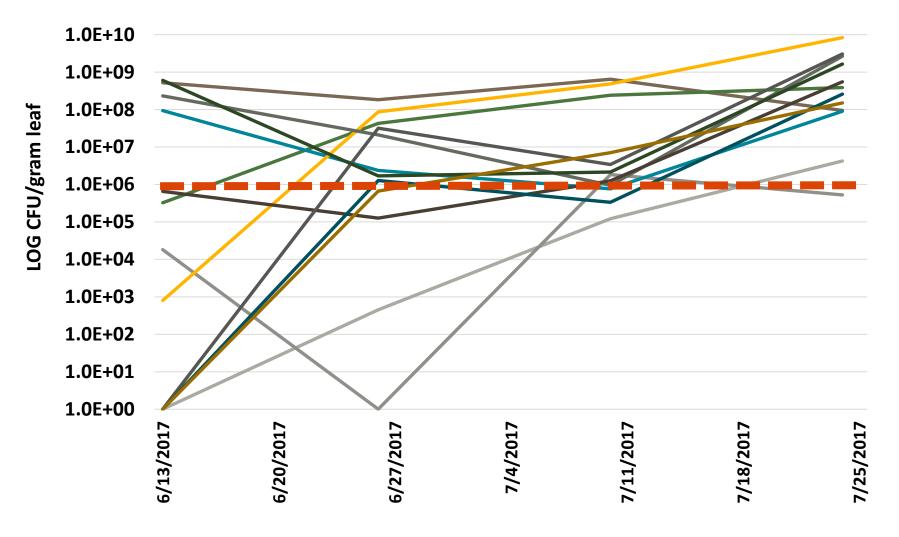
Jeremiah K.S. Dung and Jeness C. Scott Oregon State University | Department of Botany & Plant Pathology Central Oregon Agricultural Research and Extension Center, Madras, OR

BACTERIOPHAGES FOR BACTERIAL BLIGHT MANAGEMENT: PROSPECTS AND CHALLENGES

Annual Carrot Research Symposium, March 15, 2021

Bacterial Blight in Carrot Production

- Caused by the Xanthomonas hortorum pv. carotae
- Particularly important in carrotproducing regions with high rainfall/overhead irrigation
- For root crops, bacterial blight can:
 - Reduce yield
 - Hinder harvest
 - Affect quality
- Can survive ~1 year in field debris


Seedborne

Impacts of *Xanthomonas* on Carrot Seed Production

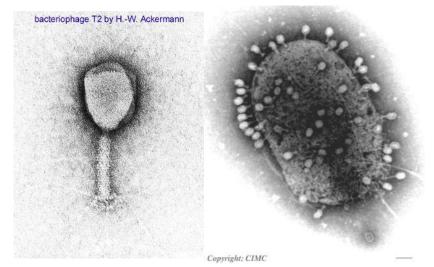
- For seed companies:
 - Healthy, disease-free seed is a goal
 - Expensive and difficult hot-water treatments
 - Rejection of seed in export markets
- For seed growers:
 - Costs associated with control
 - Reduced seed yield due to blighted umbels
 - Reduced seed germination
 - Sustainability of production

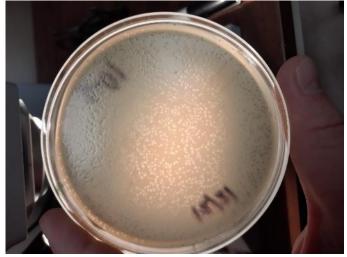
Epiphytic Populations of *Xanthomonas* on Carrots

Integrated Management of Bacterial Blight in Carrot Seed Crops

Cultural practices

- Pathogen-free seed
- Limit overhead irrigation
 - Drip irrigation
- Bury/remove/destroy crop residue
- Crop rotation
 - 2-3 years

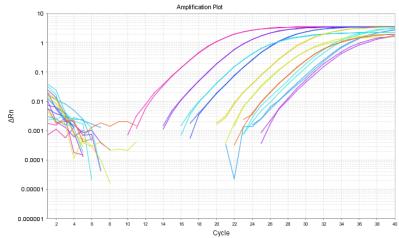

<u>Chemical</u>


 Copper-based bactericides

Bacteriophage for *Xanthomonas* Management in Carrot and Carrot Seed Crops

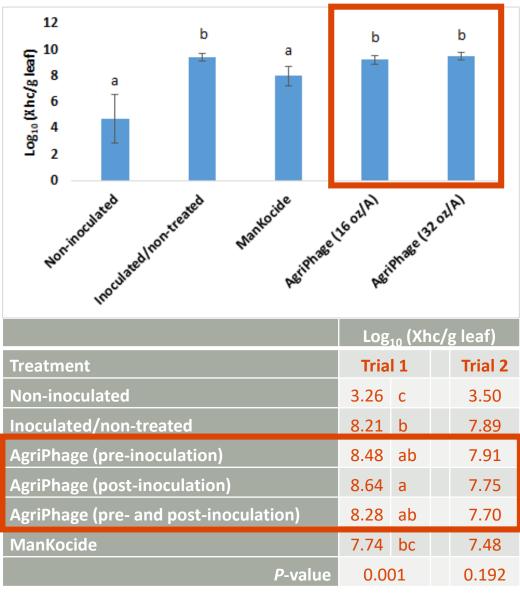
- Bacteriophage (AKA phage) are viruses that infect and replicate in bacteria
 - Lytic phage lyse and kill host cells to release progeny
- The host range of most phages is relatively narrow
 - Typically limited to only a single bacterial genus, species or even strains within a species

Bacteriophages for *Xanthomonas* Management in Carrot and Carrot Seed Crops


- AgriPhage[™] (OmniLytics and Certis) is a phage-based biological control product
 - Bacterial speck (*Pseudomonas syringae* pv. *tomato*)
 - Bacterial spot (*Xanthomonas campestris* pv. *vesicatoria*)
- Labeled for organic production
 - Residue exempt
 - 4 hr. REI
- The objective of this project was to evaluate AgriPhage for reducing epiphytic Xhc in carrot seedlings

Greenhouse Rate Trial

- Greenhouse flats sown to 'Napoli'
- Flats inoculated three times
 - 2 x 10⁶ CFU/ml
- Treated 5 days later
 - AgriPhage 16 oz/A or 32 oz/A
 - ManKocide (2.5 lb/A)
 - Non-inoculated/non-treated (negative control)
 - Inoculated/non-treated (positive control)
- Foliage harvested after 7 d and assessed for *Xhc* populations using viability qPCR


Growth Chamber Timing Trial

- 4" pots sown to 'Napoli'
 - Polypropylene sleeves
- Flats inoculated once
 - 1 x 10⁸ CFU/ml
- 6 treatments:
 - AgriPhage (16 oz/A)
 - 2 hr pre-inoculation
 - 3 d post-inoculation
 - Both timings
 - ManKocide 3 d postinoculation
 - Negative and positive controls
- Foliage harvested after 7 d and assessed for *Xhc* populations using viability qPCR

Results

• Greenhouse Trial: AgriPhage at either rate was not significantly different than the inoculated/non-treated positive control

• Growth Chamber Trials: AgriPhage did not significantly decrease *Xhc* populations relative to the positive control at any of the three application timings

Conclusions, Prospects, and Challenges

- AgriPhage did not decrease Xhc populations relative to the non-treated control in any of the trials regardless of rate or timing of application
 - Multiple *in vitro* trials demonstrated infectivity of *Xhc* by AgriPhage
- The phyllosphere presents a relatively inhospitable environment
 - Can adjuvants be used to improve phage dispersal, adhesion, survival and/or adsorption to bacterial hosts in crop canopies?
 - Non-target effects on other microbial epiphytes?
- Phage-based seed treatments?

Acknowledgements

- Shaelynn Downing (Undergraduate Technician)
- Scott Ockey (Certis)
- Ryan Benson and Tyler Homer (OmniLytics)

Funding and In-Kind Support:

- California Fresh Carrot Advisory Board
- United States Department of Agriculture Specialty Crops Research Initiative (grant no. 2020-51181-32154)
- Certis
- OmniLytics

- Question 1: Bacteriophages are _____ that infect bacteria.
 - Fungi
 - Bacteria
 - Nematodes
 - Viruses
- Question 2: A crop rotation of _____ is recommended to reduce bacterial blight.
 - 6 months
 - 1 year
 - 2-3 years
 - 4 or more years

Carrot cavity spot diagnostics serving CA carrot growers

Isolation and characterization of carrot cavity spot pathogens at CSU Bakersfield

Isolde Francis March 2021

Carrot Cavity Spot

important disease of carrots worldwide

small brown sunken circular or elliptical lesions on the tubers (cellulolytic activity leading to necrosis)

several Pythium species can cause this disease

P. violae

P. sulcatum

P. ultimum

belonging to the oomycetes or water molds

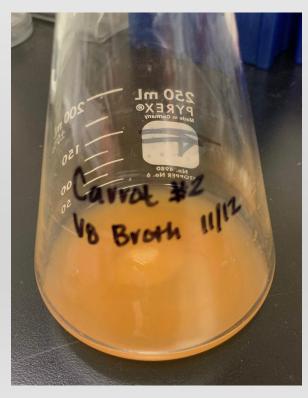
fungal-like organisms produce spores that can swim towards their host

affected tubers are rejected for the fresh as well as processing market

often overlooked/unnoticed

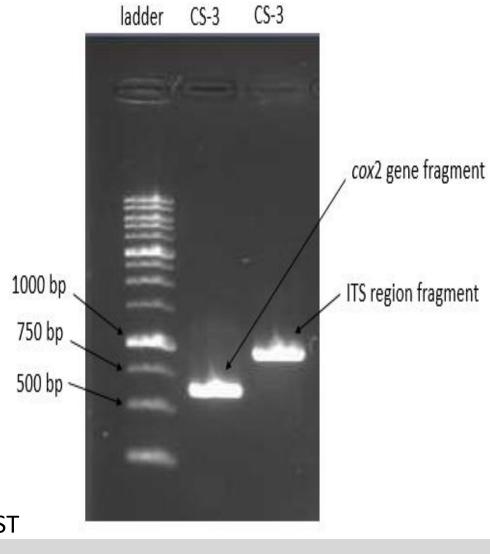
managed through the use of metalaxyl/mefenoxam resistance becomes a problem increased degradation in the soil not used in organic farming

