
PALMARBOR  ISSN 2690-3245  Komen et al: SPAD, spectral reflectance, Ficus microcarpa 2023-12: 1–18 
 

_____________________________________________________________________________________ 
1 

 

Comparison of SPAD Readings and 
Satellite Spectral Reflectance to 

Assess the Health Status of Declining  
Ficus microcarpa Street Trees 

 
JAMES KOMEN, CAMILLE C. PAWLAK, AND DONALD R. HODEL 

Abstract 

Healthy urban forests provide a suite of ecosystem services and amenities to cities and residents. 
Urban forest health can be monitored through field techniques, such as SPAD meter chlorophyll 
measurements, spectral reflectance values from satellite imagery, and imagery from Google 
Maps Street View. Satellite imagery and Google Maps Street View (GMSV) allow access to 
historical and relatively recent conditions. This paper evaluates all three of these sources 
for detecting decline in a set of Ficus microcarpa street trees in Lakewood, California, U. S. A. A 
planting of 25 Ficus microcarpa street trees was assessed in three phases: field observations and 
SPAD measurement; subjective health and canopy density ratings based on historical Google 
Maps Street View images; and spectral reflectance values in four bands from Worldview-II 
satellite data collected in 2010, 2012, 2016, and 2018. Data from each of 28 input variables were 
analyzed for correlation. Generally, five categories of strong variable pair relationships existed: 
(1) Field/GMSV Relationship, (2) GMSV/Satellite Relationship, (3) Consistency Over Time, (4) 
Observation Self-Consistency, and (5) Satellite Self-Consistency. The strongest correlations were 
between adjacent bands of reflectance collected in the same year (|r| ~ 1 to 0.85) and between 
subjectively rated health and canopy density ratings (r ~ 0.91 to 0.82). There was a significant 
difference in the Near-Infrared reflectance values between the trees with and without a history 
of recent root pruning (p < 0.06 and p < 0.05).  
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Introduction 

Healthy urban forests can provide a suite of ecosystem services and amenities to cities and 
residents, which, when well-managed, can be measured and reported. Pushes in green 
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infrastructure in the last 60 years have led to thoughtful management that measures and 
calculates these services and amenities (Carreiro et al. 2007). Street trees represent a publicly 
managed portion of the urban forest and green infrastructure. In California, where 95% of 
residents live in urbanized areas, an estimated 9.1 million street trees are present (US Census 
Bureau Public Information Office 2010; McPherson et al. 2016). These trees provide essential 
amenities and benefits to urban residents by aiding in climate control, providing energy-savings, 
reducing impervious runoff and water quality, creating complex urban habitat for biodiversity, 
reducing particulate pollution, and sequestering carbon (Livesley et al. 2016). The extent of the 
benefits provided by urban trees to cities depends on the health of the trees and the urban forest 
diversity and structure (Livesley et al. 2016). 
 
The structure, health, and diversity of urban forests are frequently recorded through municipal 
tree inventories (Cumming et al. 2008). Traditional tree inventories are completed by field 
technicians traveling from tree to tree and recording tree characteristics. This activity requires a 
significant physical effort and takes considerable time to document every street tree in an urban 
forest. These inventories can only be updated as the budget and temporal restraints allow. Such 
restraints on inventory updates can make it difficult to identify quickly when a tree’s health is in 
decline or when maintenance might be appropriate to maximize the ecosystem amenities and 
benefits a tree provides. 
 
