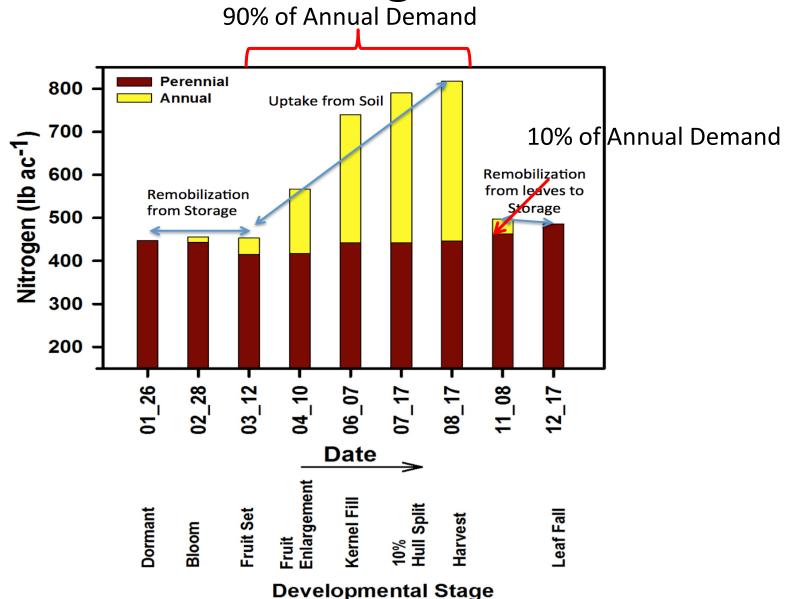


Almond Orchard Nitrogen and Potassium Nutrition

David Doll
UCCE Merced
SSJV Almond Symposium
5/29/2014

Nitrogen Sources:

Sources of Nitrogen


- Urea produced through Haber-Bosch process, must be converted to nitrate, can volatilize, water soluble, stable (~46% N)
- Ammonium (NH₄+) Can be used by plants in anaerobic conditions, positively charged in neutral, acidic soils
 - Ammonium Sulfate
- Nitrate (NO₃⁻) Plant available form of nitrogen, negatively charged, easily leached
 - Calcium Nitrate
 - Potassium Nitrate
- Blends:
 - Urea Ammonium Nitrate (UN-32) liquid blend
 - Calcium Ammonium Nitrate (CAN-17) liquid blend

Nitrogen Sources:

Source of Nitrogen

- Groundwater- sourced as nitrate, should be considered in budget,
 - 0.228 x Nitrate-N (ppm) x acre inches of water applies
- Manures/Compost Percentage varies by source, age of compost, Food safety issues
 - Mineralizes most of N within first year (up to ~85%)
- Fulvic/Humic Acids, Compost teas— efficiencies relatively unknown, thought to be high

Almond Tree Nitrogen Demand

Almond Nitrogen Timing

- Should be soil dependent
 - Sandier soils should wait until leaf out
 - Clay, Silt, Loam soils may apply earlier
- 80% should be delivered before hull-split, 20% in the post harvest
 - Majority should be prior to kernel fill
- Example program: 20% March, 30% April, 30%
 May, 20% August/September

UC Nitrogen Rate Study

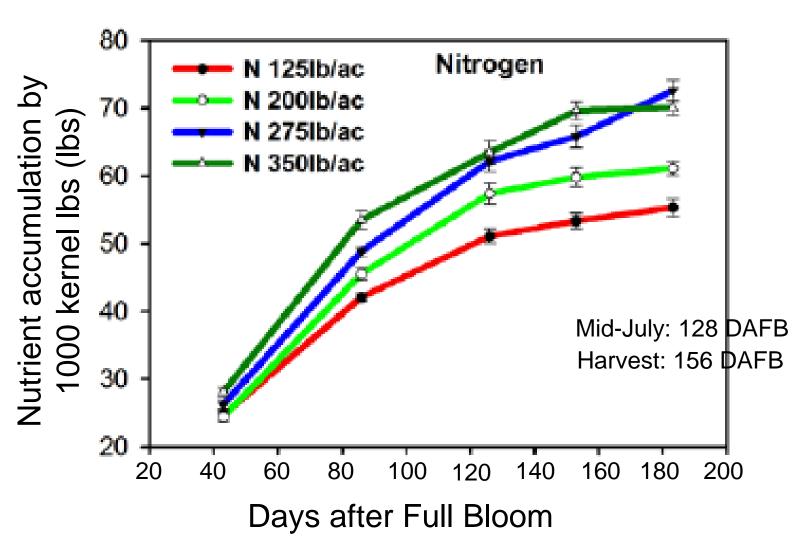
Methods:

