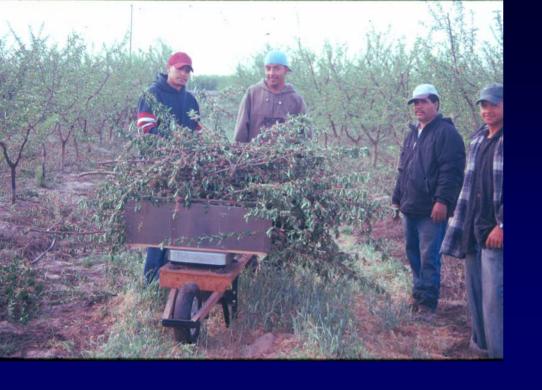

Samples taken October, 2001 at 0-18"


*All nematodes in Vapam treatment found in Rep 3 only.

Pathogenic Nematodes in the Rootzone Three Years After Soil Fumigation

Samples taken October, 2003 at 0-18"

Pathogenic Nematode Numbers on Nonfumigated Peach Trees as Influenced by Post-plant Nematicide Treatments - Second Leaf


•Soil sampled February, 2002.

Summer Pruning M.B. Fumigated Trees Second-leaf. June 19, 2002

Summer Pruning Nonfumigated Trees June 19, 2002

"Dormant" Pruning
Brush weights
Unfumigated

"Dormant" Pruning
Brush weights
Unfumigated

"Dormant" Pruning
Brush weights

MB Fumigated

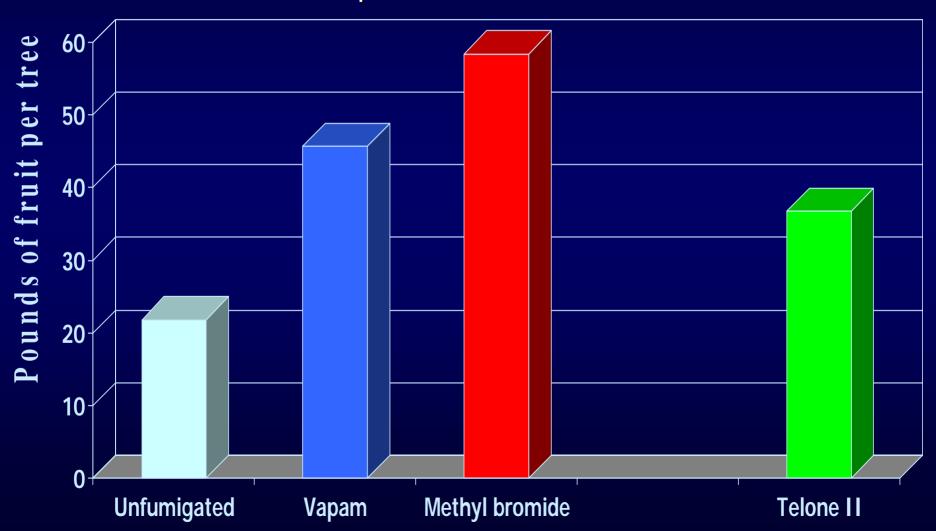
Pruning Weights. April 15, 2003

Brush Weight (lb. per tree)

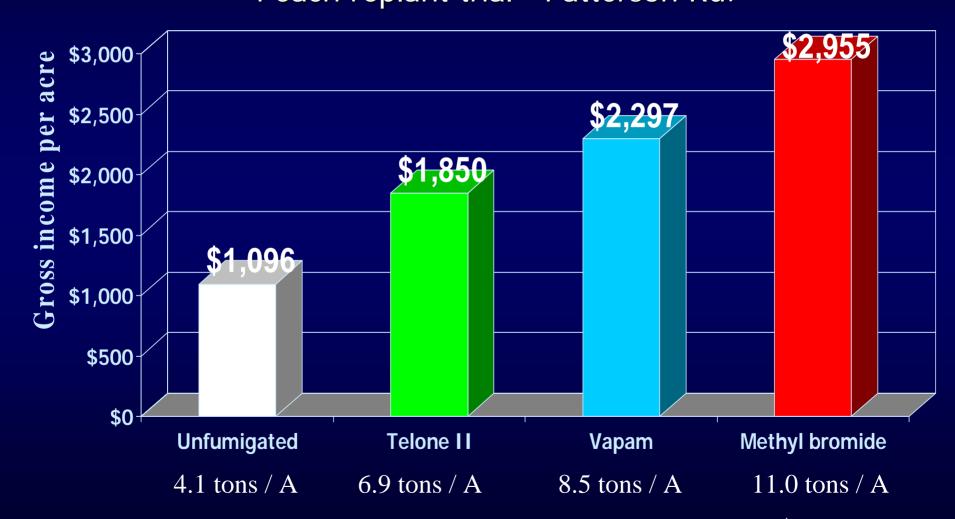
	Unfumed	M. B.	Vapam	Average	Telone
Untreated	2.7 b	13.5	a 7.2 a	7.8 a	7.1
Enzone	2.2 b	11.7	a 5.7 a	6.5 a	
Nemacur	3.2 b	11.5	a 4.6 a	6.4 a	
DiTera	2.4 b	13.7 a	a 6.0 a	7.4 a	
Nitrogen	2.4 b	12.5	a 6.9 a	7.3 a	
Calcium	1.4 b	11.4	a 4.9 a	5.9 a	
Microbes	2.6 b	12.5	a 5.2 a	6.7 a	
Kelp & Humic	A. 2.1 b	10.0	a 4.5 a	5.5 a	
Black Plastic	6.1 a	13.5	a 7.2 a	8.9 a	
Foliar Micros	4.0 ab	13.1	a 8.2 a	8.4 a	
Average	2.9 c	12.3	a 6.0 b		