Recently, remote sensing tools such as satellite imagery have been used more frequently to 
monitor tree traits, like health, in urban forest inventories (Morgenroth and Östberg 2017; Fang 
et al. 2020). Traditionally, tree health has been recorded in inventories through different 
techniques such as visual observations by field technicians, SPAD meter readings, and remote 
sensing techniques. Vegetation has unique spectral characteristics that can be identified using 
remote sensing (Xie et al. 2008). In particular, the Red, Red-Edge and Near-Infrared regions of 
the electromagnetic spectrum have relevance for vegetation mapping (Xie et al. 2008). 
Vegetation has high reflectance in the Near-Infrared region due to internal leaf scattering and 
absorption (Knipling 1970). In the Red visible spectrum, chlorophyll absorption results in a low 
vegetation reflectance (Xie et al. 2018). The Red-Edge spectrum can be used to detect stress in 
vegetation by assessing chlorophyll status and leaf area index independent of ground cover 
conditions (Horler et al. 1983). Using satellite data, normalized difference vegetation indices 
(NDVI) have been employed as a proxy for tree health using the red and Near-Infrared bands 
(Malthus et al. 2000). Measurements from field tools like the SPAD meter, which is used to 
measure chlorophyll content, have been correlated to satellite measurements of NDVI (Robson 
et al. 2014). Literature has been published that uses Google Maps Street View (GMSV) to record 
urban forest canopy cover and compares SPAD measurement to satellite-sensed vegetation 
indices for crops and satellite-sensed NDVI to street tree health, but no literature has assessed 
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how field-based tree health measurements, GMSV-based tree health measurements, individual 
satellite band values, and SPAD meter measurements are correlated for urban street trees (Wu 
et al. 2007; Wu et al. 2019; Xia et al. 2021; Richards and Edwards 2021). Our research assesses 
correlations between field measurements, satellite measurements, and GSMV measurements for 
health status of an urban street tree Ficus microcarpa (Chinese banyan, Indian laurel fig) in 
Lakewood, California, U. S. A., and suggests which techniques cities can be meaningfully used to 
maintain up-to-date tree health assessments for street tree inventories. 
 

Materials and Methods 

In May of 2018, we selected 51 Ficus microcarpa trees growing along the 4200 to 4700 block of 
Paramount Blvd. in Lakewood, California, U. S. A. (Fig. 1). All selected trees were approximately 
the same age and spacing along the street growing in 4-meter-wide irrigated median strips with 
regularly maintained turfgrass cover. We chose these trees because they were on a busy urban 
road that appeared in multiple years of Google Maps Street View imagery and were uniformly 
planted in an easily and publicly accessible area.  
 
Trees 1 through 44 were on the eastern side of the street and exhibited varying degrees of decline 
symptoms in 2018. Dead branches had not been pruned off for six years; thus, this sample set 
was useful for collecting data on their history of decline over an extended period. The trees 
ranged in size from 31 to 95 centimeters diameter at standard height (DSH), with an average of 
59 centimeters. They ranged in height from 6 to 12 meters with an average of 8 meters. The trees 
had a history of root pruning from between 2013 and 2015 to mitigate curb damage. Root cuts 
were between 2 and 3 meters from the trunks and along the eastern side of the root system.  
 
For comparison with the data collected from Trees 1 through 44, we selected a second set of 
nearby Ficus microcarpa on the same street. This second set of trees were the same age and 
appeared to be healthy. Trees 45 through 51 were along the western side of Paramount Blvd., 
just south of Trees 1 through 44. They had broader, denser canopies and ranged in size from 56 
to 98 centimeters DBH with an average of 72 cm. They ranged in height from 9 to 15 meters with 
an average of 13 meters. Although evidence of past surface root damage from lawn mowing was 
visible, no curb replacement and root pruning had occurred within the past few years. 
 
All 51 trees in the study had a history of stress when statewide drought restrictions were 
implemented in 2015. Sprinkler irrigation along the median strips was reduced and then 
completely shut off, causing much of the turfgrass in the median strips to die. The combination 
of  drought  stress  and  past  root  pruning  on Trees  1  through  44 likely  led to  their  declining  
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Fig. 1. Map of trees featured in this study. Trees are labeled with their identification 
numbers. Red X’s mark trees that were skipped. © Google Earth. 

______________________________________________________________________________ 
 
condition. Typically, such stressful conditions leave the tree susceptible to a host of secondary 
diseases and pests. Although we did not perform pathological assessments of declining trees, a 
disease called bot canker fungus or Ficus branch dieback (Botryossphaeria) is often a secondary 
invader of  Ficus microcarpa  subjected to  a history  of periodic root  pruning and other stresses,  
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Fig. 2. Comparison of the photos taken of Tree 6, Ficus microcarpa, Lakewood, California: 
a. 2011; b. 2016; c. 2018; d. 2018. a–c © Google Street View, selected closest to the 
satellite data collection dates; d. © J. Komen, taken at time of field data collection (2018). 

