

Actividades de aprendizaje para grupos de jóvenes de 10 a 15 años

Spanish Supplement / Suplemento de español

Director del Proyecto

Willis D. Copeland

Autores/Editores

Jill Shinkle
Willis D. Copeland

Composición y Diseño

Carrie Birmingham
Tina M. Prentiss
Annette Holdman

Ilustradora
Stacey Teas

Traduccion
Bahía Translators

Diseño de la Cubierta
Robert Gerson

Dedicado a
Los jóvener de California y un enidado de la tierra

California Aouatic Science Education Consortium

Consorcio Educativo de
 Ciencias A cuáticas de Califorinia

California Aquatic Science Education Consortium (CASEC)

Graduate School of Education
University of California
Santa Barbara, CA 93106

(805) 893-2739

This volume contains materials for use by Spanish-speaking youth who are engaged in learning activities presented in the five following books:

- Fresh Water Guardians
- Wetlands Protectors

- Water Inspectors

- Plastic Eliminators
- Creek Watchers

Youth leaders' instructions for conducting these activities, including descriptions of purposes, required materials, necessary background information and detailed activity directions, are available from CASEC.

Este volúmen contiene material para uso de los jóvenes de habla hispana interesados en las actividades de aprendizaje en los siguientes cinco libros.

- Guardianes del aqua fresca
- Protectores de los humedales
- Inspectores del aqua
- Eliminadores del plástico
- Vigilantes de los riachuelos

Las instrucciones para los jóvenes lideres que deben conducir estas actividades están disponibles en CASEC. Estas incluyen los objetivos, el material necesario, la información antecedentes y direcciones detalladas de las actividades.

Índice

Eliminadores del plástico 1
Cuadernos de laboratorio, Tarjetas de trabajo, Tablas de actividad, Tarjetas de animales, Tarjeta de anotaciones, Hojas de compilación de datos, Tabla de decomposición, y Tarjeta de datos Inspectores del aqua 37
Cuadernos de laboratorio, Tarjetas de trabajo, y Escenas de charadas
Guardianes del agua fresca 49
Cuadernos de laboratorio, Tarjetas de trabajo, y Tabla de datos
Protectores de los humedales 63
Cuadernos de laboratorio, Tarjetas de trabajo, Guías deidentificación, Instrucciones para doblar la miniguía y Miniguía
Vigilantes de los riachuelos 91
Cuadernos de laboratorio, Tarjetas de trabajo, Instrucciones para doblar la miniguía, Miniguía y Guías de identificación
English - Spanish Dictionary 113
Español- Inglés Diccionario 118

Tarjeta de trabajo \#1

Los efectos dañinos del plástico en los animales

> Pregunta: ¿En qué formas sufren los animales marinos al encontrar el plástico?

Antecedentes: Muchos animales que viven en el océano encuentran plástico desechado. Debido a que este plástico no es natural en su ambiente, los animales no lo reconocen ni saben qué hacer con él. A menudo se enredan en él, se laceran (se cortan y lesionan) con él, o creen que es comida y tratan de comérselo.

Tu actividad: - Mira el video "Trashing the Oceans" el cual ilustra algunos problemas que causan el plástico en el océano.

- Cuando termine el video, de memoria y trabajando con un compañero, haz una lista en el "Cuaderno de laboratorio" de los animales que viste y de cómo cada animal sufría de su encuentro con el plástico
- Compara tu lista con la lista de otra pareja y cuenta:

1. cuántos animales tienen las listas en común.
2. cuántos animales tiene tu lista que no están en la otra. 3. cuántos animales tiene la otra lista que no están en la tuya.

Compara los resultados de tu trabajo con los de otras parejas que miraron el video. ¿Pusiste algún animal en tu lista que ninguna otra pareja haya puesto?
¿. Qué sentiste al ver lo que puede pasar a los animales cuando ellos encuentran el plástico en su ambiente?

ELIMINADORES DEL PLÁSTICO - p. 12
Cuaderno de laboratorio \#1
Los efectos dañinos del plástico en los animales
Animal
Plástico encontrado
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Tarjeta de trabajo \#2

Daño causado a los animales marinos por el plástico

Pregunta: ¿En qué forma sutren daño los animales marinos al encontrar el plástico en el océano?