Isolation of oomycete pathogens from cavity spot lesions

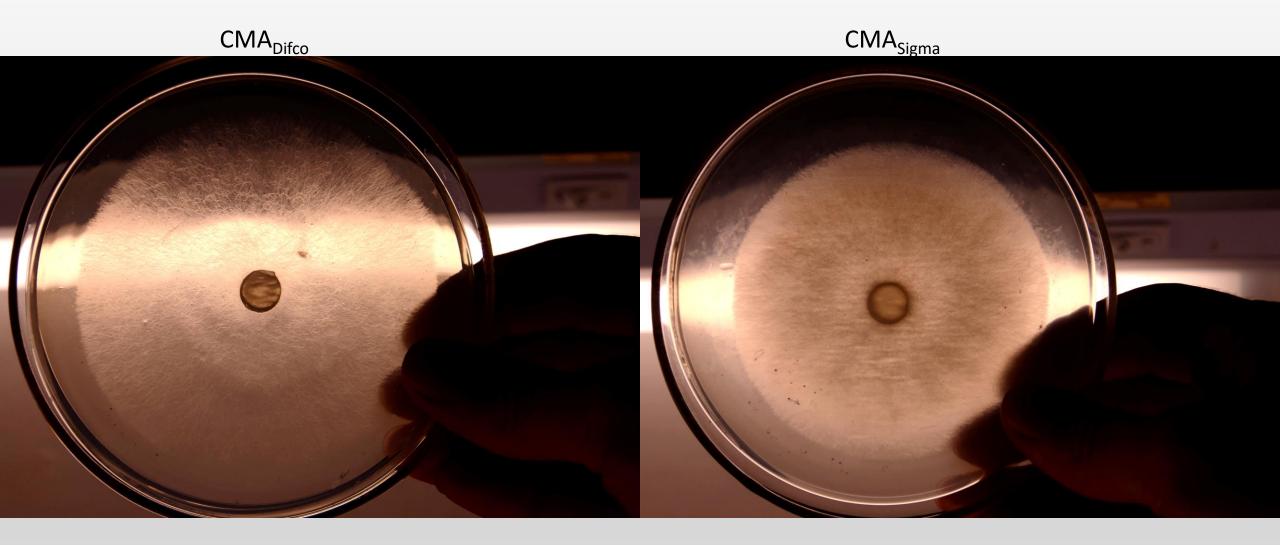

- carrots were washed well in tap water
- lesions were aseptically removed and cut into 2-4 pieces
- lesion tissue was pressed into PARP agar
- incubation in the dark at room temperature (±23°C)
- part of the hyphae (outer edge) was transferred to fresh PARP and later to CMA

Growing isolates for genomic DNA extraction

- agar plug with active mycelium was transferred to 15 ml V8 broth
- incubation for 4 days in the dark at room temperature (±23°C)
- genomic DNA extraction with the DNeasy Plant Mini Kit (Qiagen)
- measurement of DNA concentration on Nanodrop



Molecular identification of oomycete strains


- amplification of two genetic fingerprint regions
 - cox2 gene (Choi et al., 2015)
 → fragment of 628 bp
 - ITS region (Schroeder *et al.*, 2006)
 → fragment of ± 1000 bp
- verification on agarose gel
- purification
- send for sequencing (Laragen, Inc., Culver City, CA)
- sequence analysis and identification through online database BLAST

Choi, Y., Beakers, G., Glocking, S., Kruse, J., Nam, B., Nigrelli, L., Ploch, H., Shivas, R.G., Telle, S., Voglmayr, H., and Thines, M. (2015). Towards a universal barcode of oomycetes - a comparison of the cox1 and cox2 loci. Molecular Ecology Resources 15 (6): 1275-1288.

Schroeder, K.L., Okubara, P.A., Tambong, J.T., Lévesque, C.A., and Paulitz, T.C. (2006). Identification and quantification of pathogenic *Pythium* spp. from soils of eastern Washington using real-time polymerase chain reaction. *Phytopathology* 96:637-647.

Amplification of genetic fingerprint regions directly on the hyphae

CMA_{Difco} is best used for hyphal tip transfer because individual hyphae are better visible

CMA_{Sigma} enables more lush growth preferred for direct amplification


Original name	Isolated from	Identified as	Working name
Cavity spot isolate 1 (CS-1)	Conventional field	Pythium violae	Pv-2
Cavity spot isolate 2 (CS-2)	Organic field	Pythium spinosum	Ps
Cavity spot isolate 3 (CS-3)	Conventional	Pythium violae	Pv-1
Pythium violae WSU	received from Dr. L. du Toit, originally isolated from CA	Pythium violae	Pv-C

used as a control for our diagnostics

ready to accept up to 100 samples for local growers for identification (funded by CFCAB) contact me at <u>ifrancis@csub.edu</u>

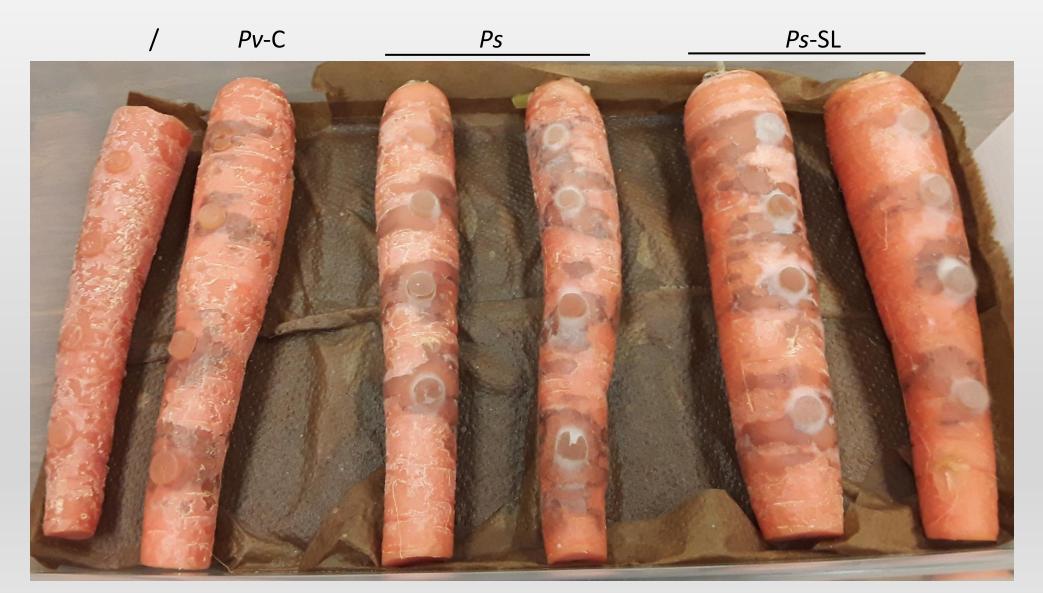
Amplification with *P. violae* specific primers

primers designed within the ITS region that should be specific to P. violae (Klemsdal et al., 2008)

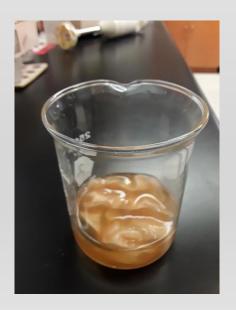
the primer positions in the ITS region (underlined)

CS-3-Pv-1 CS-1-Pv-2 CS-PW-Pv-C CS-2-Ps Ps-SL	TGTGTGTGCACAGCAATGTGTGTGGTGCGGGACTGGCTGA TGTGTGTGCACAGCAATGTGTGTGGTGCGGGGACTGGCTGA TGTGCGTGCACAGCAATGTGTGTGTGCGGGGACTGGCTGA TATGTGCCTACTGCACTGCTGACTTTGCATTCATTTGTATGGTCTTGGCGGAGTGGCGGG TATGTGCCTACTGCACTGC
CS-3-Pv-1	GTGCAGATGTGAAGTGTCTCGCTGGCCTACTTCTCTCTTTGGGGAGTGGACAGGTATCGA
CS-1-Pv-2 CS-PW-Pv-C	GTGCAGATGTGAAGTGTCTCGCTGGCCTACTTCTCTCTTTGGGGAGTGGACAGGTATCGA GTGCAGATGTGAAGTGTCTCGCTGGCCTACTTCTCTCTTTGGGGAGTGGACAGGTATCGA GTGCAGATGTGAAGTGTCTCGCTGGCCTGCTTCTCTCTTTGGGGAGTGGACAGGTATCGA
CS-2-Ps Ps-SL	TTGCAGATGTGAAGTGTCTCGCTATGGTTGGCATTTGTAATGAATGCACAGCTTGCGA TTGCAGATGTGAAGTGTCTCGCTATGGTTGGCATTTGTAATGAATGCACAGCTTGCGA ***********************************

Klemsdal, S.S., Herrero, M.L., Wanner, L.A., Lund, G., and Hermansen, A. (2008). PCR based identification of *Pythium* spp. causing cavity spot in carrots and sensitive detection in soil samples. *Plant Pathology* 57:877-886.