______________________________________________________________________________ 
 

and bot canker fungus may have contributed to the trees’ decline of health (Hodel et al. 2009; 
Mayorquin et  al. 2012a,  2012b).  Bot  canker  fungus in  Indian  laurel fig  trees leads  to  branch 
dieback, crown thinning, and possible tree death (Mayorquin et al. 2012a). In December of 2019, 
all the trees in this study were removed due to their poor health.  
 
We completed data collection in three phases. In phase 1, on May 14th, 2018, we collected field 
data. In phase 2, we aggregated historical GMSV imagery of the trees, and authors Komen and 
Hodel used this imagery to rate the trees’ appearances visually. In phase 3 we aggregated 
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historical Worldview-II satellite data of the trees. Due to limitations in the available satellite 
imagery, we fully analyzed only 25 of the 51 trees. 
 
In phase 1, we photographed, measured, and visually assessed each of the trees for five 
attributes: health, growth decline phase, canopy density, root pruning damage, and turfgrass 
mower damage (Fig. 2). We rated tree health subjectively on a scale of 1 to 5 with 1 
being dead and 5 being excellent health. We subjectively assigned a growth decline phase of one 
of four classifications to each tree: (A) Good condition, not declining; (B) Good condition, but 
declining; (C) Poor condition, but improving; or (D) Poor condition, not improving. We rated 
canopy density subjectively rated on a scale of 0 to 100%, where a dense canopy would receive 
a higher rating. We assessed root pruning and mower damage as binary attributes: if evidence of 
root pruning or mower damage was observed, it was noted. Authors Komen and Hodel 
collaboratively agreed upon condition ratings. 
 
We collected SPAD data from the trees by randomly sampling 10 leaves from the upper canopy 
of each tree because they were directly exposed to satellite measurements. Under authors 
Komen’s and Hodel’s direction, an arborist randomly collected these leaves using an aerial lift 
truck. We took one reading from each leaf and averaged reading for all 10 leaves from each tree. 
In phase 1, we assessed a total of 47 trees. Trees 20, 21, 25, and 44 were excluded from the phase 
1 because they were inaccessible for SPAD data collection during our field survey. 
 
After the field data collection phase, we aggregated historical GMSV images of each of the subject 
trees. Google Street View imagery was available for December 2008, April 2011, February 2015, 
April 2016, December 2017, and February 2018. We recorded only the month and year of the 
street view images because GMSV does not include the day or time of its images. Once the data 
was collected, we subjectively rated the growth phase, canopy density, and health of each tree 
at each point in time. Authors Komen and Hodel assessed each of the variables on the same scale 
as in Phase 1. Images of Trees 8 through 10 were unavailable in street view, so these were 
excluded from the analysis. 
 
In Phase 3, we extracted reflectance values for our study trees from the Worldview-II Satellite for 
the Red (630 nm to 690 nm), Red-Edge (700 nm to 745 nm), Near Infrared-1 (770 nm to 895 nm), 
and Near Infrared-2 (895 nm to 950 nm) bands from the following dates: April 7, 2010, April 28, 
2012, May 24, 2016, and April 11, 2018 (Fig. 3). Dates were selected to match the GMSV imagery 
dates as closely as possible. Worldview-II data was normalized from digital number values to 
surface reflectance using the DigitalGlobe Atmospheric Compensation algorithm to minimize 
variation in imagery due to  illumination, viewing geometry, and  atmospheric  affects. To obtain  
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Fig. 3. Satellite reflectance curve for Tree 6, Ficus microcarpa, Lakewood, California, 
showing the different values for each reflectance band at each historical collection 
interval (2010 to 2018). 