- Trees were 8-10 years old, excellent productivity
- Each treatment had 15 trees, 6 blocks
- Nitrogen was sourced using CAN-17, UAN-32
- N applied in 4 fertigations 20%, 30%, 30%, and 20% for February, April, June, and October, respectively
- Leaf samples were pulled at multiple times
- Trees were harvested, and individual tree yields were determined for all data trees, 4 lb sub-samples were collected from two data trees/plot and cracked out to determine kernel weights from field weights

UC Nitrogen Rate Study: Yield Effect

			UA	N 32		CAN 17			
Year	Irrigation	125 lbs	200 lbs	275 lbs	350 lbs	125 lbs	200 lbs	275 lbs	350 lbs
2009	Drip	2689 b	2977 b	3327 ab	3507 a	2512 b	2634 b	3064 b	3605 a
	Fanjet	2776 b	3111 al	3263 ab	3380 a	3143	3130	3248	3216
2010	Drip	2859 c	3426 b	: 3909 ab	4332 a	2624 c	3191 bc	3967 ab	3995 a
	Fanjet	2872 b	3581 a	3810 a	3776 a	3030 b	3410 ab	3993 a	3898 a
2011	Drip	3811 c	4272 b	4643 a	4735 a	3640 c	4336 b	4864 a	4852 a
	Fanjet	3870 b	4014 b	4480 a	4425 a	3803 c	4159 b	4452 a	4398 a

Conclusions:


P<0.05, differing letters mean different statistical groupings

Maximal yields reached with 275 lb, no gain from 350 lb treatment;

No difference between nitrogen source

No difference between irrigation system

UC Nitrogen Rate Study: Nitrogen Removal

UC Nitrogen Rate Study: Nitrogen Removal

			N Removed/1000
Site	Variety	Year	kernel lbs
Modesto	Nonpareil	2009	62
(185 lbs/acre)		2010	58
Madera	Nonpareil	2009	69
(250 lbs/acre)		2010	76
Arbuckle	Nonpreil	2009	*
(190 lbs/acre)		2010	51
Belridge 2	Nonpareil	2009	62
(275 lbs/acre)		2010	62

Average N removed/1000 kernel lbs – 62 lbs (assume ~68)

