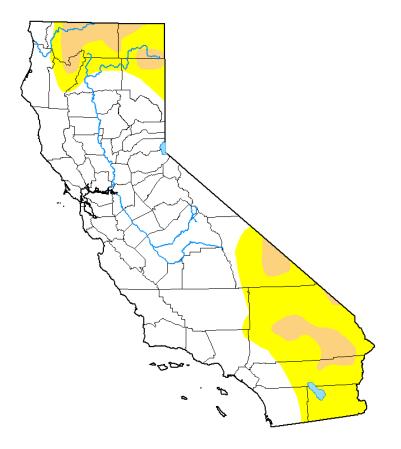
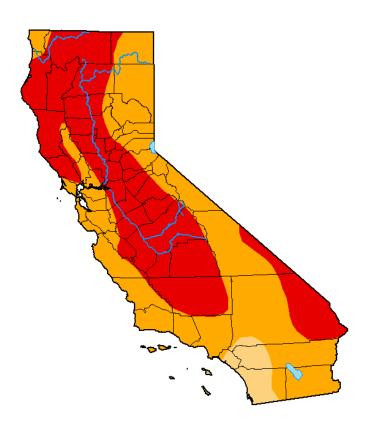


2022 Dryland Small Grain Trial Siskiyou County


Giuliano Galdi

UCCE Siskiyou Agronomy and Crops Advisor gcgaldi@ucanr.edu

UNIVERSITY OF CALIFORNIAAgriculture and Natural Resources


California Drought

April 12, 2023

U.S. Drought Monitor

California

April 12, 2022

(Released Thursday, Apr. 14, 2022) Valid 8 a.m. EDT

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	0.00	100.00	100.00	95.75	46.87	0.00
Last Week 04-05-2022	0.00	100.00	100.00	93.65	40.67	0.00
3 Month's Ago 01-11-2022	0.00	100.00	99.25	66.39	1.39	0.00
Start of Calendar Year 01-04-2022	0.00	100.00	99.30	67.62	16.60	0.84
Start of Water Year 09-28-2021	0.00	100.00	100.00	93.93	87.88	45.66
One Year Ago 04-13-2021	0.78	99.22	94.14	76.97	38.68	5.36

None	D2 Severe Drought
D0 Abnormally Dry	D3 Extreme Drought
D1 Moderate Drought	D4 Exceptional Drough

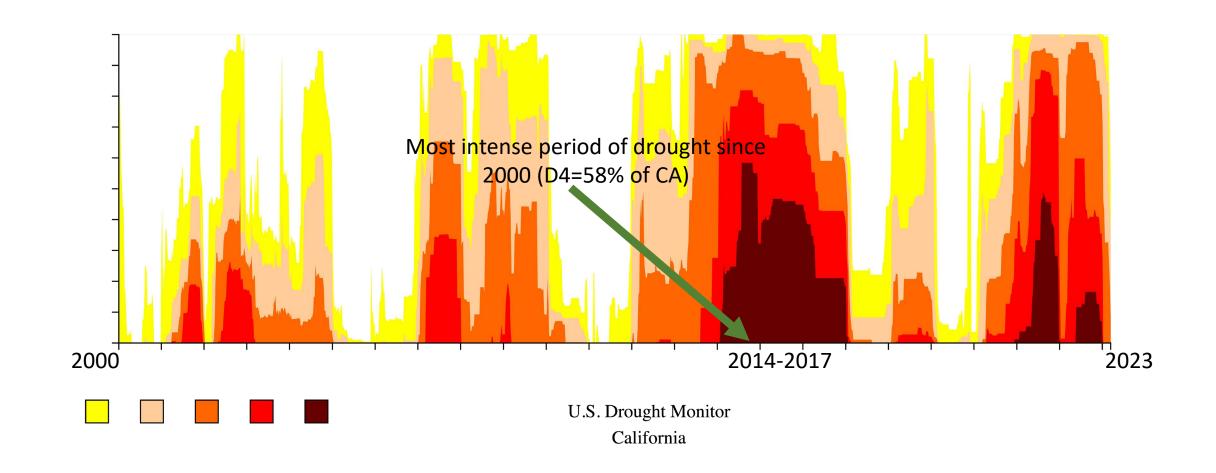
The Drought Monitor focuses on broad-scale conditions.

