

Rapid changes in root gene expression in response to nitrogen availability: Linking molecular biology, plant physiology, and soil biogeochemical processes

Timothy M Bowles^{1,2}, Philipp Raab¹, and Louise E Jackson¹

(1) Dept of Land, Air and Water Resources (2) Graduate Group in Ecology; University of California Davis, Davis, CA

I. Why link root gene expression to soil N processes?

- Plants have highly plastic physiological and morphological belowground responses to cope with patchy resources (Hodge et al. 2004, Yang et al. 2008).
- Short-term physiological responses to pulses of N availability include dynamic regulation of root N uptake and assimilation systems at the molecular level (Jackson et al. 2008).
- These changes in root physiology can be monitored through changes in expression levels of specific genes, using molecular biology techniques (Ruzicka et al. 2010/12).
- In systems with rapid soil N cycling, N availability can be difficult to measure or predict. Gene expression can serve as a sensitive "plant's eye view" of the local soil environment and a lens into N availability.

Plants take up soil NH₄⁺ and NO₂⁻ through transporters located in root cortical and epidermal cells. NO₃ is subsequently reduced to NH₄⁺. Resulting NH₄⁺ and soil NH₄⁺ are incorporated into amino acids via the GS-GOGAT enzymes. These enzymes are the funnel through which soil N is incorporated into the plant N pool. Genes encoding for these enzymes (GS1, GS2, NADH-GOGAT, and Fd-GOGAT) are transcriptionally regulated. Gene expression can be measured by realtime quantitative PCR (RT-qPCR).

Soil N uptake and assimilation in plant roots

II. Objectives

- Determine the short-term molecular physiological response of tomato roots to a pulse of N.
- Measure changes in soil and plant N pools associated with this pulse of N.
- Use root gene expression as an indicator of hard-to-measure soil N dynamics.

III. Experimental design

- The experiment was conducted on a commercial organic farm during summer 2010 near Esparto, CA.
- Tomatoes (Solanum lycopersicum cv. 76R) were transplanted and grown for eight weeks.
- In order to simulate a pulse of N, three levels of NH₄NO₃ were injected into a discrete volume of soil in between plants (see below right):
- water
- low-N (9.6 kg $NH_4NO_3-N ha^{-1}$) high-N (62.4 kg NH_4NO_3-N ha⁻¹)
- 48, 96 and 120 hours following these injections, soil and roots were sampled from the patch as well as corresponding shoots.
- Evaluations included:

hours post-injection:	48	96	120
root gene expression	•	•	•
soil inorganic N	•	•	•
shoot biomass and N		•	•
root biomass and N	•		•
nitrification potential and potentially mineralizable N	•		•
microbial biomass			•

Field characteristics:

- low ambient inorganic N (2.4 kg-N ha⁻¹) and high microbial biomass (high C:N inputs – barley cover crop)
- Zamora loam, 0.8 %C, 0.1 %N

n diameter and 8 cm inject NH₄NO₃ solution at precise locations on a template, centered ring was used).

Treatments were designed to create a N patch 10 cm deep by using a syringe to between plants (no actual

IV. How do roots respond to a soil N pulse: gradual or rapid, many genes or few, sustained or ephemeral?

qRT-PCR analysis of key N uptake and assimilation genes in roots (see table for gene identification). Relative quantity was calculated using the $\Delta\Delta$ CT method with actin (LeACT) as the reference control and the water control group normalized to one. For a given gene, means +/- standard error (n = 5) are shown, with different letters indicating significant differences among treatments at P < 0.05 (ANCOVA with soil gravimetric water content as covariate and Tukey HSD test for mean separation)

soil inorganic nitrogen after a soil N pulse

hours post N injection into soil

Rapid changes in soil inorganic N concentrations in three treatment groups at three times following NH₄NO₃ injection into soil. Shown are means +/standard error (n = 5), with different letters indicating significant differences at P < 0.05 within each treatment/time group (one-way ANOVA with Tukey HSD test for mean separation).

tomato gene	gene name	function
AMT1.1	ammonium transporter 1	NH ₄ ⁺ transporter: induced by N deficiency, repressed by N availability
AMT2	ammonium transporter 2	NH ₄ ⁺ transporter: induced by NH ₄ ⁺ availability
NRT2.1	nitrate transporter	NO ₃ ⁻ transporter: induced by NO ₃ ⁻ availability
Nii	nitrite reductase	NO ₃ ⁻ assimilation: converts NO ₂ ⁻ into NH ₄ ⁺
GTS1 (GS1)	glutamine synthetase	N assimilation, amino acid synthesis (cytosolic)
GS (GS2)	glutamine synthetase	N assimilation, amino acid synthesis (plastids and chloroplasts)
GLT1 (NADH- GOGAT)	glutamate synthase	amino acid synthesis, NADH-dependent (primarily in roots)
GLS2.1 (Fd- GOGAT)	glutamate synthase	amino acid synthesis, ferrodoxin-dependent (primarily in leaves)
GDH1	glutamate dehydrogenase	amino acid synthesis
ASN1	asparagine synthase	amino acid synthesis

soil microbial biomass and dissolved organic matter 120 hours after a soil N pulse

V. Implications for N cycling research

- Plant roots responded rapidly but transiently to a N pulse with a suite of changes in expression of N metabolism genes. Changes likely occur even faster than the time scale we measured.
- The low N treatment did not cause a detectable increase in soil inorganic N or other measures of N availability, but root N assimilation genes (especially GTS1 and GS) were significantly upregulated relative to the water control.
 - GTS1 and GS are both glutamine synthetases, part of the GS-GOGAT pathway (ubiquitous in the plant domain) responsible for incorporating soil N into the plant N pool.
 - Expression of these genes in roots may be a highly sensitive physiological indicator of soil N availability.

VI. Agroecological relevance

- Most agronomic tests for N availability measure soil or plant NO₃⁻ pools. In systems that rely on organic matter transformations to supply plant N, NO₃- pools may be low despite rapid N dynamics.
- We need better information for nutrient management to deliver multiple ecosystem services: crop productivity, N retention, and C sequestration. With further research, gene expression analysis may become a robust indicator of plant N availability.

VII. Acknowledgments

This research was supported by a USDA OREI grant and an NSF Graduate Fellowship. The authors would like to thank Felipe Barrios-Masias for project support and especially Jim and Deborah Durst of Durst Organic Growers for their continued support of field research.