Antecedentes
Los cientificos creen que existen cuatro formas básicas en que los animales pueden ser dañados (sufrir daño) por el plástico en el océano:

1. Enredamiento - cuando las patas, aletas o incluso el cuerpo entero de los animales queda atrapado en plástico desechado, ellos pueden tener dificultad para nadar y comer.
2. Laceración - Muchos tipos de plástico tienen bordes filosos que pueden cortar un animal causándole dolor, sangramiento e infección.
3. Asfixia - Los animales pueden meterse objetos plásticos a la boca o su cabeza puede quedar atrapada en ellos. Esto puede hacer que animales que respiran aire, como las focas y las aves, tengan problemas al respirar y tal vez morir. Los animales con branquias, como tiburones y peces, pueden tener problemas al circular agua rica en oxígeno en sus branquias y pueden morir también.
4. Ingestión - Algunos animales tragan el plástico, ya sea pensando que es comida o en el proceso de tragar comida real. Esto puede dañar su aparato digestivo y reducir la ingestión de comida real debilitándolos.

El plástico viene en una gran variedad de formas y tamaños. Es posible agruparlo en seis formas básicas.

1. Objetos de una dimensión como soga, sedal y bandas de amarre.
2. Objetos de dos dimensiones como hojas y bolsas.
3. Objetos reticulados como redes o anillos plásticos para latas. ("Reticulado" significa una serie de anillos conectados.)
4. Objetos huecos como botellas y flotadores.

Tarjeta de trabajo \#2 (continuación)

5. Particulas pequeñas como espuma de poliestireno ("styrofoam") quebrada y bolitas.
6. Objetos angulares como cajas plásticas y cajones.

Tu actividad:

- Trabajando con otros dos o tres y usando tu lista de animales dañados por el plástico que escribiste después de ver el video, copia cada nombre diferente de animal y cómo fue dañado por el plástico en un pedazo pequeño de papel. Por ejemplo, podrías escribir "Foca con sedal alrededor del cuello" en un pedazo de papel.
- Coloca cada pedazo de papel en un cuadro en la tabla según el tipo de daño y el tipo de plástico encontrado. Por ejemplo, "Foca con sedal alrededor del cuello" sería colocado en el cuadro junto a "enredamiento" y bajo "objeto de una dimensión" puesto que la foca se enreda en un objeto de una dimensión.
- Compara tu tabla terminada con las tablas creadas por otros grupos. ¿Puso alquien algún animal en un lugar diferente al tuyo? ¿Por qué?

Tabla de actividad \#2

Formas del plástico

		Tofer	

Tabla de actividad \#2
Y el daño causado a los animales

perticulados	Objetos huecos		

Tarjeta de trabajo \#3

Zonas alimenticias de los animales y el plástico

Pregunta: ¿Afectan las diferentes formas de plástico a los animales cuando ellos comen en las diferentes áreas del océano?

Antecedentes: Los cientificos dividen los cuerpos de agua en tres áreas básicas.

1. El área de la superficie: la mera superficie del agua donde ésta se encuentra con el aire y las cosas flotan
2. El área pelágica:
3. El área béntica:
el agua abierta bajo la superficie donde los peces nadan

El fondo del cuerpo de agua que consiste de lodo, arena o roca Los animales recogen su comida en diferentes áreas del agua. Por ejemplo, algunas aves se alimentan en la superficie. Ellas vuelan sobre la superficie del océano y sacan pequeñas partículas flotantes de comida. Muchos peces se alimentan en la zona pelágica. Ellos nadan comiendo animales más pequeños, plancton y otra comida que comparte el agua con ellos. Muchas ballenas, tortugas, focas y aves zambullidoras se alimentan en la zona pelágica. Otros clases de peces, asi como algunas tortugas, ballenas y nutrias marinas nadan sobre el fondo sacando comida que yace en el fondo del océano. A estos se les llama animales que se alimentan en la zona béntica.

I plástico viene en una extensa variedad de formas y tamaños. sposible agrupar todo el plástico en seis formas básicas.