Local conditions may vary. For more information on the

Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Author:

Richard Tinker CPC/NOAA/NWS/NCEP



droughtmonitor.unl.edu

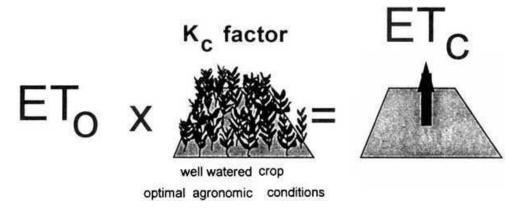
Drought in California: 2000 - Present

2021/22 vs 2022/2023 Precipitation

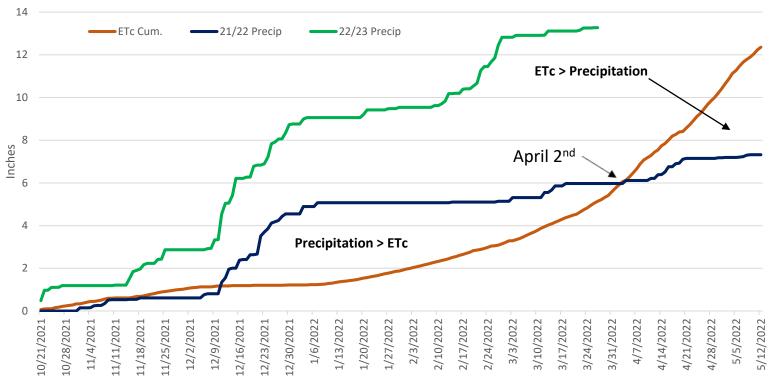
	2021/22	2022/23
October 21th ->	0.11	0
Nov	0.76 2X	1.52
Dec	3.95	4.69
Jan	0.53 5X	2.85
Feb	0.08 14X	1.12
-> Mar 13th	0.43 4X	1.67
Sum	5.86	11.85

2021/22 Small Grain Trial

- Field trial planted on October 21st, 2021
- 14 varieties of triticale, wheat, and barley
 - Assessed regarding forage yields (mimic grazing)
- Dryland condition = no irrigation at all
- Collaborator's field in Scott Valley

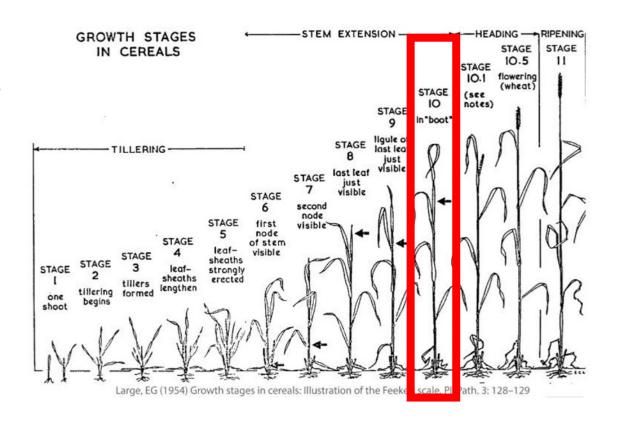


Some concepts


- Crop evapotranspiration (ETc)
 - Combination of water loss by soil (evaporation) and plant (transpiration)

- Reference evapotranspiration (Eto): the "evaporation power" of the atmosphere
 - CIMIS stations
- Crop Coefficient (Kc): factor that varies according to crop and its stage of development

Precipitation and Crop Evapotranspiration (ETc)



- Location's average precipitation (2016-2021) = 15.2" per year
- Plants became water stressed on April 2nd
 - It should not happen in 2023
- ETc calculated using Kc=0.7 for the first 160 days and Kc=1.15 for the remaining 43 days
- Cumulative ETc =12.35 inches of water
- Precipitation = 7.32 inches
- Dry year
- Precipitation
 - March 2023: 2.64" (until March 16th)
 - March 2022: 0.55" (whole month)

When to Harvest?