UC Nitrogen Rate Study: Nitrogen Use Coefficient

NUE =

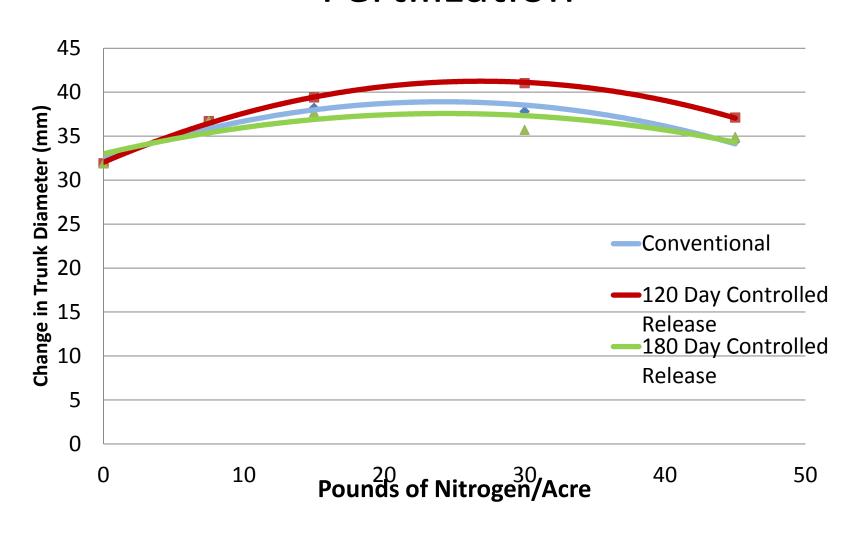
Nitrogen Removed

Nitrogen Applied

N Rate (lb/ac)	Drip	Fan Jet
125	1.43	1.30
200	1.03	1.03
275	0.93	0.88
350	0.82	0.70

Almond NUE ~70%

Bringing it All Together:


- Determining Total Crop Demand in lbs N
 - Expected yield divided by 1000 and multiplied by 62
- Subtract nitrogen applied through water
 - Nitrate-nitrogen (ppm) x acre inches applied x 0.228
- Leaf Tissue Based Adjustment
 - If April N concentrations exceed 3.5%, it is likely that June fertilization can be omitted
- Determining N application rate
 - Subtract N applied through water from crop demand, multiply by 1.4 (assumes 70% efficiency factor)
- Timing of application should vary by soil type.
 - More "feeds," the better

Developing Almond Orchards

- Nitrogen needs look to be around 25-30 pounds for growth
- Needs to be added to crop requirements
- For mature trees (10+ years), enough slack in calculations to make up for growth
- Be careful with the rate

Merced Trials – First Year Almond Fertilization

Almond Potassium Needs: What does K do in plants?

- Large amount of processes
 - Enzyme activation
 - Photosynthesis
 - Sugar translocation
 - Protein and starch synthesis
 - StomatalConductance

Photo from cestanislaus.ucanr.edu

Major nutrient within plants!

Potassium in Almonds

Table 1. Effects of K applications on leaf K concentrations and yields

Treatment	Leaf	Leaf K (% dry wt.)*		Nut yield (meats, lb/A)		
(lb K_2O/A)	1998	1999	2000	1998	1999	2000
0	1.1	0.7	0.7	780	3930	2410
240	1.3	1.3	1.2	890	3840	2860
600	1.3	1.6	1.4	830	4380	2860
960	1.3	1.7	1.7	1070	4020	2770
	**	**	**	ns	ns	*

^{*,**} Significant differences among treatment means at p<0.05 and p<0.01, respectively.

^{*}Samples taken in the last week of July.

Potassium in Almonds?

			Nod	es/ shoot			Return blo	om
Level of treatment	Fruit s	et (%)		,	-	- 1999 (g)	(%)	
$lb K_2O/A$	1999	2000						
0	27 ± 2.4	21 ± 2.2	1			ee K status or		•
960	26 ± 1.8	25 ± 2.2	1	productiv	ity of <i>fruiting</i>	spurs tagged:	in 1 9 99	

^z means ± SE..

^{*} Denotes means which differ at p<0.10

^{*}Denotes means which are significantly different at p < 0.05.

Potassium Deficiency in Almond

- Reduces growth, spur longevity and formation
 - Reduction of floral buds and yield
- Does NOT affect nut size or PERCENTAGE of nut set
- Deficiency in new growth, off-colored, tip and subterminal margins will become necrotic, folded leaf and curled tip