Carrot disk assay

CMA disks with active growth of *Pythium* were placed on mature freshly harvested (48h) carrots and incubated in a moist environment at 24°C in the dark pictures taken at 5 dpi



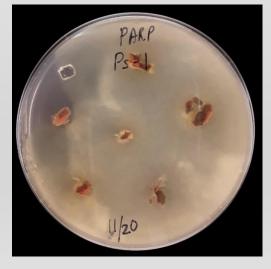
Repeat carrot disk assay

with *P. spinosum* strain received from Dr. Cassandra Swett (UC Davis) and isolated from a cavity spot lesion from organically grown carrots in the Riverside area

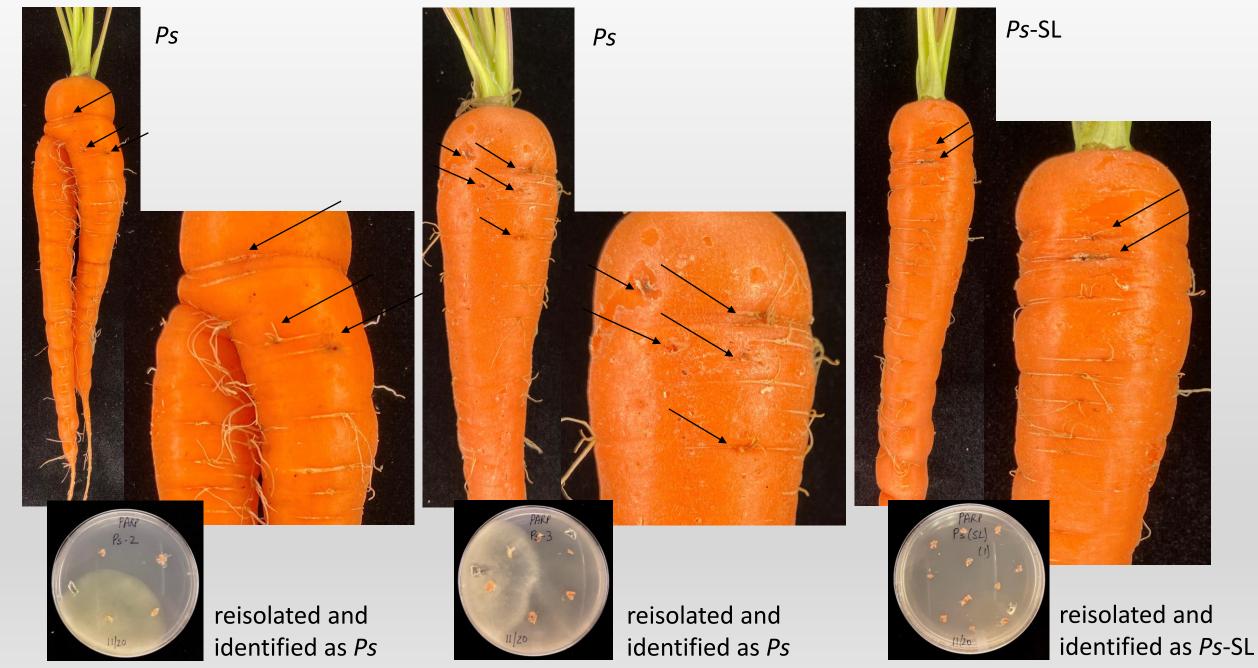
- Pythium grown in V8 broth for 4 days
- mixed with hand mixer
- added to sand : peat moss mixture (50:50, autoclaved twice for 30 min)
- transferred to tree seedling pots (cleaned with ethanol and dried)
- 4 carrot seeds per pot (thinned to 1 seedling per pot)
- under light (16h photoperiod) at 23°C

reinoculated at 5.5 weeks

reinoculated at 12.5 weeks


harvested at 16 weeks

contamination with Fusarium


but the different *P. violae* strains were reisolated

from the lesions as well

P. violae (*Pv*-C, *Pv*-1, *Pv*-2)

Future directions for our research

The bacterial genus *Streptomyces* is renowned for the production of antimicrobial compounds

153 *Streptomyces* isolates were isolates from diverse soils in the Bakersfield area

four local *Streptomyces* isolates *strongly* inhibited of *P. violae* and other oomycetes some of them also inhibited *Fusarium*, *Sclerotium rolfsii*, and/or *Sclerotinia sclerotiorum*

Acknowledgements

Misbah Chaudhry Graduate student (M.Sc.) at CSUB

Dr. Jaspreet Sidhu Joe Nunez UCCE Kern County

Dr. Lindsey du Toit (Washington State University)

Dr. Cassandra Swett (University of California, Davis)

Student Research Scholars program

Graduate Student - Faculty Collaborative Research Program

Improved molecular diagnostics to detect and quantify root-knot nematodes

Amanda Hodson, Ph.D. Assistant Professional Researcher University of California Davis <u>akhodson@ucdavis.edu</u>

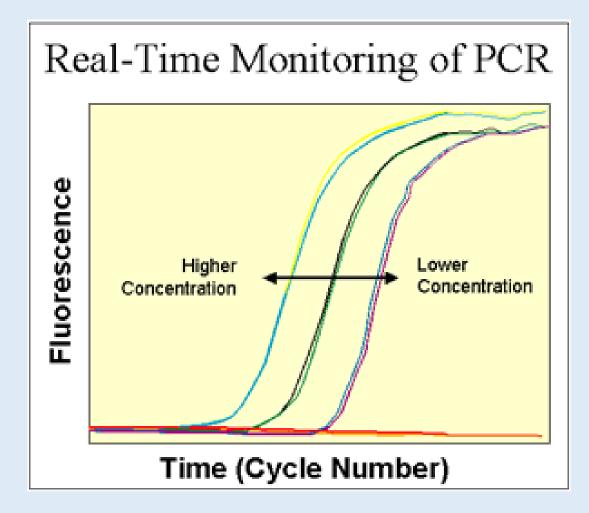
Integrated pest management

Aboveground

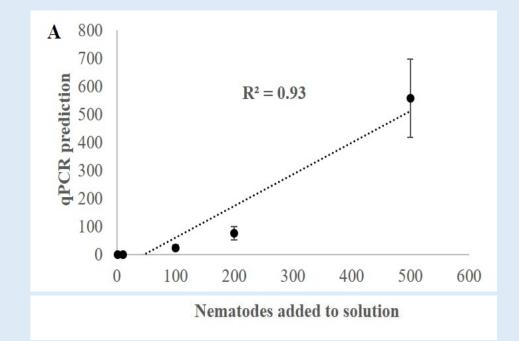
- Identification
- Monitoring
- Learn the Pest Biology
- Establish Action Threshold
- Management strategy

Belowground

- Difficult species differentiation
- Spatial heterogeneity
- Biological regulators unknown
- Damage thresholds unclear
- Management tradeoffs

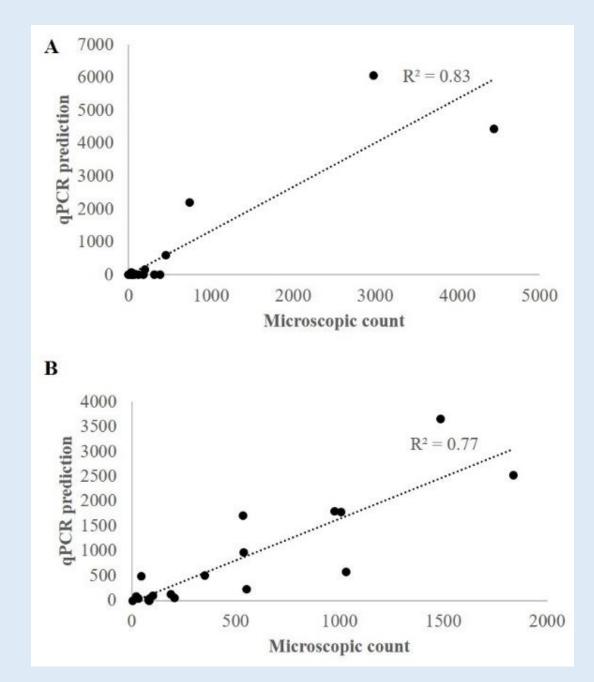

More detailed ecological knowledge needed for good integrated nematode pest management.

- In carrots, economic threshold is < 1 infective juvenile of root knot nematode.
- Current Testing:
 - Expensive
 - Not representative
 - Slow
 - Subjective
 - Difficult


Real time PCR (qPCR)

- Simultaneously quantifies and identifies nematodes.
- Standard curve of known densities.
- Compare intensity of amplified signal to standard curve.
- Rapid and inexpensive pest identification and quantification.

Laboratory experiments


- Known quantities of nematodes in tubes
- Relationship between the numbers of nematodes inoculated into solution and resulting qPCR Ct values for *M. incognita*

Field validation: Nematode counts 100 ml soil⁻¹

Microscope count	qPCR prediction	Microscope count	qPCR prediction	
50	44.7	0	2.9	
36	6.7	0	4.7	
40	59	8	1.8	
20	0.2	12	11.4	
10	7.6	6	4.1	
20	0.2	16	29.8	
10	7.6	4	0.2	JA.
0	0	24	35.4	M
0	3	34	6	
0	1.4	14	17.9	
449.2	368.1	18	92.1	
24	42.4	4	7.8	
8	0.1	8	3.5	
8	33.9	6	0.1	

 Relationship between numbers of root-knot nematodes in the *M. incognita* species group counted under the microscope and quantification by qPCR from A) a carrot research station trial B) a carrot grower field

Could molecular methods be less expensive?

- Estimated analysis costs/sample for my lab (including labor and chemicals)
 - \$30.10 microscope
 - \$33.70 molecular

Depending on the lab and labor costs, it could save time and money, especially if lacking an experienced nematologist.

Diagnostic Lab \$Cost/sample

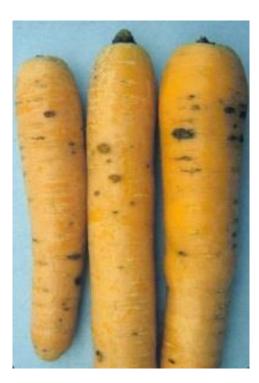
1	33.00
2	52.50
3	125.00
4	55.00

Thank you!

Questions?

