Epidemiology and Management of fire blight of apple and pear caused by *Erwinia amylovora* - North Coast Region -

J.E. Adaskaveg

Department of Microbiology and Plant Pathology UC Riverside

Cooperating: H. Forster, D. Thompson, D. Cary

Fire blight - a disease of rosaceous plants

Fire blight is a disease of rosaceous plants, including apples and pears.

The disease is caused by the gram-negative bacterium *Erwinia amylovora*.

Symptoms: Blossom, twig, leaf, fruit, limb and trunk, collar and root blights

Flower infection

Shoot infection

Canker

Bacterial exudation from plant infections

- Bacterial survival time in ooze is approx. 1 year
- Bacterial strands smooth or beaded, several cm in length, wind disseminated, instantly water dispersible

Disease cycle of fire blight

Critical growth parameters

The pathogen is moved from cankers to blossoms by rain and insects Warming Insects, temperatures wind, rain, ... in the spring **Overwintering** The pathogen multiplies on floral "holdover" surfaces and is moved to other Insects. canker flowers by insects and rain wind, rain, (wounds) Insects, wind, rain Secondary infections of rattail flowers, shoots, fruit, rootstocks Canker Secondary development inoculum and expansion (bacterial ooze) Flower (primary) infection

Optimum Temperature – 21-28°C (70-82.5°F)

Minimum Temperature – 3-12°C (38-54°F)

Maximum Temperature – 35-37°C (95-99°F)

Thermal Death – 45-50°C (113-122°F)

pH range 4 - 8.8, optimum 6 - 7.5

Generation time under optimal conditions = 96 min

Epidemiology – epiphytic and endophytic life styles

- *E. amylovora* overwinters in cankers (dead host tissue) and oozes out in the spring.
- Rain-splash-, wind-, and insect-dissemination to flowers and other plant surfaces. The bacterium colonizes stigmata and nectaries as an <u>epiphyte</u> (10⁶ CFU/stigma) and then as a pathogen.
- It can also survive as an epiphyte on other plant surfaces (leaves, fruit, and branches) for limited periods (*several weeks*).
- Can reside as an <u>endophyte</u> within apparently healthy plant tissue, such as branches, limbs, and bud wood.

Epidemiology – Rattail Bloom

- Prolongs the time when highly susceptible host tissue is available
- Increases the number of protectant applications needed
- Requires additional "cutting out" time for workers
- Is the primary factor separating management guidelines in CA and PNW and is the reason why fire blight management in CA is more challenging.

Rootstock and tree susceptibility to fire blight of apple

- Rootstock blight may girdle the rootstock stem or trunk base and kill the tree
- Depending on the level of the rootstock's genetic fire blight susceptibility, infections with *E. amylovora* can express as development of bark cankers
- Infections can remain asymptomatic as latent infections

- There are differences in rootstock susceptibility to fire blight:
 - Very susceptible: Malling series M.26 and M.9 and its subclones (Nic29, T337, Pajam 2)
 - > Tolerant or moderately resistant: M.7, and Budagovskij series B.9 and B.118
 - > Resistant: Geneva series G.11, G.41, G.202, G.214, G. 890, G.935, G.969

Cultivar susceptibility

Apple

- Apple cultivars vary in susceptibility and extent of damage. For example, in Granny Smith, infections are usually limited and do not cause severe structural damage to the tree.
- More susceptible: include Golden Delicious, Granny Smith, Gravenstein, Jonathan, Mutsu, Pink Lady, and Yellow Newtown are also.
- **Highly susceptible:** Gala and Fuji trees that may be devastated.

Pear

Most pear tree varieties, including Asian pears (with the exception of Shinko) and red pear varieties, are very susceptible to fire blight.

Most Susceptible:

Bartlett, Bosc, Red Bartlett>Star Crimson

Moderately susceptible:

D'Anjou, Seckel, Comice

Wherever possible, plant varieties less prone to fire blight damage. Because most infections originate in the flowers, trees that bloom late or throughout the season (i.e., rat-tail bloom) often have severe fire blight damage.