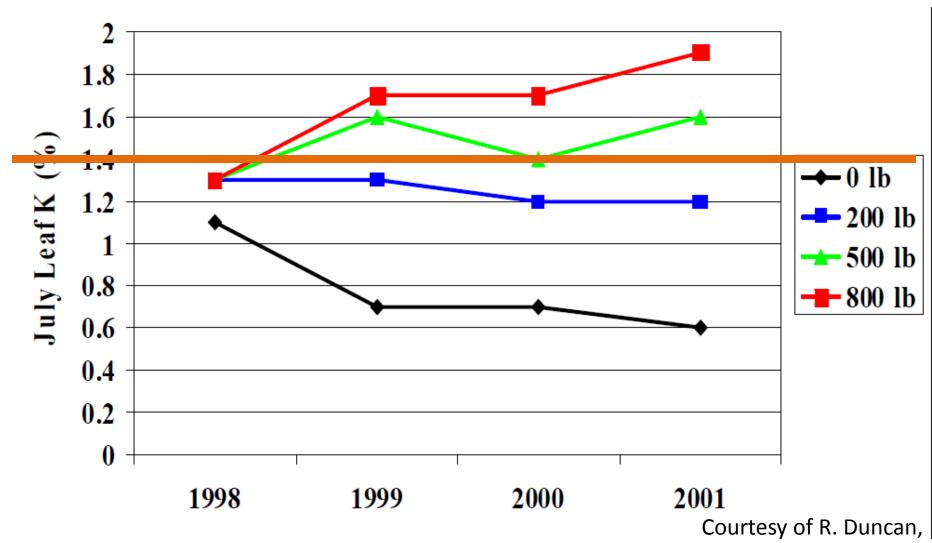
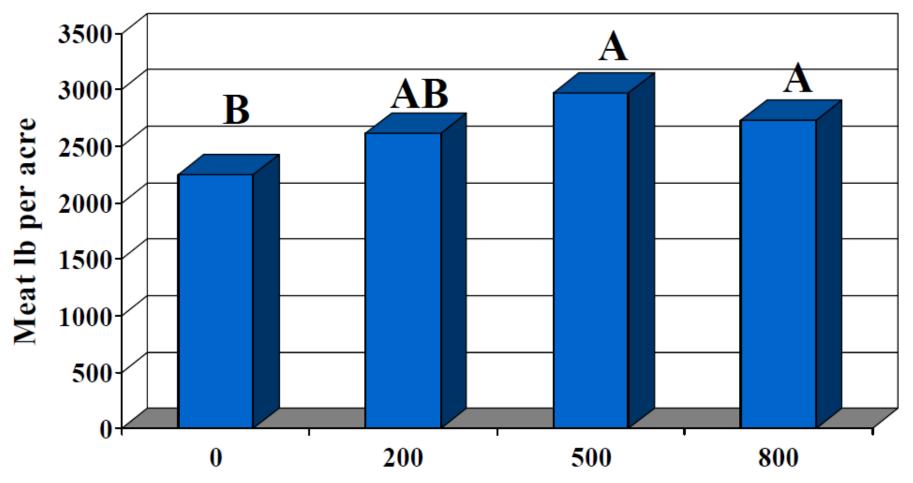


Photo from IPNI

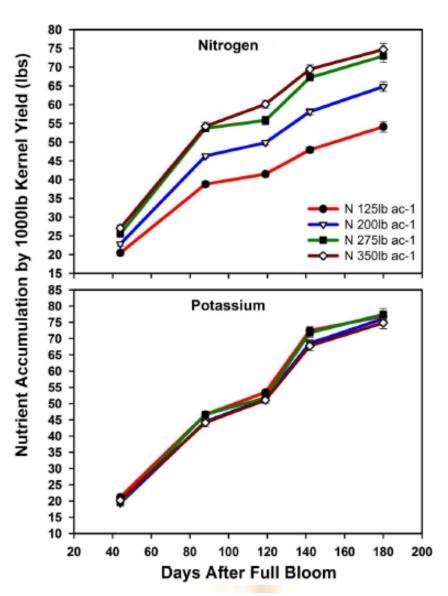
July almond leaf tissue sampling index.


Leaf % K	Tree K status
<1.0 % K	Deficient
1.0-1.4% K	Insufficient
1.6-1.8 % K	Orchard Target?

Potassium Sufficiency in Almonds

UCCE Stanislaus

Potassium Sufficiency in Almonds



Pounds of sulfate of potash applied per acre each year.