- Amanda Hodson
- <u>akhodson@ucdavis.edu</u>
- www.hodsonlab.org

Screening carrots for resistance to cavity spot-2020


MARY RUTH MCDONALD AND

PHIL SIMON

University of Guelph, Guelph ,Ontario, Canada

USDA-ARS, University of Wisconsin, Madison, WI

- Trials in Ontario, Canada
- High organic matter soil
- Cavity spot occurs regularly at this site
- Seeded in May, harvested in October

Several Pythium species cause cavity spot

- California
 - P. violae
 - P. sulcatum
 - P. ultimum
 - P. irregulare
 - P. dissocticum

Ontario, Canada

P. violae

P. sulcatum

- P. ultimum
- P. irregulare
- P. sylvaticum
- P. intermedium

Pythium species from cavity spot at the Muck Crops Research Station

2012: *P. sulcatum* molecular methods
2018: 85% P. sulcatum
2020: Almost all *P. sulcatum*- isolated and cultures confirmed by molecular methods

Isolations and identification continuing

Objectives

To screen carrots from the USDA-ARS breeding program for resistance to cavity spot

Compare these carrots to susceptible cv. 'Atomic Red' And resistant cv. Purple Haze Cello carrots: Maverick, Cellobunch, Envy Cut and peel: UpperCut, HoneySnax

Long term: Contribute to the USDA breeding program to improve genetic stocks for carrot production in California Also look at susceptibility to leaf blights, forking (Pythium root dieback) and to rate bolting

Methods- 2013- 2020

Seeding

- 60 carrot lines, including cultivars
- Direct seeded ~ 70 seeds/m, with a push V-belt seeder on to raised beds
 - early June
- Soil 60-78% organic matter, pH 5.8- 6.5
- 4 reps/ line, each rep was 5m (2013) or
 6 m = 20 ft (2014 on) in length
- No soil fungicides were applied. Standard herbicides and insecticides were applied to the plots.

Cercospora Leaf Blight

Other disease of carrots

Forking may be the result of Pythium root dieback and other factors

Alternaria Leaf Blight

Methods

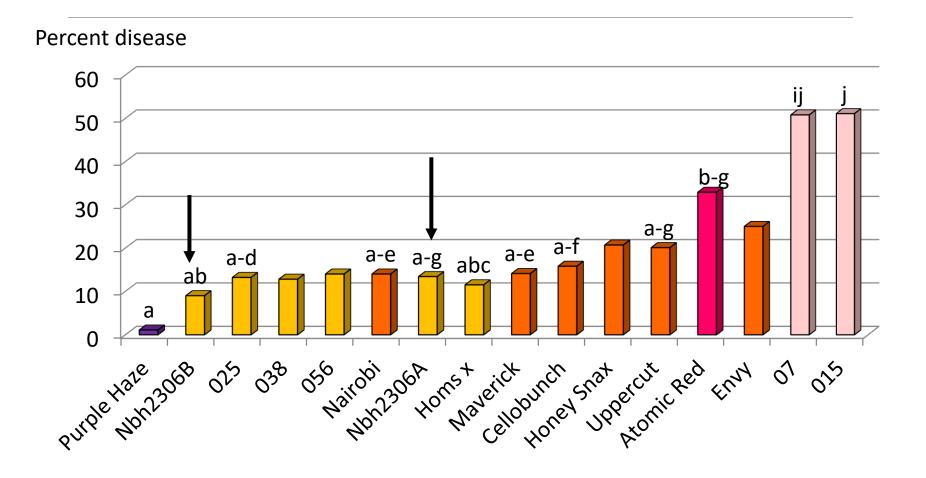
Harvest

- 50 carrots/rep harvested late Oct. each year and placed in cold storage until assessment.
- A separate sample is assessed for forking

Assessment

 Carrots were washed and assessed for cavity spot incidence (%) and severity based on the length of the largest lesion per carrot

```
(1= <1 mm, 2= 1-2 mm, 3= 2.1- 5 mm, 4= 5-10 mm, 5= >10 mm)
```

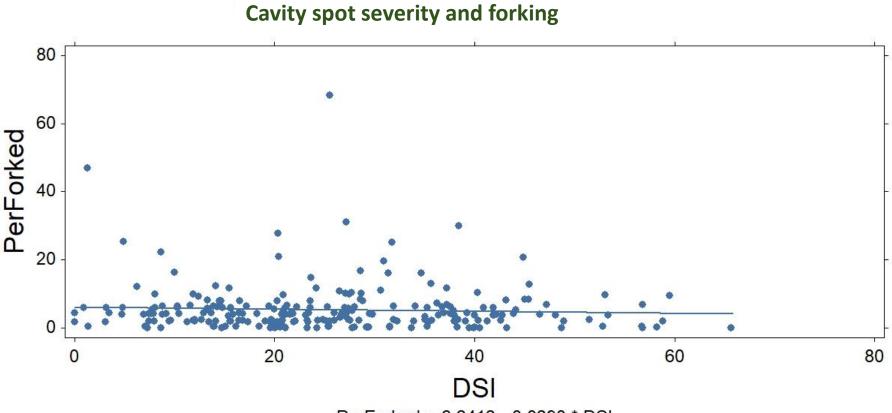

- A disease severity index (DSI) was calculated
- Carrots were also assessed for carrot leaf blights (Alternaria and Cercospora), forking and bolting

Notes on 2020 trial

- Good stand overall
- Relatively high cavity spot:
 - incidence **90%,**
 - severity 51%
- Average rainfall except above average (5.5 in) in August (mid-season)
- Carrot leaf blights moderate to high (max 3.9 on a 0-5 scale)
- •Carrot forking 0 –20%

Severity of cavity spot on representative carrot lines grown at the Muck Crops Research Station, **2020**

Percent disease ranged from 0.5 to 91, Disease severity from 0.2 to 51


Purple Haze Highly resistant

Nbh2306B 9 severity 24% incidence 4% forking Also nematode resistant

M. JALLER RU. MAN

Pythium root dieback can cause forking of carrots

Is resistance to cavity spot also resistance to forking? NO

PerForked = 6.2412 - 0.0298 * DSI

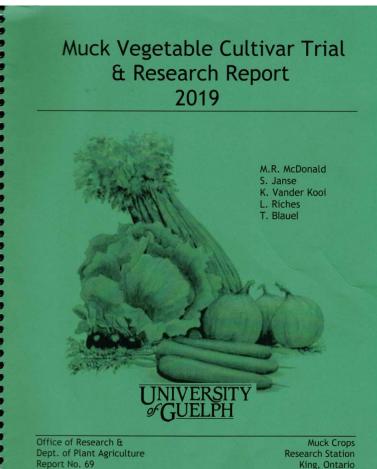
Carrots with low cavity spot 2020

Line	Cavity spot (%)	Severity (0-100)	Leaf blight (0-5)	Forking (%)	Bolting (0-3)
Purple Haze	4.5 a	1 a	0.9	4	1.8
Nbh2306A	24 ab	9 ab	1.0	4	1
Nbh2306B	37 а-е	13 a-d	1.0	9	0
CS025	31	13	1.8	5	0.1
F5367B	31	13	2.0	4	0.1
CS015	90 g	51 j	3	1.5	0.3

Forking ranged from 0- 20%. Bolting ranged from 0 – 3 (over 50% seeders).

Summary

•Moderate to high disease pressure in 2020

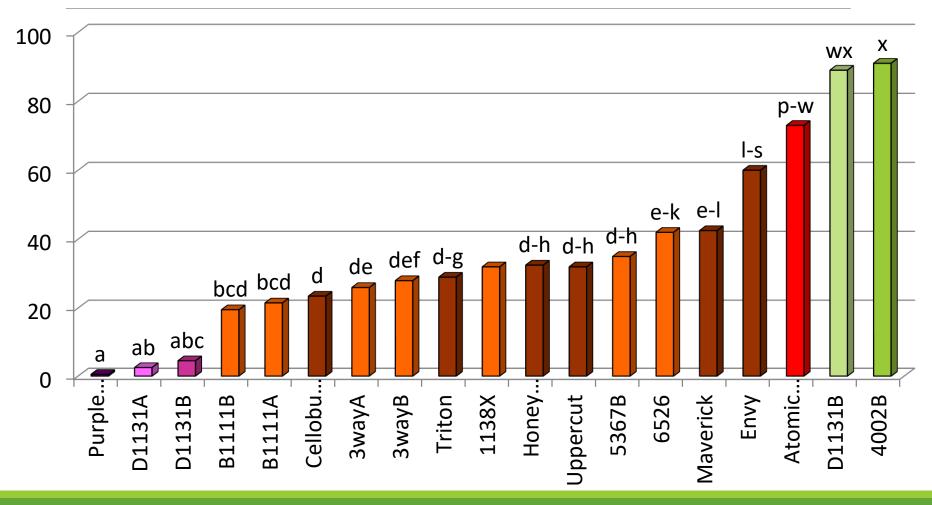

- •*Pythium sulcatum* consistently the main species causing cavity spot
- •Resistance to cavity spot not related to resistance to forking overall, but some lines have low levels of both
- Information contributes to Phil Simon's breeding for cavity spot resistance