Managing fire blight

Cultural practices –

 \circ Rootstock/scion selection

Orchard location and design – air movement to reduce humidity
 Avoid high nitrogen fertilization - Provide balanced nutrition
 Avoid over-irrigation

Sanitation –

 $_{\odot}$ Removing infected woody cankers (pruning) and burn

 $_{\odot}$ In-season removing infected tissue (i.e., strikes)

Removal of alternate hosts-Cotoneaster, Crataegus, Cydonia, Pyracantha, etc.
 Cleaning of pruning or hedging tools with HOCI or other sanitizers

Chemical –

○ Antibiotics

 \circ Early season-copper

- Biologicals (biological agents and natural products)
- Plant growth regulators/SARs (e.g., Actigard 2oz/Apogee 1 oz)

Rotation of different modes of action

Sensitivity of E. amylovora strains to copper

15 ppm MCE

Nutrient agar (rich medium) Control **CYE** agar (poor medium)

Control

30 ppm MCE 20 ppm MCE

Spontaneous mutants (adaptations) on NA (right) and CYE (left)

Sensitivity of E. amylovora strains to copper

Nutrient-rich agar	Nutrient-poor agar	
Growth not inhibited at 20 ppm MCE	Growth not inhibited at 10 ppm MCE	In other bacterial systems:
Reduced growth of many strains present at 30-40 ppm MCE	Reduced growth of many strains present at 15-20 ppm MCE	<10 ppm - Sensitive 10-50 ppm - Moderately res >50 ppm - Resistant
Spontaneous mutants often present, growing well at 30-40 ppm MCE	Spontaneous mutants often present, growing well at 15 and sometimes at 20 ppm MCE	

- No high resistance.
- <u>Some</u> strains sensitive, <u>many</u> strains are considered moderately copper-resistant.
- Spontaneous mutants are not stable, but persist in the presence of copper (adaptation)

Copper and fire blight management

- 1. Copper is rated in UCIPM Efficacy Tables +/++.
- 2. Copper is a contact material and mostly only suppresses growth of the pathogen when transferred to copper-free medium, bacteria resume growth.
- 3. Copper is applied at low rates: e.g., 0.5 lb Kocide 3000 = 180 ppm this concentration is further diluted on the plant (e.g., 18-25 ppm) and has low solubility.
- 4. Under highly favorable environmental conditions copper performance will be low:
 - a) "Moderate copper resistance" is present in the pathogen.
 - b) Spontaneous mutants will persist in the presence of copper and cause disease.
- 5. Copper use suggested for early season (bloom) but not later by itself (can cause russeting of fruit)

In vitro sensitivity of *E. amylovora* isolates to antibiotics

Spiral gradient dilution plate showing isolates with different sensitivity against streptomycin • Molecular basis for moderate resistance in CA is different from other locations (MI).

Streptomycin resistance genes in *E. amylovora*

PCR amplification of streptomycin resistance genes A) *StrA* and B) *StrB*, as well as C) transposon Tn*5393* in isolates of *Erwinia amylovora* sensitive (Strep-S), moderately resistant (Strep-MR), or highly resistant (Strep-HR) to streptomycin.

Genetic mechanisms of streptomycin resistance in Erwinia amylovora

State abbreviations indicate where each mechanism has been reported. Tn*5*393 is a transposon.

Resistance surveys for streptomycin, oxytetracycline, and kasugamycin in *E. amylovora* populations from pear orchards in California

- Annual surveys have been conducted for over 15 years
- Moderate (MIC 20-35 ppm) and high (MIC >100 ppm) STR resistance has been detected in pears and apples.
- Moderate (MIC <4 ppm) and high (MIC >100 ppm) OXY resistance has been identified in pears.
- No resistance to kasugamycin detected