- Trial was harvested at boot stage
 - Head enclosed in the flag leaf
 - Best if looking for quality or short on water
 - Highest in crude protein and in-vitro digestible dry matter

- Small grain forage quality decrease as yields increase
 - Boot → Milk → Dough
 - Boot stage yield is 38-42% of yield of that at dough stage

Yield Results

- Harvested on May 12, 2022
 - Boot stage of development
- DM Yields ranged from 1.5 to 2.7 ton/A
- Triticale performed better than wheat and barley

	ton/A							
Variety		Fresh Weight	Dry matter (18%)					
14401	Triticale	15.2	2.7	Α				
Thor	Triticale	13.2	2.4	Α	В			
Legend	Triticale	12.2	2.2	Α	В	С		
TriMark099	Triticale	11.9	2.2		В	С		
Surge	Triticale	11.8	2.1		В	С		
Merlin Max	Triticale	11.6	2.1		В	С	D	
Forerunner	Triticale	11	2		В	С	D	Ε
UC3185	Triticale	10.5	1.9		В	С	D	Ε
Yamhill	Wheat	10.1	1.8		В	С	D	Ε
Alvena	Wheat	9.1	1.6			С	D	Ε
Mandala	Wheat	9.1	1.6			С	D	Ε
Patron + Eureka	Wheat + Barley	8.5	1.5				D	Ε
Patron	Wheat	8.3	1.5				D	Ε
Brundage	Wheat	8.2	1.5					Ε
Mean		10.8	1.9					
CV%		21						

Forage options for a dry future

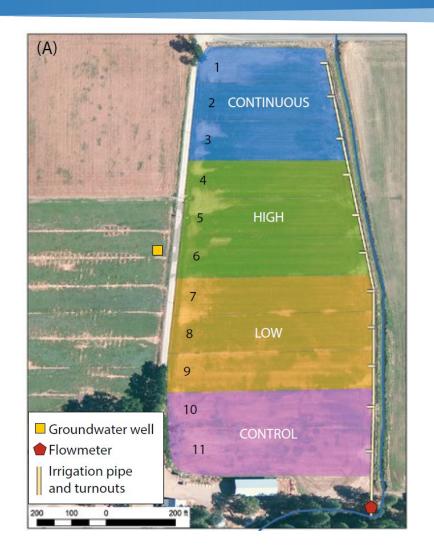
- Winter Small Grain + Summer crop
 - Triticale + Sorgum?
 - Tricale + Corn?
 - These options could be viable with some irrigation water during growing season
- Cool Season Perennial Grass
 - Plant in the fall
 - Farm for roots

Winter Groundwater Recharge Siskiyou County

Giuliano Galdi

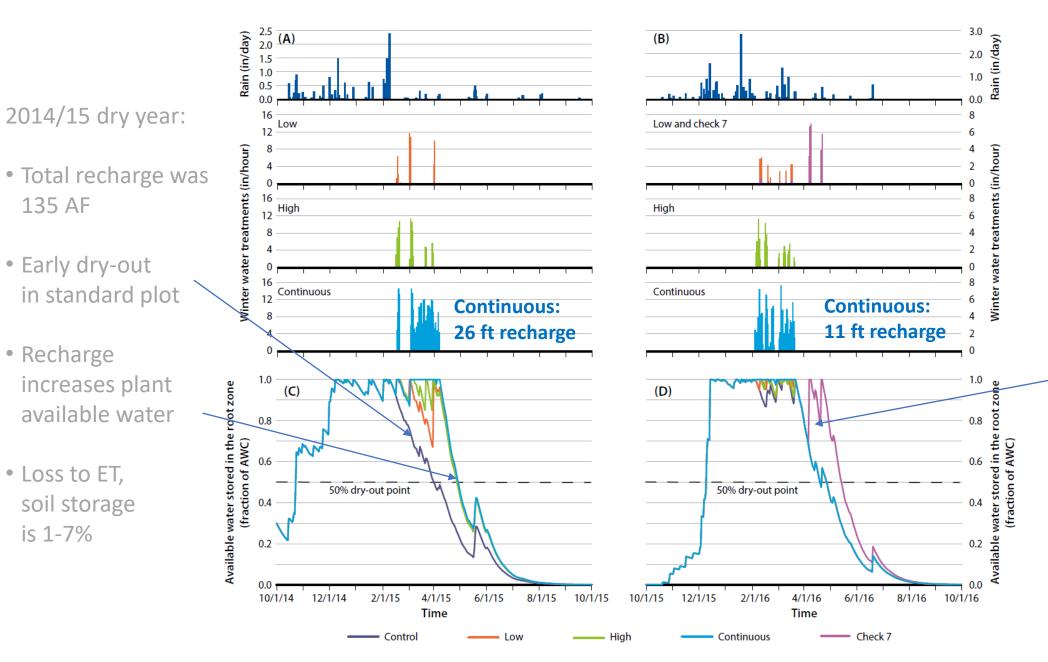
UCCE Siskiyou Agronomy and Crops Advisor gcgaldi@ucanr.edu