Acknowledgements

Funding provided by the California Fresh Carrot Advisory Board

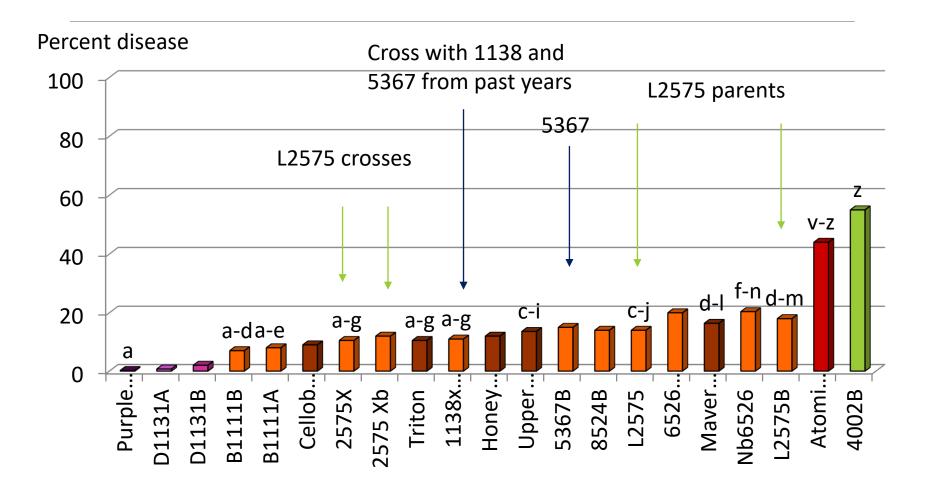
Technical assistance: Kevin Vander Kooi Laura Riches

All research trials are summarized in the Annual Report

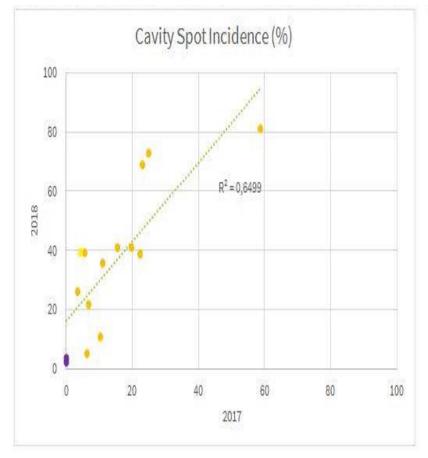

Download at the Muck Station web site:

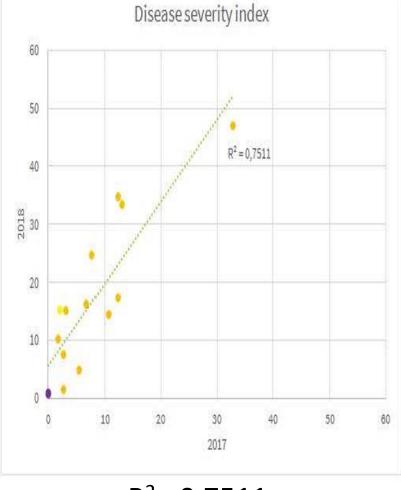
www.uoguelph.ca/muckcrop

Atomic Red 57% incidence and 33% severity


Percent cavity spot on representative carrot lines grown at the Muck Crops Research Station, **2018**

Percent disease


Percent disease ranged from 0.5 to 91, Disease severity from 0.2 to 55


Severity of cavity spot on representative carrot lines grown at the Muck Crops Research Station, **2018**

Percent disease ranged from 0.5 to 91, Disease severity from 0.2 to 55

Reproducibility of cavity spot assessments 2017 and 2018 – small trial with numbered lines

 $R^2 = 0.6499$

 $R^2 = 0.7511$

Carrot Breeding to Develop and Introduce Improved Cultivars for California Production:

Field Research, Combining Genes for Rootknot Nematode and Cavity Spot Resistance

Phil Simon, Jas Sidhu, Phil Roberts, Mary Ruth McDonald, Lindsey du Toit, Irwin Goldman, Industry Cooperators

Scope of USDA Cooperative Carrot Breeding 2020-21

- Field trials
 - In DREC, El Centro; in Kern County (Jas Sidhu et al.)
 - General breeding
 - In Tustin, Riverside (Phil Roberts et al.)
 - Nematode resistance evaluation and selection
 - In Guelph, Canada (Mary Ruth McDonald et al.) and WSU (Lindsey du Toit et al.)
 Cavity spot resistance evaluation and crosses being made
 - Alternaria leaf blight resistance testing in Hancock, WI (Irwin Goldman et al.)
- Selected carrots sent from El Centro to Madison in March for seed production in summertime
- Selected nematode resistant carrots sent from Dr. Roberts program
- Data on cavity spot resistant carrots sent from Drs. McDonald, du Toit, and Sidhu's programs
- Lab evaluation: Molecular markers for nematode resistance; Quality factors carotenes, sugars, flavor

UC DREC trial

- Hybrid trials with Jas Sidhu
- □ 99 C&P, 93 cello hybrids, 90 novel colors
- □ Good performance of nematode resistant inbreds in 2 of the top 15 C&P and 9 of the top 15 cello entries

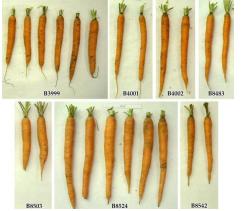
were USDA hybrids with nematode resistant parents

Nematode Field Trials - 2020

In cooperation with Phil Roberts on trial plots established by him

Tustin harvest

- 450 entries
- M. incognita
- Identify new sources of resistance, confirm earlier sources, combine multiple sources
- No field day due to COVID restrictions


Performance of *Mj-1* Nematode Resistance Stocks ("Nb")

- Advances in the level of nematode resistance from 'Brasilia 1252'
 (*Mj-I*). Both *M. javanica & M. incognita*
 - Resistance levels holding up for both nematodes
 - USDA inbreds with resistance used as parents in cello trial and released to seed industry
 - Primarily Br 1252 derivatives but new inbreds also include Homs
 - 'Cape Market' is a new source of resistance being evaluated
 - More cut and peel inbreds with nematode resistance being used in USDA experimental hybrids

Progress in Incorporating Nematode Resistance into California Carrots

Resistant & susceptible 'Brasilia'

Inbreds from orig. Br 1252 cross (L) and cello (R)

Inbred (F4) from crosses w/ C&P

Exp. Hybrids w/ C&P resistant parents

Industry Testing of Nematode Resistant Carrots

- Seed has been released to seed industry for testing and initiating incorporation of resistance in 2014
- Seed companies submitted entries into the field trials
- Strong resistance (score of 0 or 1) for several entries from seed companies

Progress in Combining Nematode Resistance Sources - 2021

	MJ	1091	WR	HM	PD	SFF	NF	СМ
MJ		***	***	***	***	***	***	**
		0-5	1-3	<mark>0-2</mark>	0-5	<mark>0-1.5</mark>	0-3	2
1091				***	**	***	*	
				<mark>0-3</mark>	2-4	0-2	1-4	
WR				***	***	**	*	
				<mark>0-2</mark>	3.5-4	2-3	1-3	
HM					***	***	**	**
					0-2.5	0-2	<mark>0-2</mark>	2-2.5
PD						*	**	*
						1-3	2-3	1.5-3
SFF							***	**
							0-1.5	1.5-2
NF								
Susc.	<mark>***</mark>	***	***	<mark>* * *</mark>	***	<mark>* * *</mark>	<mark>**</mark>	*
Long	<mark>0-1</mark>	0.5-2	1.5-3	<mark>0-1</mark>	0-2	<mark>0-1</mark>	<mark>1-3</mark>	2.5
Susc.	***	***	***	<mark>***</mark>	***	***	**	**
Flavor	<mark>0-1</mark>	0-2	2-3	<mark>0-1.5</mark>	0-1	<mark>0-1</mark>	2-3	1-3.5
Susc.	***			<mark>* * *</mark>	**	<mark>* * *</mark>		**
Other	0-1			<mark>0-1</mark>	2-4	<mark>0-1</mark>		2-3

Yellow highlight - Recent advances

Green highlights – Best candidates for upcoming efforts

Progress in Advancing Cavity Spot Resistant Carrots

- Trials by Mary Ruth McDonald and Lindsey du Toit to identify and advance strong resistance along with horticultural quality for the California market.
 - Resistance in diverse carrots in the breeding program
- Seed production of combined sources of identified resistance sources and search for new sources of resistance
- Similar resistance trends in both trials
 - Nbh2306 resistance of particular interest since this inbred also has strong nematode resistance
- Pyramid/combine multiple sources of resistance

Alternaria leaf blight resistance breeding

- Resistance scored in 178 breeding populations as part of CFCAB project as well as 212 OPs and wild carrots in SCRI project
- □ 64 sources of resistance identified in the last 5 years
- Intercrossing among these sources underway

Carrot Seed Production in Greenhouse and Field

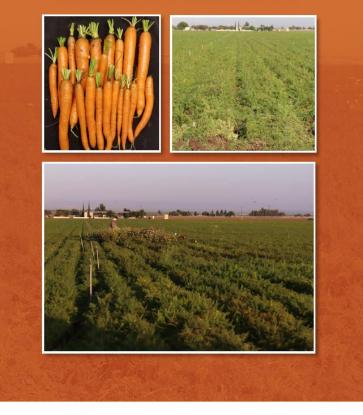
Coming up

- Cooperative efforts for California market carrot breeding
 - New combinations of nematode resistance genes
 - Evaluate additional carrot germplasm for cavity spot resistance and advance crosses made including data and selected roots from Drs. McDonald, Sidhu, and du Toit
 - Germplasm releases long, good flavor, nematode resistant selections
 - Alternaria resistance pyramiding
 - Heat tolerant, with Dr. Sidhu, and weed competitive carrots
 - More detailed genetic maps for all traits
 - More efficient breeding approaches

Thank you !