2022			In vitro sensitivity (MIC)				2022	
	Orchard No.	No. isolates	Strept	omvcin	Oxytetra cvcline	a-	Kasuga- mvcin	2022
Sacramento	1	10	8 MR	2 HR	S	-	S	
Gaeramento	י ס	0	69	2 MP	s S		ŝ	
	2	0	10.5		0		5	
	3	12	10.5		5		5	
	4	14	N	1R	S		S	
	5	14	4 S	10 MR	S		S	
	6	15	1 S	14 MR	S		S	
	7	3	N	1R	S		S	
Lake	1	1		S	S		S	
	2	1		S	S		S	
	3	1		s	S		S	
Yolo	1	3	Ν	1R	S		S	
total	11	82						
2021								
Orchard No.	County	Strepto	omycin	Oxytetra	acycline	Ka	sugamycin	
1	Lake	S	5	S	\$		S]
2	Lake	M	R	S	\$		S]
3	Lake	S	5	S	\$		S]
4	Lake	S	5	S	;		S	
5	Lake	M	R	S	;		S	
6	Lake	S	5	S	5		S	
7	Lake	S	5	S	;		S	
8	Lake	5	;	S	;		S	
9	Lake	S	5	S	5		S	
10	Mendocino	H	२	S	5		S	
11	Sac	M	R				S	
12	Sac	H	۲		R)		5	
13	Sac	5		5			5	
14	Sac	M					5	
15	Sac	H	x	H			3]

			In vitro sensitivity (MIC ppm)				
- · ·	Orchard	No.	• • • • • • • • • • • • • • • •	O			
County	NO.	Isolates	Streptomycin	Oxytetracycline	Kasugamycin		
Mendocino	1	1	S	S	S		
	2	1	S	S	S		
	3	1	MR (33.2)	S	S		
	4	1	S	S	S		
	5	1	S	S	S		
	6	1	S	S	S		
	7	1	S	S	S		
	8	1	S	S	S		
	9	3	S	S	S		
	10	2	HR (> 40)	S	S		
Lake	1	1	S	S	S		
	2	1	S	S	S		
	3	1	S	S	S		
	4	1	S	S	S		
	5	1	S	S	S		
	6	1	S	S	S		
	7	1	S	S	S		
	8	1	S	S	S		
	9	2	S	S	S		
	10	1	S	S	S		
	11	5	S	S	S		
	12	2	S	S	S		
	13	5	S	S	S		
Sacramento	1	1	S	S	S		
	2	2	S	S	S		
	3	1	MR (22.9)	S	S		
	4	1	MR (21.5)	S	S		
	5	6	S	S	S		
	6	2	S	S	S		
	7	2	S	S	S		
	8	4	S	S	S		
	9	3	S		S		
	10	4	s /	s	s		
	11	2	s (MR (3.1)	s		
	11	4	s	s /	s		
	12*	9	S	S	S		
Total	35	77					

MIC rating: S = 0.6 - 1.4 ppm MR = 20 - 35 ppm MIC >100 ppm

Detection of oxytetracycline-resistance in *E. amylovora* in orchard surveys

Concentration gradient from 0.02 ppm (edge of plate) to 40 ppm (center of plate)

Moderate resistance found before 2018 had sensitivity levels of ca. 1-3 ppm

Spiral gradient endpoint and direct dilution assays:

Resistant strains were not inhibited in growth at \geq 100 ppm oxytetracycline.

Efficacy of oxytetracycline treatments against fire blight caused strains of *E. amylovora* OXY-S/STR-S or OXY-HR/STR-HR in laboratory studies

Twigs with pear flowers were placed in beakers with water on a light bench in the laboratory. Flowers were spraytreated and inoculated after 4-5 h with strains of *E. amylovora* either sensitive to oxytetracycline and streptomycin (OXY-S STR-S) or highly resistant to both antibiotics (OXY-HR STR-HR) (10⁷ cfu/ml). Disease was evaluated after 7 days.

High resistance to oxytetracycline in *E. amylovora* detected in pear orchards 2018-2020

Pathogen Spotlight

Resistant strains:

- Not inhibited by <a>100 ppm oxytetracycline.
- Also highly resistant to streptomycin (<u>></u>100 ppm)
- Not controlled by labeled rates of oxytetracycline or streptomycin
- Competitive in the presence of sensitive wild type isolates
- Persisted in orchards to the next growing season

and Streptomycin Resistance in *Erwinia amylovora* from Commercial Pear Orchards in California

George W. Sundin,^{1,†} Jingyu Peng,¹ Lindsay E. Brown,¹ Quan Zeng,² Helga Förster,³ and James E. Adaskaveg^{3,†}

¹ Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
 ² Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
 ³ Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521
 Accepted for publication 5 August 2023.

Molecular characterization of resistant strains:

Acquisition of resistance on a new plasmid.