UNIVERSITY OF CALIFORNIAAgriculture and Natural Resources


On-farm experiments

- Helen Dahke, Steve Orloff, Andre Brown, Daniel Putnam, Toby O'Geen
- Two on-farm experiments in 2015 and 2016
 - UC Davis
 - Scott Valley
- Experiments evaluation
 - Effects of different water amounts
 - Timing of water application
 - Duration of water application

On-farm experiments


- Scott Valley, Siskiyou County
 - 15 acres
 - 9-yr alfalfa stand
 - Stoner gravelly sandy loam
 - Alfalfa variety: BlazerXL
 - Fall dormancy 3
- Treatments
 - *Continuous* every day
 - *High* 3-5 water applications per week
 - *Low* 1-3 water applications per week
 - Standard no winter water application

Total Applied Water (ft)

			Applied winter water for recharge							
			2014–2015 (Feb 17–Apr 9, 2015)			2015–2016 (Feb 4–Mar 21, 2016)				
Treatment	Check	Check size	Total	Feb	Mar	Apr	Total	Feb	Mar	Apr
		ас		1	ft			ft		
Continuous	1	0.84	30.74	2.50	22.34	5.90	13.52	6.99	6.52	0.00
	2	1.10	AVG= 26.2	3.69	16.68	4.51	AVG= 11.1	5.34	4.98	0.00
	3	1.19	23.38	3.93	15.28	4.17	9.54	4.94	4.61	0.00
High	4	1.18	7.08	2.55	3.70	0.83	4.45	2.83	1.61	0.00
	5	1.35	AVG= 7.2	2.39	3.48	0.68	AVG= 4.1	2.48	1.41	0.00
	6	1.44	8.06	3.17	4.06	0.82	3.86	2.54	1.32	0.00
Low	7	1.41	5.10	0.95	1.94	2.21	12.96	1.06	0.68	11.22
	8	1.51	AVG= 3.9	0.81	2.01	0.72	AVG= 5.4	0.99	0.64	0.00
	9	1.54	3.26	0.80	1.70	0.76	1.60	0.97	0.62	0.00
Standard	10	1.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	11	1.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