Updates on Kern County Trials

Jaspreet Sidhu UCCE Kern


2020 Trials

- Variety trials
- Cavity spot biological screening
- Nematicide screening
- Herbicide screening

Spring variety trial

Kern County Carrot Variety Trial Spring 2020

Jaspreet Sidhu and Jed Dubose, UCCE Kern

Spring Variety Trial Planted on Jan 30, 2020 Harvested June 25, 2020 34 Cut and Peel 32 Cello 19 Colored

ID#	ID	Percent bolting Incidence
69	Purple Haze	2.0
72	Redsun	10.0
76	Malbec	5.0
77	976-4	25.0
78	976-5	70.0
79	17'B103-1	40.0
80	981-5	20.0
81	983-5	85.0
82	9B5-5	85.0
83	17'B104-1	85.0
84	13'5364-1	50.0
85	994-6	5.0

Fall variety trial

Planted on August 6, 2020 Harvested on December 15, 2020 36 Cut and Peel 26 Cello 22 Colored

Organic variety trial

Dead/ burned tops in the trial due to foliar diseases

30 entries Plant height, foliar disease severity, root count per plot, root weight, root shape, uniformity and smoothness

New growth of tops in the variety R4294

Cavity spot biologicals screening

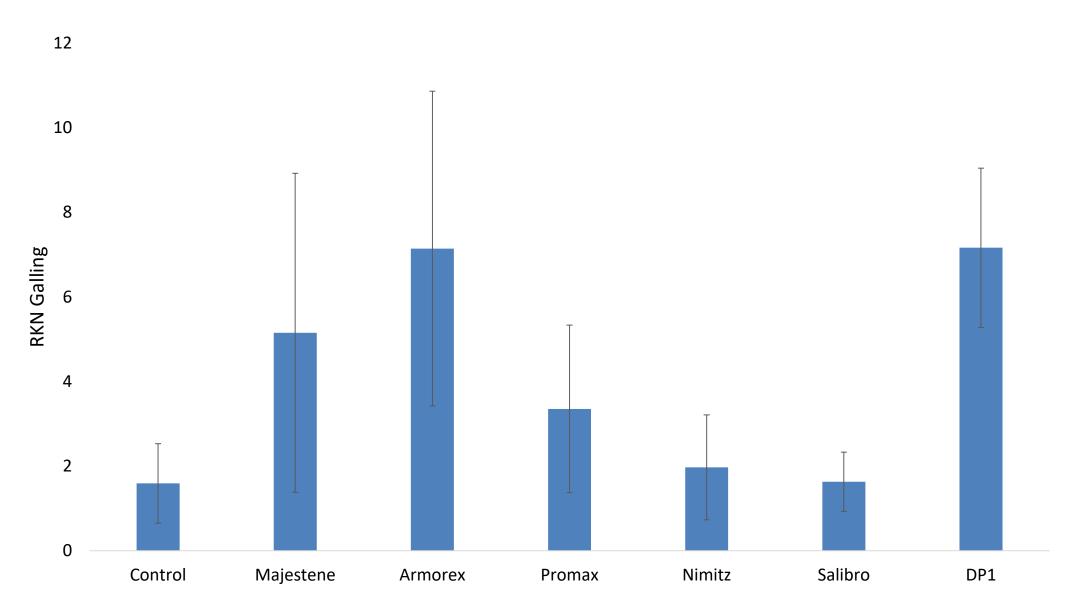
No.	Treatment	Rate per acre	Rate per plot and applications
1	AGN	1 G/A	Every 14 days, and a week after planting
2	LifeGard	4.5 oz/ 100 GPA	At planting, every 14-18 days throughout season
3	Sil Matrix	1 Gallon/ acre	At planting, 4 and 8 weeks after planting
4	Root Shield	3-8 oz/ 100 G Water	At planting and then every 4-6 weeks.
5	Ridomil	0.5-1.3pt/acre	At planting, 30, 60 and 75 DAP
6	Luna Sensation	5oz/ acre	At planting, followed by three in season applications
7	Control		

Cavity spot damage

Carrot nematicide screening trial

<u>Challenges</u>

- Availability of resistant cultivars
- Management relied on pre-plant fumigation
- New fumigant regulations by DPR
 - limits the amount used by a grower
 - caps on the amounts allowed in a township
 - expanded buffer zones

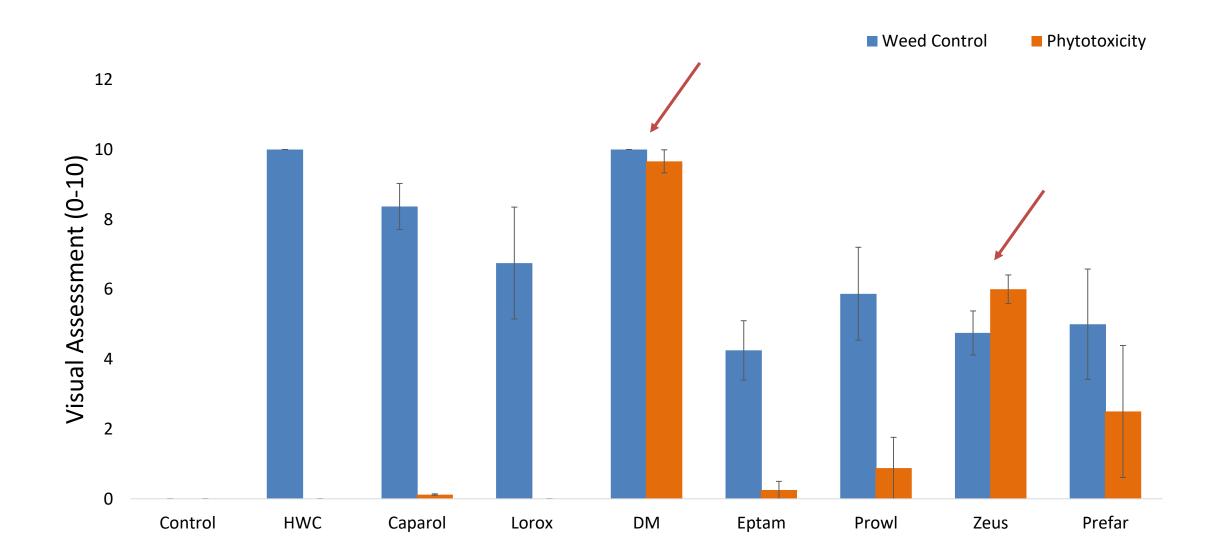

Objective

To identify any biological or conventional nematicides with a potential for use by carrot industry

Treatments

No.	Treatment	Application rates and timings
1	Control	
2	Majestene	6 qt/ A at planting, every 21-28 days interval
3	Armorex	3-5 days Pre plant, 30 days after planting followed by two more applications
4	Promax	1 gal per A. At planting, 15-21 days after 1 st application, 30-40 days after 2 nd application
5	Nimitz	5pt/A 14 days before planting
6	Salibro	30.7 fl oz/ A, 4 days before planting, 28 days after planting (08/20)
7.	DP1	11.4 fl oz/A At planting

RKN damage on carrot roots


Abundance of plant parasitic nematodes in soil pre-treatment and at harvest

No.	Treatment	Pre-treatment count (J2's /200 ml soil)	At harvest count (J2's /200 ml soil)		
1	Control	69.0±17.92 b	70.66±18.80 bc		
2	Majestene	83.0 ±27.58 ab	86.0±20.43 ab		
3	Armorex	86.0±15.45 ab	134.0±26.76 a		
4	Promax	192.0±83.58 a	31.0±5.26 c		
5	Nimitz	76.0±3.26 ab	79.0±10.73 bc		
6	Salibro	123.0±40.41 ab	107.0±16.36 ab		
7.	DP1	91.0±43.21 ab	119.0±19.55 ab		
		P value=0.40	P value=0.01		

Herbicide screening trial

No.	Treatment	Rate per acre		Application timing
		Preemerge	Post-emerge	
1	UTC			
2	HWC			Every two weeks
3	Caparol fb Tricor	2 pt/ A	1/3 lb /A	Pre fb post 3"all
4	Caparol fb Eptam	2pt/A	5 pt/A	Pre fb post 3"all
5	Lorox fb Lorox	1lb/ A	1.5 lb/ A	Pre fb post 3"all
6	DM fb Tricor	0.67pt/ A	1/3 lb /A	Pre fb post 3"all
7	Eptam fb Caparol	3.5pt/A	4 pt/A	Pre fb post 3"all
8	Prowl fb Eptam	2pts/A	5 pt/A	Pre fb post 3"all
9	Prowl fb Caparol	2 pt/ A	4 pt/A	Pre fb post 3"all
10	Zeus (sulfentrazone) fb	3 fl oz /A	4 fl oz/A	Pre fb post 3"all
	Shark (Cafentrazone)			
11	Prefar fb Lorox	5 qt/ A,	1.5 lb/ A	Pre fb post 3"all