Evaluate and optimize the performance of antibiotics, new formulations of copper, new natural products, GRAS food additives, biocontrols, and additives in laboratory and field studies

- a) Kasumin in combination with exempt-from-tolerance antimicrobials including copper sulfate
- b) Oxytetracycline new formulations of Mycoshield and FireLine
- c) Low-copper concentration products such as copper sulfate pentahydrate (MasterCop) and copper octanoate (Cueva)
- d) New formulations of ϵ -poly-L-lysine and nisin
- e) The new FDA GRAS TDA-NC-1, aluminum potassium sulfate (Alum), cinnamaldehyde (Seican), and new essential oils (Cinnerate). The latter two are OMRI-certified.

New bactericides under evaluation in field studies on fire blight

Category	FRAC Code	Active ingredient	Trade name/Code	
Antibiotics	24	kasugamycin	Kasumin 2L	1
	41	oxytetracycline	FireLine 45, Mycoshield NUP-17010	- New
	25	streptomycin	AgriMycin, FireWall	formulations
Natural products BM 01		capric/caprylic acids	Dart	
	BM 01	<i>Acacia</i> sp. bark extract	QAM	
	BM 01	cinnamaldehyde	Seican	
	BM 01	cinnamaldehyde + EPL	JAX-1	Hew combination
	BM 01	cinnamon oil	Cinnerate	
	BM 01	thyme oil	Thyme Guard	
	BM 01	potassium aluminum sulfate	Alum	
	BM 01	bacterial metabolite	RAA-A	ר 🔶
Food preservatives	BM 01	nisin	food additive	– Biofermentations
	BM 01	ε-poly-L-lysine	food additive	
Biocontrols	BM 02	Aureobasidium pullulans	Blossom Protect	
	BM 02	Papiliotrema terrestris	YSY	
	BM 02	Bacillus subtilis QST 713	Serenade ASO	
Other antimicrobials	s U12	dodine	Syllit	
		water-soluble zinc	Manniplex Zn	
		peroxyacetic acid	Oxidate	Hixture partner

Polymer mixture partners with bactericides for fire blight management

Nisin and ε-poly-L-lysine (EPL): Moderate to very good efficacy in previous trials. An enhancer of activity that we identified in lab studies was evaluated in the field with promising results. **Syllit and Dart** as mixture partners with antibiotics.

Screening of new treatments in small-scale studies with ornamental pear flowers in the laboratory 2023

These experiments supported the high in vitro toxicity of an EPL-cinnamaldehyde (Seican) mixture and helped in integrating formulated JAX-1 treatments in field studies.

Flowers were spray-treated, allowed to air dry, inoculated with *E. amylovora,* and incubated for 5-7 days.

New bactericides in field studies 2022

Bartlett pear, Live Oak, CA

- A previous formulation of an Acacia sp. extract (QAM): <u>not</u> effective
- Field formulations of EPL and nisin in combination with Seican and ManniPlex Zn: very good or poor efficacy, respectively
- Cinnerate similarly effective in 2021-2023 years
- Kasumin-Syllit similarly highly effective in both years

New bactericides in field studies

Treatments on 3-23 and 3-28-23. Inoculation with *E. amylovora* on 3-25-23. Evaluation on 4-18-23.

Part of USDA-SCRI multi-state trial

Efficacy of bactericides for management of fire blight of Granny Smith apples, Fresno Co. 2023

Alum and Jax-1 had the highest performance.

NEW treatments for fire blight with promising results that are strongly supported by their registrants for registration

Category	FRAC Code	Active ingredient	Trade name/Code	
Antibiotics	24	kasugamycin	Kasumin 2L	
	41	oxytetracycline	FireLine 45, Mycoshield NUP-17010	New
	25	streptomycin	AgriMycin, FireWall	formulations
Natural products	BM 01	capric/caprylic acids	Dart	
	BM 01	<i>Acacia</i> sp. bark extract	QAM	—
	BM 01	cinnamaldehyde	Seican	
	BM 01	cinnamaldehyde + EPL	JAX-1	New combination
	BM 01	cinnamon oil	Cinnerate	\
	BM 01	thyme oil	Thyme Guard	
	BM 01	potassium aluminum sulfate	Alum	For evaluation on apple
	BM 01	bacterial metabolite	RAA-A	📛 Biofermentation
Food preservatives	BM 01	nisin	food additive	
	BM 01	ε-poly-L-lysine	food additive	
Biocontrols	BM 02	Aureobasidium pullulans	Blossom Protect	
	BM 02	Papiliotrema terrestris	YSY	
	BM 02	Bacillus subtilis QST 713	Serenade ASO	
Other antimicrobials	U12	dodine	Syllit	
		water-soluble zinc	Manniplex Zn	
		peroxyacetic acid	Oxidate	