______________________________________________________________________________ 
 
an average spectral reflectance percent value for each band for each tree, we averaged the pixel 
values for ten manually selected pixels that contained pure canopy (avoiding areas in shadow, or 
mixed pixels from the edge of the canopy) within each tree’s canopy spread. We visually 
determined the span of pixel values for each tree by viewing the Worldview-II Satellite data in 
the visible light spectrum. Due to thin canopies, some trees’ reflectance values were 
indistinguishable in  the satellite imagery,  so we  omitted reflectance values for these trees 
fromour analysis. Instead, we limited the results of the satellite data query to 19 trees from the 
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first set (1 through 3, 6 through 8, 10 through 13, 15, 22, 23, 27 through 29, 31, 36, and 41) and 
6 trees from the second set (45, 46, and 48 through 51) (Fig. 1). 
 
After the three phases of data collection, we assembled a correlation matrix to show the 
relationships between each of the recorded variables. We assessed each correlated pair over the 
set of trees with available data. For example, Worldview-II data was not available for Trees 4 and 
5, and GMSV data was not available for Trees 8 through 10, so we excluded these trees in 
correlation analysis for satellite reflectance and GMSV observations. We ranked correlations of 
each variable pair from highest to lowest absolute value.  
 
For our historical observations from GMSV and the Worldview-II satellite, we created a 
correlation matrix of the aggregated data across each of the four periods. For each observation 
of canopy density and health from GMSV, we calculated correlation coefficients for satellite 
reflectance for each period. 
 

Results 

For each of the 841 permutations in our correlation matrix, we analyzed the correlation 
coefficients and r2 values. All variables with a correlation coefficient of above 0.7 are highlighted 
in this paper, ranging from r ~ 0.7 to 0.99 (Table 1). The strength of the correlations is ranked 
from weak to strong according to the scale for correlation coefficients from Bruce (2009) 
(correlations where r ≥ 0.7 are rated as strong). Six of the seven sets of variables with the highest 
correlation were pairs of satellite data for adjacent bands of reflectance in the same year. Near 
Infrared-1 had a strong correlation (r > 0.96) with Near Infrared-2 in each of the years that 
satellite data was collected. Health and canopy density ratings were also self-consistent; within 
the same year, they tended to correlate (r > 0.88) with each other, showing that the trends shown 
in this study are not due to inconsistencies in data collection. Ten of the strong correlations 
showed consistency over time for the same set of trees. 
 
Field canopy density and field-based health ratings were strongly correlated (r >0.88). Field 
measurements of canopy density were correlated with both GSMV measurements of canopy 
density (r ~ 0.82) and health (r ~ 0.82), and field measurements of health were correlated with 
both GSMV measurements of canopy density (r ~ 0.92) and health (r ~ 0.91). In 2012, Red-Edge 
reflectance data was strongly negatively correlated with the GMSV condition ratings (r < -0.76) 
In 2010 and 2012, the NIR-1 and NIR-2 bands were correlated with GMSV ratings for health and 
canopy density (r > 0.7). Red band reflectance data from 2018 was negatively correlated with 
both SPAD measurements (r ~ -0.73) and field-assessed health (r ~ -0.73) from 2018. 
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Table 1. The highest ranked pairs of correlated variables from the study of 
Ficus microcarpa trees in Lakewood, California and the relevance of their 
relationship, if applicable, 2010 to 2018. 

Rank Source 1 Variable 1 Source 2 Variable 2 r r² Relevance

1 Satellite NIR-1 2016 Satellite NIR-2 2016 1.00 0.99 Satellite Self-consistency
2 Satellite NIR-1 2012 Satellite NIR-2 2012 0.99 0.98 Satellite Self-consistency
3 Satellite NIR-1 2018 Satellite NIR-2 2018 0.99 0.98 Satellite Self-consistency
4 Satellite NIR-1 2010 Satellite NIR-2 2010 0.96 0.93 Satellite Self-consistency
5 Satellite Red 2016 Satellite NIR-2 2016 0.96 0.92 Satellite Self-consistency
6 GMSV Health 2016 GMSV Health 2018 0.96 0.91 Consistency over time
7 Satellite Red 2016 Satellite NIR-1 2016 0.96 0.91 Satellite Self-consistency
8 GMSV Canopy Density 2010 GMSV Health 2010 0.94 0.89 Observation self-consistency
9 GMSV Canopy Density 2010 GMSV Health 2012 0.94 0.89 Consistency over time