Pre-emergent weed control and phytotoxicity

Control

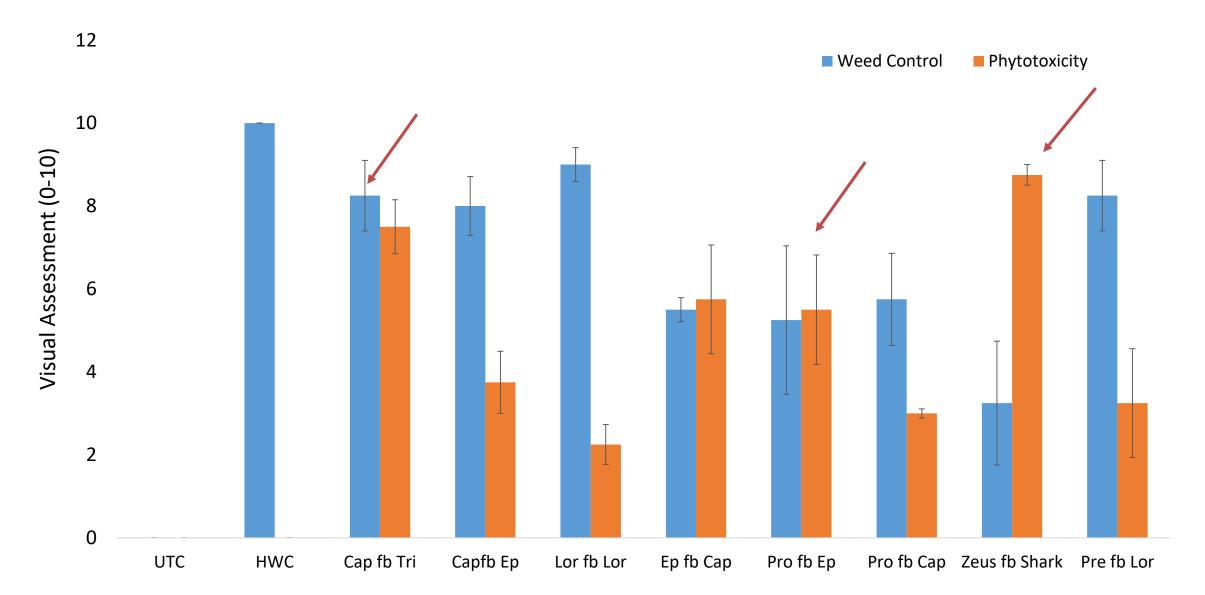
Hand weeded check

Caparol

Lorox

Dual Magnum

Eptam



Zeus

Prefar

Post-emergent weed control and phytotoxicity

Caparol fb Tricor

Caparol fb Eptam

Lorox fb Lorox

Dual Magnum fb Tricor

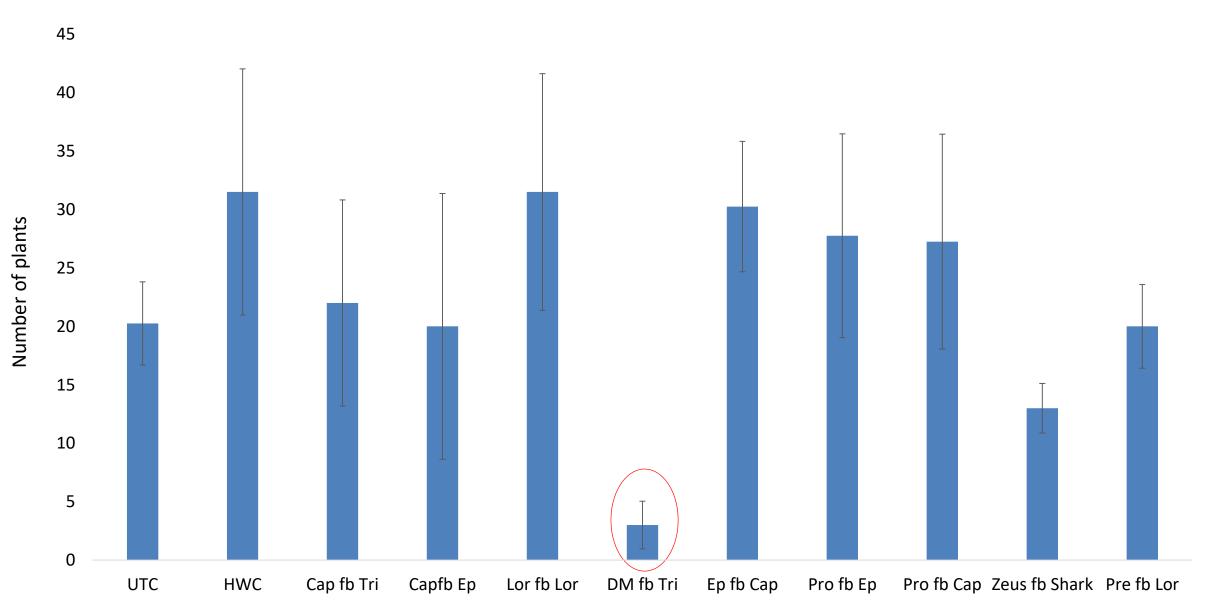
Eptam fb Caparol

Prowl fb Eptam

Prowl fb Caparol

Zeus fb Shark

Phytotoxicity symptoms in treatment Tricor following Caparol



Burning on leaf margins in treatment Eptam following Prowl

10

Plants/m row

Summary

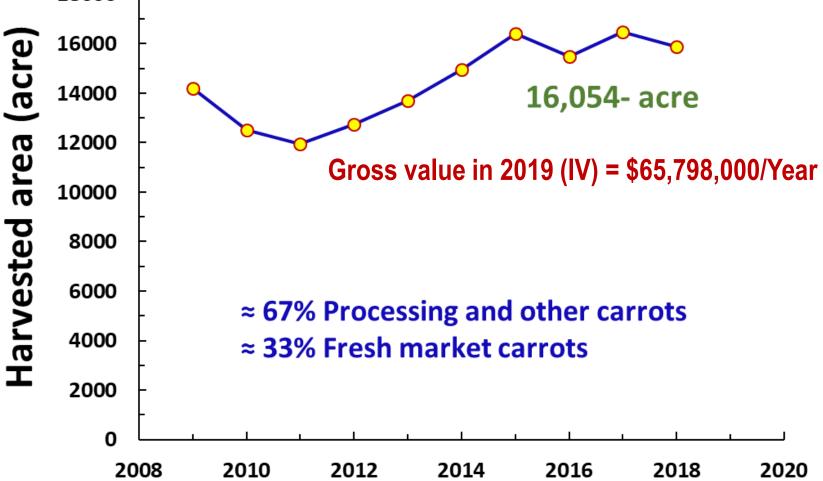
- Biological LifeGard seems promising for cavity spot
- Some nematicides have potential for use by carrot industry
- Lorox and Caparol have good efficacy as pre-emerge and post emerge treatments

Moving Forward

- Establish new nurseries for Cavity spot and nematodes to get consistent and even disease pressure
- Screen additional post emergent herbicides
- Streamline use of Dual magnum

Acknowledgements

- Joe Nunez
- Amanda Hodson
- Isolde Francis
- Jed Dubose
- Jennifer Fernberg
- Cristal Hernandez

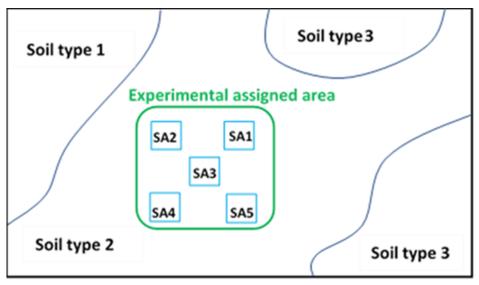


Irrigation and nitrogen best management practices in the low desert carrots

Trends of carrot production acreage in the Imperial Valley (2009-2018)

Experimental Sites (2019-2021)

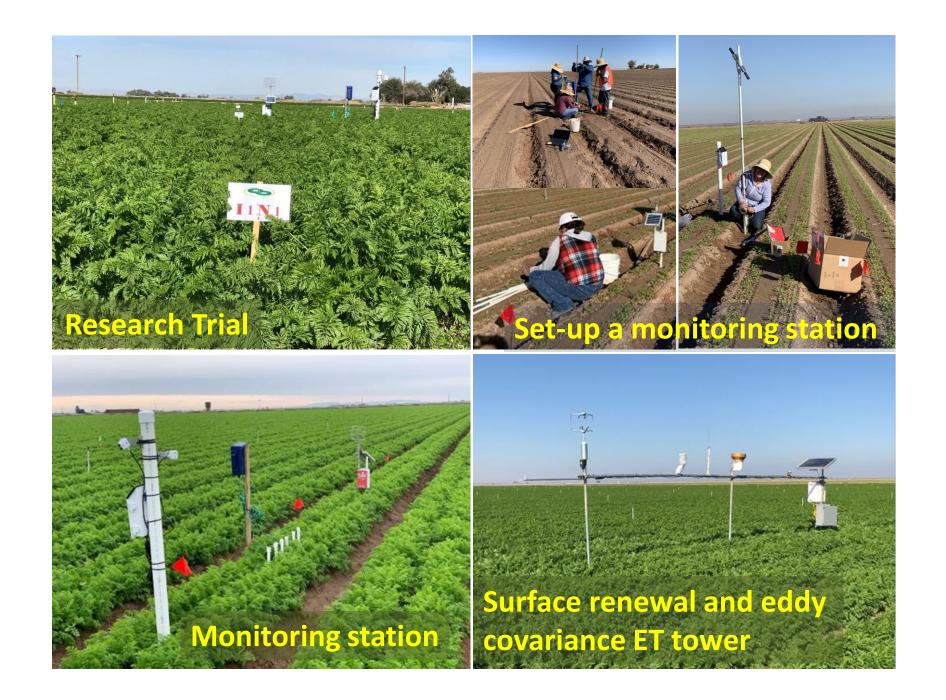
Site	Carrot Variety	Soil classification (0-2 ft.)	Irrigation practice	
UC DREC	Fresh market	Sandy clay loam	Sprinkler &	
(two trials)			Drip	
Commercial	Fresh market	Sandy clay loam	Sprinkler	
fields	(4 fields)	Sandy loam	(4 fields)	
	Processing	Loamy sand	Furrow	
	(6 fields)		(6 fields)	