Courtesy of R. Duncan, UCCE Stanislaus

Potassium Uptake in Almonds

- K accumulation is linear
 - 70% of season's accumulation occurs by mid-June (119 dpb)
- Uptake not influenced by N rate
- Luxury Consumption occurs

Potassium Removal in Almonds

NPK Export by 1000lb Kernel in 2009-10 (lb)

				* *				
2009					2010			
Nintelant	N	litrogen R	ate (lb/a	c)	Nitrogen Rate (lb/ac)			
Nutrient	125	200	275	350	125	200	275	350
N	53	56	58	59	55	61	73	70
	b	ab	a	a	С	b	a	a
Р	7.5	7.4	7.2	6.7	8.6	8.2	8.9	7.8
	a	a	ab	b	ab	ab	a	b
К	75	73	73	72	88	81	80	82

Means not followed by the same letter are significantly different at 10%.

Muhammad et al, 2012

Potassium Removal = 76 lbs/1000 kernel lbs!

Quick Clarification!

- Removal is documented in pounds of potassium
- Potassium is sold as pounds of K₂0
- Lbs of actual potassium removed needs to be converted to
 - Simple math: Lbs of K X 1.2 = K_2 0
 - Example: 76 lbs of K removed equals 91.2 lbs of K₂0

Image source: http://wpmedia.business.financialpost.com/2011/10/potash.jpg?w=620

Potassium source	Pro	Con
Potassium chloride (60% K ₂ 0)	Least expensive, readily dissolved	Chloride risk
Potassium sulfate (50% K ₂ 0)	Source of sulfur, doesn't increase "bad" salts	Expensive, some issues in fertigating

Potassium thiosulfate

 $(25\% K_20 - 3 lbs)$

Potassium nitrate

Potassium carbonate

Potassium magnesium

sulfate (22% K₂0)

K₂0/gallon)

 $(44\% K_20)$

 $(64\% K_20)$

Source of sulfur, helps

reduce soil pH, liquid

Contains N, water

foliarly

soluble, can be used

Buffers acidic soils,

Doesn't change pH

water soluble

Can be toxic in high

Expensive, can raise pH

Expensive, pH change

Not widely used in CA

rates, pH change

Potassium fertilizer sources

Different K strategies for application.

Practice	High CEC Soil (>15 meq/100 g of soil)	Low CEC soil (<15 meq/100g of soil)
Dormant Applications	Yes – can be "slugged" on	Yes – but only partial budget
Banding of gypsum to move potassium	Yes, if heavy clay	NO
In-Season Applications	Yes, if needed	Yes- 40-60% of the budget
Fertigation of K	Yes	Yes – be cautious of large applications (toxicity)
Foliar Applications	Yes	Yes

Tissue Sampling Recommendations

- Tissues should be sampled to determine sufficiency levels
- 3 sampling periods suggested:
 - Mid July Provides sufficiency levels for all nutrients
 - Hull Analysis Boron sufficiency levels
 - April Sampling for Nitrogen sufficiency
- Needs to follow a specific protocol (2-3 non fruiting spurs from 20 trees, 30 yards apart)

Concluding Thoughts:

- Adequate levels of potassium and nitrogen are critical to sustain high yielding orchards
- Nitrogen removal is high around 65 lbs/1000 kernel lbs, need to apply 85 lbs due to inefficiencies
- Potassium removal is higher around 92 lbs of K₂0 for every 1000 kernel lbs, no inefficiencies
- Leaf sampling will provide guidance April is useful for nitrogen, July is useful for N,P,K+micros

Questions?

• Thanks to:

- Paramount Farming
 Company, The Almond
 Board of CA, USDA, CDFA
- Sebastian Saa, Saiful
 Muhammad, Blake
 Sanden, and Patrick
 Brown
- Brent Holtz, Andrew Ray

Shameless plug – Check out "The Almond Doctor," weekly updates for almonds and other tree nuts -- www.thealmonddoctor.com