Fire blight management - Part 1

- Differences in sensitivity among cultivars and rootstock/scion combinations -
 - □ Less susceptible than Bartlett Comice, Winter Nelis, BPM
 - Rootstock/scions that produce <u>abundant succulent</u> growth, high tree vigor and dwarfing rootstocks are highly susceptible

Cultural practices –

- Avoid high nitrogen fertilization Provide balanced nutrition
- Avoid over-irrigation
- □ Orchard location and design air movement to reduce humidity

Sanitation –

- Prune out fire blight cankers and burn
- □ In-season remove infected tissue (i.e., strikes)
- Remove alternate hosts Cotoneaster, Crataegus, Cydonia, Pyracantha, etc.

Fire blight management – Part 2

Chemical/biological control -

- Toxicants against the pathogen Copper, antibiotics, natural products
- New non-antibiotic bactericides with higher activity are becoming available that need to be tested under different environments and applications need to be optimized (rates, mixtures, adjuvants).
- Biocontrols Competition, antibiosis, site-exclusion, parasitism a new biocontrol (YSY) will be evaluated in 2024
- Systemic acquired resistance (SAR) Actigard (strong), Apogee (strong), LifeGard (weak), Regalia (weak)
- Shoot growth inhibition Apogee
- Insect control Aphids, ants, flies, etc.

Monitoring for bacterial populations – pruning and timing of chemical control

Resistance levels to antibiotics and copper

ALMOND	GRAPE	PLUM					
APPLE	KIWIFRUIT	POMEGRANATE					
APRICOT	PEACH	PRUNE (DRIED					
CHERRY	NECTARINE	PLUM)					
CITRUS	PEAR	STRAWBERRY					
	PISTACHIO	WALNUT					
Adaskaveg, Michailides, and Eskalen							

Will be updated in 2024

APPLE AND PEAR: BACTERICIDE EFFICACY - CONVENTIONAL

	Resistance	Fire b	light ¹¹		Plant Growth	
Bactericide	risk	Contact	Systemic	Phytotoxicity ¹	Regulator/SA R	
Ag Streptomycin, Agri-Mycin, Firewall	very high (25)	5	4	1	0	
Kasumin	high (24)	5	5	1	0	
MycoShield, FireLine	high (41)	4	4	1	0	
Captan ⁶	low (M4)	3	0	0	0	
Copper ⁷	low (M1)	3	0	2	0	
Dithane, Manzate, Penncozeb ⁶	low (M3)	3	0	0	0	
Actigard ¹²	low (P 01)	0	2	0	2	
Apogee ¹¹	low (PGR)	0	2/3	0	3	

APPLE AND PEAR: BACTERICIDE EFFICACY - BIOCONTROLS AND NATURAL PRODUCTS

	Resistance risk	Fire b	light ¹¹		Plant Growth
Bactericide	(FRAC Code) ^{1,13}	Contact	Systemi	Phytotoxicity ¹	Regulator/SA
			С	5	R
AgriPhage	low (BM 02)	2/3	0	0	0
Blossom Protect	low (BM 02)	4	0	1	0
Copper ⁷	low (M1)	3	0	4	0
Actinovate	low (BM 02)	2/3	0	1	0
BacStop	low (BM 01)	2	0	1	0
Blight Ban	low (BM 02)	2/3	0	1	0
Dart	low (BM 01)	2/3	0	0	0
Double Nickel 55	low (BM 02)	2/3	0	1	0
Regalia	low (P 05, BM 01)	2/3	0	1	0
Sanitizers ¹⁴	low	2/3	0	0	0
Serenade	low (BM 02)	2/3	0	1	0
LifeGard	low (P 06, BM 02)	2	2	0	2
Lime sulfur/sulfur ⁸	low (M2)	2	0	4	0

(Rating of 5 is most effective, 0 is not effective)

Thank you