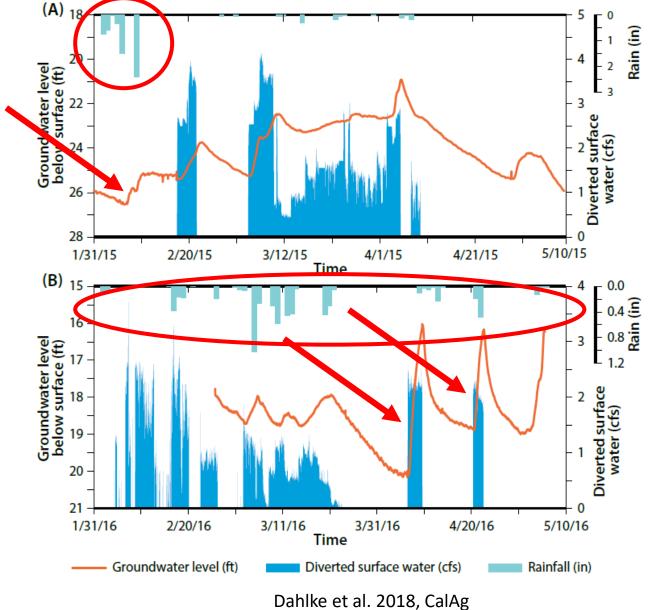
^{*} This check received an additional 11.3 ft of water in two irrigation events on April 6–8 and April 21–22, 2016.

2015/16 Above normal year:

- Total recharge was 107 AF
- Late dry-out
- No benefit for plant
 available water
- Loss to ET soil storage is 1-2%

Dahlke et al. 2018, CalAg

Water Inputs and estimated Deep Percolation

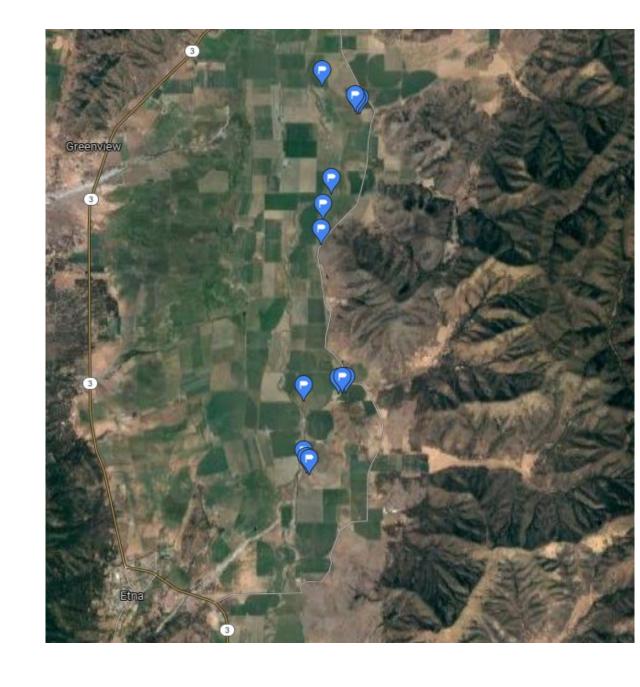

	Preci pitati on	Applied winter water	deep	Deep percolation from winter water application	as percent of		Contribution to soil storage b		
	in	in	<u> </u>	in	%		in	%	
		DRY	YEAR SCO	OTT VALLEY - 2015					
Standard	19.6	0.0	7.8	-		-		-	-
Low	19.6	47.2	51.8	44.0		93%		3.2	6.8%
High	19.6	87.0	91.4	83.6		96%		3.4	3.9%
Continuou	s 19.6	310.6	314.5	306.8		99%		3.7	1.2%
		W	T YEAR SCO	OTT VALLEY - 2016					
Standard	23.7	0.0	11.2	-		-		-	-
Low	23.7	19.8	30.9	19.7		99%		0.2	0.8%
High	23.7	48.5	59.6	48.7		100%		0.2	0.3%
Continuou	s 23.7	130.6	141.7	130.5		100%		0.1	0.1%
Check 7	23.7	155.6	163.8	152.6		98%		3.0	1.9%

^a includes deep percolation from precipitation

^b amount of applied winter water used to bring soil water content to field capacity

 $^{1 \}text{ inch} = 2.54 \text{ cm}$

Deep percolation estimates — Scott Valley



Water table rose up to 6 ft in response to winter recharge

2022/23 Scott Valley Project

- 3 locations
- Permit approved in March 2023
- Grass fields
- Multi-year project

2023

- Diversion started on March 13th
- Eastside
 - Water reached 1 week after
 - 1.2 cfs to the field (1 location)
 - Recharge 11 days
- Water samples for isotope analysis
 - ²H and ¹⁸O