Yield (Kg) of Fruit per Tree July, 2003

U	Infumed		M.B.	Vapam	Average	Telone
H. acid + kelp	9.0	С	24.4 ab	14.6 b	16.0 b	
Calcium	9.3	С	21.0 b	14.3 b	14.9 b	
Untreated	9.9	С	26.7 ab	20.8 ab	19.1 ab	16.7
Microbes	10.2	С	22.5 b	16.1 b	16.3 ab	
Enzone	10.5 b	С	23.0 ab	19.8 ab	17.8 ab	
DiTera	11.1 b	C	24.5 ab	18.4 ab	18.0 ab	
Nemacur	11.5 b	C	29.4 ab	17.2 ab	19.3 ab	
Nitrogen	12.3 b		30.8 a	22.8 a	22.0 a	
Foliar micros	13.5 ab		28.3 ab	21.2 ab	21.0 a	
Poly mulch	15.3 a		24.6 ab	20.1 ab	20.0 ab	


25.5 a

Average


18.5

Effect of Pre-plant Fumigation on Yield of 3rd-leaf Loadel Peach Trees. July 2003

Peach replant trial - Patterson Rd.

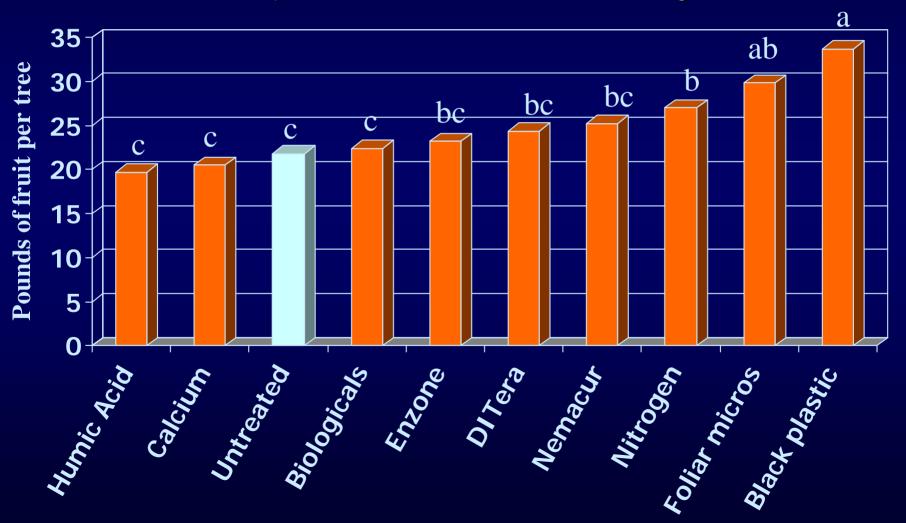
Effect of Pre-plant Fumigation on Gross Income of 3rd-leaf Loadel Peach Trees. July 2003 Peach replant trial - Patterson Rd.

Gross revenues based on 372.3 trees per acre and a price of \$270 per ton

Furnigation Effects on Yield and Gross Income of 4th-Leaf Loadel Cling Peach Trees. July, 2004

Funigation Treatment	Avg. Fruit Diameter (mm)	Pounds of Fruit per Tree	Calculated Tons per Acre*	Gross Income per Acre**	Increase in Income Over Unfumigated
Unfumigated	64.2 b	39.2 c	7.3	\$2044	_
Vapam	65.4 ab	56.5 b	10.5	\$2945	\$901
Telone II	66.5 a	59.4 b	11.1	\$3096	\$1052
Methyl bromide	67.2 a	829 a	15.4	\$4312	\$2268

^{*} Per acre yield calculated by multiplying pounds of fruit per tree times 372 trees per acre.


^{**}Gross income per acre calculated by multiplying tons per acre times \$280 per ton for the Loadel variety under 4% offgrade.

Cumulative Fumigation Effects on Yield and Gross Income Over Two Years (third and fourth-leaf).