10 GMSV Health 2010 GMSV Canopy Density 2012 0.94 0.89 Consistency over time
11 GMSV Canopy Density 2012 GMSV Health 2012 0.94 0.89 Observation self-consistency
12 GMSV Canopy Density 2016 GMSV Canopy Density 2018 0.93 0.86 Consistency over time
13 GMSV Canopy Density 2016 GMSV Health 2016 0.92 0.85 Observation self-consistency
14 Field Health 2018 Field Canopy Density 2018 0.92 0.84 Observation self-consistency
15 Field Health 2018 GMSV Health 2018 0.91 0.83 Field/GMSV relationship
16 GMSV Canopy Density 2016 GMSV Health 2018 0.89 0.80 Consistency over time
17 GMSV Canopy Density 2018 GMSV Health 2018 0.89 0.79 Observation self-consistency
18 Satellite Red Edge 2012 Satellite NIR-1 2012 -0.89 0.78 Satellite Self-consistency
19 Field Health 2018 GMSV Canopy Density 2018 0.88 0.78 Field/GMSV relationship
20 Satellite Red Edge 2012 Satellite NIR-2 2012 -0.88 0.77 Satellite Self-consistency
21 Satellite Red 2012 Satellite NIR-1 2012 0.85 0.73 Satellite Self-consistency
22 Satellite Red 2012 Satellite NIR-2 2012 0.85 0.72 Satellite Self-consistency
23 GMSV Canopy Density 2010 Satellite Red Edge 2012 -0.84 0.71 -
24 Satellite Red Edge 2012 GMSV Canopy Density 2012 -0.84 0.71 GMSV/Satellite relationship
25 Satellite NIR-1 2012 GMSV Health 2016 0.84 0.70 -
26 Field Health 2018 GMSV Health 2016 0.83 0.69 Consistency over time
27 Satellite NIR-2 2012 GMSV Health 2016 0.83 0.69 -
28 Field Health 2018 GMSV Canopy Density 2016 0.83 0.69 -
29 Satellite NIR-1 2012 GMSV Canopy Density 2016 0.83 0.69 -
30 Field Canopy Density 2018 GMSV Canopy Density 2018 0.82 0.68 Field/GMSV relationship
31 Field Canopy Density 2018 GMSV Health 2018 0.82 0.67 Field/GMSV relationship
32 Field Canopy Density 2018 GMSV Canopy Density 2016 0.82 0.67 Consistency over time
33 Satellite NIR-2 2012 GMSV Canopy Density 2016 0.81 0.66 -
34 GMSV Health 2016 GMSV Canopy Density 2018 0.81 0.66 Consistency over time
35 GMSV Canopy Density 2010 Satellite NIR-1 2012 0.81 0.66 -
36 Satellite NIR-1 2012 GMSV Canopy Density 2012 0.81 0.66 GMSV/Satellite relationship
37 GMSV Canopy Density 2010 Satellite NIR-2 2012 0.81 0.65 -
38 Satellite NIR-2 2012 GMSV Canopy Density 2012 0.81 0.65 GMSV/Satellite relationship
39 Satellite NIR-1 2010 GMSV Canopy Density 2010 0.79 0.63 GMSV/Satellite relationship
40 Satellite NIR-1 2010 GMSV Canopy Density 2012 0.79 0.63 -
41 Field Canopy Density 2018 GMSV Health 2016 0.77 0.60 -
42 Satellite Red Edge 2012 GMSV Canopy Density 2016 -0.77 0.59 -
43 Satellite NIR-1 2010 GMSV Health 2010 0.77 0.59 GMSV/Satellite relationship
44 Satellite NIR-1 2010 GMSV Health 2012 0.77 0.59 -
45 GMSV Health 2010 Satellite Red Edge 2012 -0.76 0.57 -
46 Satellite Red Edge 2012 GMSV Health 2012 -0.76 0.57 GMSV/Satellite relationship
47 Satellite NIR-1 2012 GMSV Health 2018 0.74 0.55 -
48 GMSV Health 2010 Satellite NIR-1 2012 0.74 0.55 -
49 Satellite NIR-1 2012 GMSV Health 2012 0.74 0.55 GMSV/Satellite relationship
50 Satellite Red Edge 2010 GMSV Health 2016 -0.74 0.55 -
51 GMSV Health 2010 Satellite NIR-2 2012 0.74 0.55 -
52 Satellite NIR-2 2012 GMSV Health 2012 0.74 0.55 GMSV/Satellite relationship
53 GMSV Health 2010 GMSV Health 2016 0.74 0.54 Consistency over time
54 GMSV Health 2012 GMSV Health 2016 0.74 0.54 Consistency over time
55 GMSV Canopy Density 2010 Satellite Red 2012 0.74 0.54 -
56 Satellite Red 2012 GMSV Canopy Density 2012 0.74 0.54 GMSV/Satellite relationship
57 Satellite NIR-2 2010 GMSV Canopy Density 2010 0.74 0.54 GMSV/Satellite relationship
58 Satellite NIR-2 2010 GMSV Canopy Density 2012 0.74 0.54 -
59 Field Health 2018 Satellite Red 2018 -0.73 0.54 Field/satellite relationship
60 Field SPAD Data average Satellite Red 2018 -0.73 0.53 SPAD/Satellite relationship
61 Satellite NIR-2 2012 GMSV Health 2018 0.73 0.53 -
62 Satellite Red Edge 2012 GMSV Health 2016 -0.72 0.52 -
63 Field Height (feet) Satellite NIR-2 2012 0.72 0.51 Distance from sensor
64 Satellite Red Edge 2016 Satellite Red 2016 0.71 0.50 Satellite Self-consistency
65 Satellite Red Edge 2010 GMSV Canopy Density 2016 -0.71 0.50
66 Satellite NIR-2 2010 GMSV Health 2010 0.70 0.49 GMSV/Satellite relationship
67 Satellite NIR-2 2010 GMSV Health 2012 0.70 0.49 -
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Trees with observed evidence of root pruning had an average health rating of 2.86, while those 
without evidence of root pruning have an average health rating of 3.73 (p < 0.07). Average canopy 
density was higher for trees without observed root pruning (64% density) than with observed 
root pruning (45% density) (p < 0.08).  
 