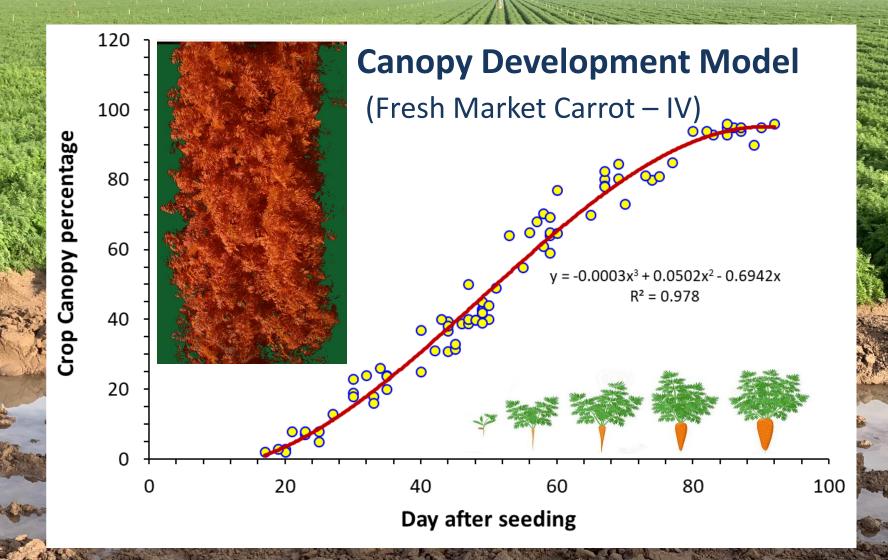
Field Experiment Layout

UC DREC Trials

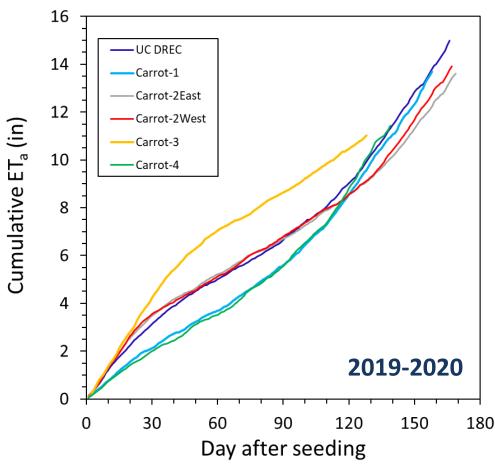
Commercial field/s

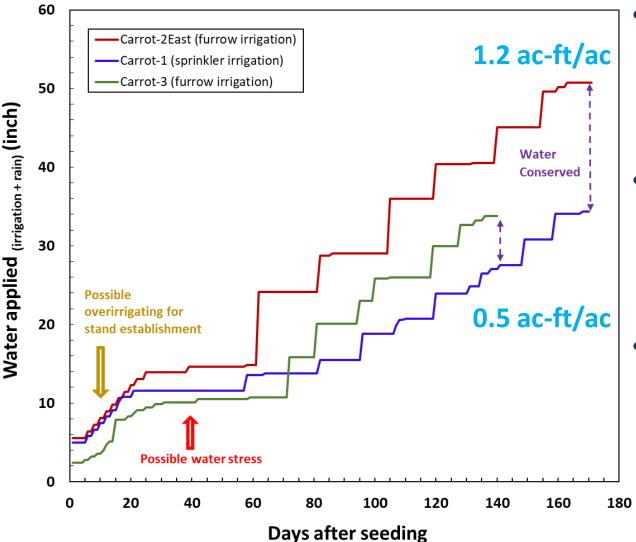

I1N1	12N3	I2N3	11N2	I1N1	DN2
I1N2	I2N1	12N2	I1N3	I1N2	DN2
I1N3	12N2	I2N1	I1N1	I1N3	DN2
I2N3	I1N1	I1N1	12N3	12N2	DN2
I2N1	I1N2	I1N3	12N2	I2N1	DN2
I2N2	I1N3	I1N2	12N1	I2N3	DN2

I1: 100% crop ET"Split-PlotMeanI2: 120% crop ETin RCBD"(hold)N1: 20% less than N2undN2: Commonly used by local growers

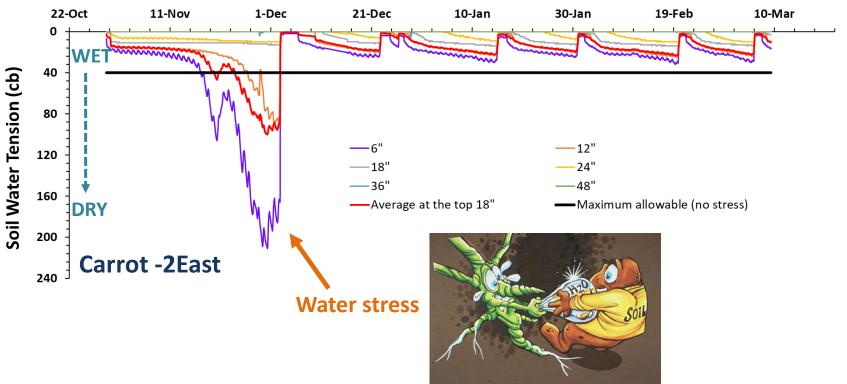

N3: 20% higher than N2

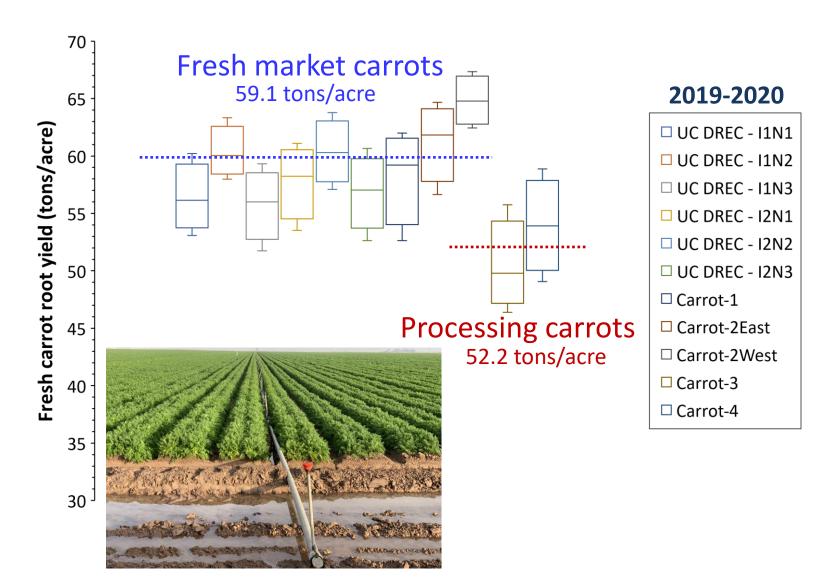
Measurements in five sub-plots (homogeneous soil) at each field under grower practice



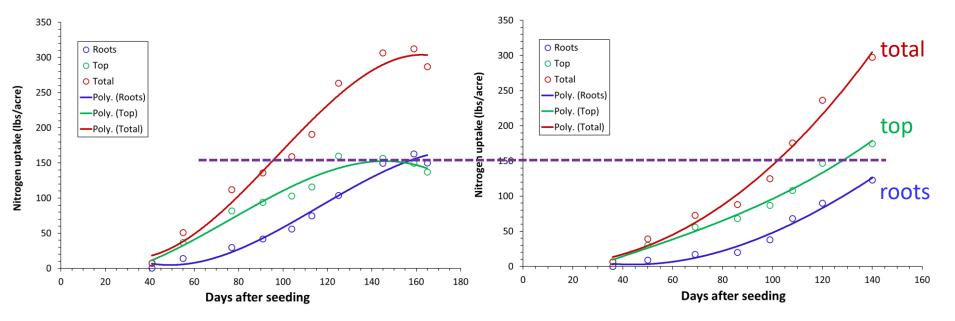


We observed variable crop water use depending upon early/late planting, variety (processing vs. fresh market), irrigation practice, soil type.


Irrigation Management in Carrots (Sprinkler vs. Furrow)


- Potential overirrigating during plant germination
- Potential water stress during cultivation practices
- Potential water conservation through irrigation practices

Soil Water Status (furrow irrigated field)


Mean total carrot yields (carrot roots)

Nitrogen Uptake Curve

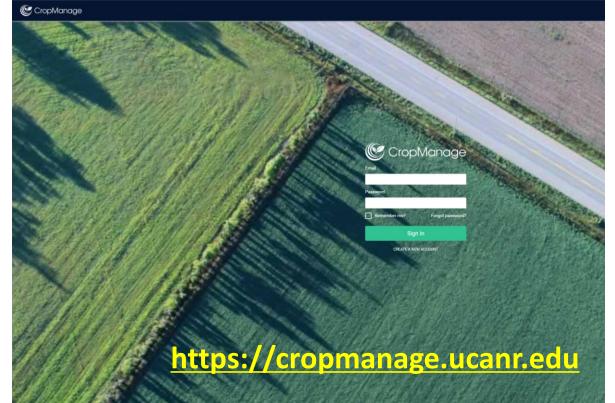
Fresh market carrots (sprinkler irrigated field)

Processing carrots (furrow irrigated field)

286.0 lbs N/ac applied

353.0 lbs N/ac applied

Carrot field after harvest (Field Carrot-4)


Plant residues (Top) could contribute as a source of N for following season.

"45-55% Total N Uptake"

Results from the experiments 2019-2020

Mean N Removal Nitrogen Budget Analysis (Ibs. N/ac)									
lbs. N/ton fresh		Field/	N units	Crop uptake		Total crop			
weight o	of carrot	Treatment	applied	Root Top		uptake			
1	2.6	Carrot - 1	287	149	137	286			
2-West	2.4	Carrot - 2West	347	148	136	<u>284</u>			
2-East	2.3	Carrot - 2East	360	150	139	289			
3	<u>2.2</u>	Carrot - 3	288 Processing (109	178	287			
4	2.3	Carrot - 4	288 Processing co 353	123	174	297			
I1-N1	2.6	DREC - I1-N1	<u>285</u>	149	142	291			
I1-N2	2.5	DREC - 11-N2	320	152	148	300			
I1-N3	2.7	DREC - I1-N3	374	154	162	<u>316</u>			
I2-N1	2.5	DREC - 12-N1	285	145	139	284			
12-N2	2.7	DREC - 12-N2	320	160	155	315			
12-N3	<u>2.7</u>	DREC - 12-N3	<u>374</u>	157	153	310			

- We received an award from CDFA-FREP to extend this project over the next two-year.
- We will develop CropManage carrot module over the next few months.

CropManage is a free online decision tool for irrigation and fertilizer management (administrated by UC ANR).

The results of the first 2-year study will be published soon.

Thank You (Q & A)

Special thanks to

- California Fresh Carrot Advisory Board & CDFA-FREP
- Cooperative Farms
- UC Collaborators: Daniel Geisseler, Michael Cahn, Jaspreet Sidhu, Joe Nunez

Contact information: Ali Montazar amontazar@ucanr.edu

TO WAR AND THE