Fumigation Treatment	2003 Tons per Acre	2004 Tons per Acre	Cumulative Yield	Cumulative Gross	Increase in Income Over
				Income	Unfumigated
Unfumigated	4.1	7.3	11.4	\$3140	_
Vapam	8.5	10.5	19.0	\$5242	\$2102
Telone II	6.9	11.1	18.0	\$4946	\$1806
Methyl bromide	11.0	15.4	26.4	\$7267	\$4127

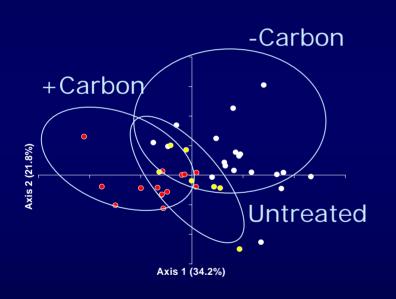
Effect of Post-plant Treatments on Yield of Unfumigated, 3rd-leaf Peach Trees.

Peach replant trial - Patterson Rd. July 2003

Influence of Black Plastic or Micronutrient Sprays on Unfumigated Tree Yield and Gross Income

Third-leaf harvest. July, 2003

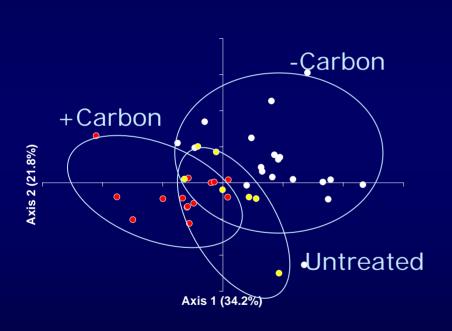
	Pounds / tree	Tons / acre	\$ per acre	Income increase
Black Plastic	33.7	6.3	\$1694	\$598
Foliar Micros	29.8	5.5	\$1498	\$402
Control	21.8	4.1	\$1096	


Gross revenues based on 372.3 trees per acre and a price of \$270 per ton

Peach soil microbial community

- How do alternative fumigants and soil amendments alter soil microbial communities?
- How do soil microbial communities relate to plant performance?

Peach soil microbial community



 Carbon (compost) addition most important in shaping microbial community

 Microbial biomass higher in +C treatments, lowest in MB fumigated and mulched plots

Microbial inoculants had no overall effect on community composition

Peach soil microbial community

- MB decreased biomass and certain functional groups
- Tree growth best in fumigated treatments
- Long term benefits of larger microbial community?

Lab and Field Test for Tissue Susceptibility to *Pseudomonas* syringae

Bacterial canker lesion developed after inoculation

Effect of Foliar Urea and CaCl Sprays on *P. syringae* Lesion Size

Fertilizer	MB	Lesion length
Treatment	Fumigation?	(mm)
Standard	No	301 a

Effect of Foliar Urea and CaCl Sprays on *P. syringae* Lesion Size

Fertilizer Treatment	MB Fumigation?	Lesion length (mm)
Standard	No	301 a
CaCl	No	78 b

Effect of Foliar Urea and CaCl Sprays on *P. syringae* Lesion Size

Fertilizer Treatment	MB Fumigation?	Lesion length (mm)
Standard	No	301 a
CaCl	No	78 b
Urea	No	27 c

Effect of Foliar Urea and CaCl Sprays on *P. syringae* Lesion Size

Fertilizer Treatment	MB Fumigation?	Lesion length (mm)
Standard	No	301 a
CaCl	No	78 b
Urea	No	27 c
Standard	Yes	26 c
CaCl	Yes	23 c
Urea	Yes	20 c

- Preplant fumigation eliminated more than 99% of the parasitic nematodes to a depth of at least 5 feet at planting time.
- After three seasons, there were significantly more ring nematodes in fumigated areas compared to nonfumigated.
- Nematicides applied annually knock nematodes down 50-75% but they quickly build back to pre-treatment levels in less than one year.

- Preplant fumigation has significantly increased plant growth and yield.
- MB increased gross revenue by \$4100 per acre in the first two harvests compared to nonfumigated.
- Vapam and Telone II increased gross revenue by about \$2100 and \$1800, respectively.

- Plastic mulch, foliar micronutrients and foliar nitrogen were the only post-plant treatments that increased yields in unfumigated areas.
- No post-plant treatment has increased yields in fumigated areas.
- We have seen no effects at all from microbiological amendments, kelp-based materials or humic acid treatments.

Nitrogen fertilization significantly increased bark N%.

- Supplemental nitrogen fertilization significantly decreased peach susceptibility to BC in the presence of ring nematodes.
- Ca fertilization also reduced BC susceptibility, but not as much as N.

Why haven't nematicides (applied annually for 3 years) resulted in increased yields??

Something other than nematodes is affecting tree performance.

Thank you for your attention.

Questions??