When comparing the two sets of trees, there was no significant correlation between the SPAD 
values of the two sets of trees (p < 0.43), the Red-Edge reflectance data of the two sets (p < 0.35), 
and the Red reflectance of the two sets (p < 0.25). However, a significant difference was present 
between the Near Infrared-1 values for each group (p < 0.06) and the Near Infrared-2 values for 
each group (p < 0.05). 
______________________________________________________________________________ 
 
 
 

 
Fig. 4. The absolute values of correlation coefficients of canopy density assessed from GMSV and 
the pixel values of the Worldview-II satellite bands across all four years examined. 
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Table 2. Correlation matrix showing r values for each of the variable pairs from the aggregated 
overall data, Ficus microcarpa trees in Lakewood, California, 2010 to 2018. 
______________________________________________________________________________ 
 

Discussion 

We discerned five general categories of relevance to categorize each of the strong relationships 
recorded: (1) Field/GMSV Relationship, (2) GMSV/Satellite Relationship, (3) Consistency Over 
Time, (4) Observation Self-Consistency, and (5) Satellite Self-Consistency. The most significant 
relationships were those between the data collection phases of this research. A significant 
difference was present in the Near Infrared-1 and Near Infrared-2 values between groups of trees 
with and without an observed history of recent root cutting. 

 
GMSV/Satellite Relationship  
Two of the strongly correlating pairs of variables related the GMSV canopy density and health 
ratings to the Worldview-II Red-Edge reflectance data. The 2012 Red-Edge band had a strongly 
negative correlation with both 2012 canopy density ratings (r ~ -0.84) and health ratings (r ~ -
0.75). The correlation between health and Red-Edge reflectance suggests the ability to use Red-
Edge satellite data to predict tree health. This correlation infers that trees with lower Red-Edge 
reflectance are associated with healthier rankings in visual observations.  
For the 2010 and 2012 data, the range of correlations across satellite bands and GMSV Canopy 
Density ratings were generally higher than in 2016 and 2018 (Fig. 4). Reflectance values from 
Near Infrared-1 and Near Infrared-2 correlated with each other (r ~ 0.98), and the canopy density 
ratings correlated with health ratings (r ~ 0.84), but a less-significant correlation existed between 
the GMSV ratings and the spectral reflectance data when the data were aggregated together 
over all four time periods of the study (Table 2).   
 
One explanation for the 2010/2012 vs. 2016/2018 difference in correlation is the time of year 
difference between the satellite data and the available GMSV imagery. GMSV images from 
2010/2012 were taken in March and April, the 2016 GMSV images were taken in April and May, 

Red Red Edge NIR-1 NIR-2
Canopy Density

GMSV
Health GMSV SPAD

Red 1.00 0.48 0.58 0.54 0.09 0.08 0.26
Red Edge 1.00 0.18 0.15 0.08 0.11 0.32

NIR-1 1.00 0.98 0.41 0.35 0.00
NIR-2 1.00 0.38 0.33 0.00

Canopy Density 
GMSV

1.00 0.86 0.01

Health GMSV 1.00 0.02
SPAD 1.00
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and the 2018 GMSV images were taken between January and April. Although Ficus microcarpa is 
an evergreen species, its color and reflectance change throughout the year. The Worldview-II 
spectral imagery was collected in the month of April for 2010, 2012, and 2018, and in the month 
of May for 2016. The mismatch of the time of year between the spectral data and the GMSV data 
(late May spectral paired with March/April GMSV in 2016 and April spectral paired with Jan/Feb 
GMSV in 2018) could be the reason for the much lower correlation in the latter two study years. 
This explanation is plausible because the 2010/2012 data are from similar times of year, albeit 
separated by one full year. During the 2010/2012 period, the GMSV was collected in March and 
April of 2011. 
 
The 2010/2012 data was not more precise than the 2016/2018 data. Rather, image resolution 
and quality improved over the eight-year study period. It is possible the observed discrepancy 
between 2010/2012 correlations and 2016/2018 correlations indicates that the correlation 
observed in the 2010 and 2012 data is spurious, resulting from a relatively small number of data 
points (n=25 for each period).  
 
SPAD/Satellite Relationship 
 
The SPAD data did not significantly correlate with the Near Infrared-1 or Near Infrared-2 band 
values for 2018. The NIR light transmission of 940 nm used by the SPAD meter for chlorophyll 
assessments is within the Worldview-II Near Infrared-2 band (895 nm to 950 nm) (Uddling et al. 
2007). An unknown confounding variable might have caused a difference between the infrared 
light transmitted to the SPAD meter and the infrared light that reached the satellite. It is possible 
that some of the leaves sampled with the SPAD meter had NIR transmittance values that were 
not representative of the majority of leaves within the tree, causing the chlorophyll values of the 
leaves not to correlate with the pixel values from the satellite.  
 
In the Red band, the SPAD measurements did correlate with the values for 2018 (r ~ -0.73).  The 
SPAD meter measures the Red transmittance of light at 650 nm in its chlorophyll measurements, 
which is within the Worldview-II Red reflectance range of 630-690 nm (Uddling 2007). It is 
possible the interference between satellites and our field measurement only affected the NIR 
wavelengths. Further research could test correlations for street trees between SPAD 
measurements and spectral reflectance captured by drones as well as satellites to see if an 
intermediate observation system is more highly correlated. 
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Root Pruning 
 
A significant difference existed between the health and canopy density ratings for the group of 
trees that had evidence of root pruning and the group that did not (p < 0.07 and p < 0.08). Also, 
the differences between Near Infrared-1 and Near Infrared-2 reflectance were significant 
between the two groups of trees (p < 0.06 and p < 0.05). However, the differences among SPAD 
readings, Red reflectance, and Red-Edge reflectance were not significant (p < 0.42, p < 0.35, and 
p < 0.25). Near-Infrared bands measure a different physiological response than a reduction in 
chlorophyll content of leaves in the affected trees, the high reflectance is primarily due to the 
internal scattering within the leaf from cell structure. Unfortunately, our research is unable to 
provide a further explanation for this significant difference. 
 
Field/GMSV Relationship  
 
A strong correlation was present between the health and canopy density ratings recorded in the 
field and those recorded based on the GMSV data (r > 0.82). The correlation between field and 
GMSV health ratings from January-April 2018 had the strongest correlation (r ~ 0.91). The field 
ratings had stronger correlations to the 2018 GMSV data than other years’ GMSV data because 
the condition of the trees changed over time, and the 2018 GMSV imagery was closest in time to 
the field observations. The relationship between field ratings and GMSV ratings shows 
consistency between the researchers’ subjective assessments of the health and canopy density 
ratings. 
 
Satellite Self-Consistency 
 
Adjacent bands of reflected light collected at the same time had the strongest correlations. This 
pattern was seen at both the segmented level and the aggregated level. The strong correlation 
between adjacent reflectance bands demonstrated self-consistency. Because each band 
reflected the average value of reflected light within a given band, it might be expected that 
wavelengths near the division lines between bands could influence bands on either side of the 
line they straddle. This fact is an expected consequence of choosing defined bands for 
measurement on a continuous spectrum: wherever a dividing line is set, wavelengths will be on 
either side of it. 

 
Consistency Over Time 
 
Six sets of GMSV health and canopy density ratings had strong correlations between different 
years, showing consistency among the study trees over time. The curb replacement occurred at 
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the same place and time for Trees 1 through 44 and did not occur for Trees 45 through 51, 
inferring that without any externalities like pruning, the trees tended to correlate in how their 
condition rating changed over time. Observed deviations from inter-period correlation might 
have been related to the amount of root pruning that resulted from the curb replacement. No 
other differences in externalities were observed on-site or in the historical GMSV images. 
 
Observation Self-Consistency 
 
Within each given set of GMSV condition rating assessments in 2010, 2012, 2016, and 2018 the 
canopy density and health ratings had high correlations (r > 0.88). Authors Komen and Hodel 
subjectively rated both variables for all trees in each of the study periods. These variables likely 
correlate strongly because canopy density is an empirical attribute that is used to determine the 
health rating of a tree when making visual assessments. A tree with a sparser canopy tends to be 
assigned a lower health rating, and a tree with a denser canopy tends to be assigned a higher 
health rating. Differences between canopy density and health can be accounted for by trees that 
had significantly died back in the past but were vigorously resprouting at the time of observation; 
their overall canopy densities were low at the time of observation, but their health ratings had 
increased because the growth that was present was healthy. 
 

Conclusions 
 
Strong correlations existed between health and canopy density measurements in the field and 
canopy density and health measurements from GMSV, which indicates a potential to use GMSV 
imagery to update visual tree health rankings in city inventories in lieu of sending arborists into 
the field. GMSV health ratings were strongly negatively correlated with Red-Edge reflectance 
data from the Worldview-II satellite, indicating a potential to use satellite reflectance values to 
observe declining health conditions for individual street trees. This result was inconsistent across 
all four years in this study, which could be due to changes in the resolution and quality of the 
Worldview-II satellite between 2012 and 2016, atmospheric interference or other unknown 
variables. Satellite reflectance values in the NIR can capture change in tree health that are not 
visible to the naked eye and may be considered in assessments of tree health to predict tree 
health decline.  Future research should include a larger sample size of trees and additional years 
of satellite imagery to determine if the negative correlation between GMSV ratings and Red-Edge 
reflectance data can be replicated across broader scales and at other study sites. At the 
conclusion of this study, all trees were removed due to bad health. Future studies could include 
trees that are in good health to test if the correlations observed in this study apply to trees in 
good health. Other topics of future research could include exploring the relationship between a 
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history of root cutting and satellite spectral measurements of urban street trees to determine if 
negative health effects from root cutting can be observed via satellite. 
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