Objetos de una dimensión como soga, sedal y bandas de amarre
2. Objetos de dos dimensiones como hojas y bolsas
3. Objetos reticulados como redes y anillos plásticos para latas
4. Objetos huecos como botellas y flotadores
5. Particulas pequeñas como espuma de poliestireno ("styrofoam") quebrada y bolitas
6. Objetos angulares como cajas y cajones

Puedes esperar que los animales que comen en diferentes áreas del océano se interrelacionen con diferentes formas de plástico. Por ejemplo, un ave volando sobre la superficie del océano puede sacar accidentalmente bolitas de plástico flotando pensando que son comida, pero probablemente no sacaría accidentalmente un objeto flotante angular como una hilera de esponja de poliestireno.

Tu actividad: - Arregla cada dibujo en el Paquete en la Tabla de manera que los diferentes animales estén localizados bajo la forma de plástico con la que tienen problemas y junto al área de agua donde se alimentan.

- Compara tu tabla con otra clasificada por otro grupo. ¿Hay alguna diferencia? ¿Por qué o por qué no?

Tabla de actividad \#3

Formas de plástico y

	objetos de 1 dimensión		objetos
Animales que se alimentan en la 뿐): superficie			
Animales que se alimentan en la zona bénticy			

Zonas alimenticias de los animales

	objetos huecos	patículas pequeñas	objetos anqulares
\|			
1 1 1 1 1			
1			

Tarjetas de animales

Para ser usadas con Actividades \#3 and \#4. Fotocopie un juego para cada grupo y recórtelas en las líneas punteadas.

Delfíńn naríz de botella - se-atimenta de | perca en el agua abierta bajo la superficie agarrándola con los dientes

Orca - se alimenta de peces como el | salmón agarrándola con los dientes.

playa. Se alimenta en la playa y
sobre el agua agarrando la comida con el pico.

Cachalote - se alimenta de calamares y peces en el área bajo la superficie del agua. Agarra la comida rápidamente con | su boca larga y estrecha.

| Tortura morđefora se alimenta de peces, huevos, algas marinas, mejillones, almejas y cangrejos agarrándolos con su sin dientes.

Golondrina elegante - se alimenta de anchovetas y otros peces cuando flota o se sumerge a poca profundidad en el agua. agua

Hábitos alimenticios de los animales y el plástico

 Pregunta: ¿Afectan las diferentes formas de plástico a los animales cuando ellos se alimentan en las diferentes áreas del océano?Antecedentes: Aunque los animales parecen buscar comida en varias maneras, los científicos dividen a los animales marinos por la forma en que se alimentan en tres grupos básicos.

1. Los filtradores cuelan pedacitos de comida del agua mientras circulan lentamente con la boca abierta. Ejemplos de filtradores incluyen algunos peces, marrajos gigantes, almejas, anémonas de mar y ballenas azules.
2. Los arrebatadores agarran la comida cuando pasa a su alcance. Ellos usan a menudo dientes bien desarrollados. Ejemplos de arrebatadores incluyen muchos peces, aves marinas, marsopas, delfines, tiburones, tortugas, lobos marinos y orcas.
3. Los tragadores succionan comida con su boca normalmente sin dientes. Ejertiplos de tragadores incluyen ${ }^{8}$ algunas cabrillas y ballenas grises.

El plástico viene en una extensa variedad de formas y tamaños. Es posible agrupar todo el plástico en seis formas básicas.

1. Objetos de una dimensión como soga, sedal y bandas de amarre
2. Objetos de dos dimensiones como hojas y bolsas
3. Objetos reticulados como redes y anillos plásticos para latas
4. Objetos huecos como botellas y flotadores
5. Particulas pequeñas como espuma de poliestireno

Tarjeta de trabajo \#4 (continuación)
("styrofoam") quebrada y bolitas
6. Objetos angulares como cajas y cajones

Puedes esperar que los animales que tienen diferentes hábitats alimenticios se interrelacionen con diferentes formas de plástico. Por ejemplo, un pez filtrador puede accidentalmente meterse a la boca una bolsa de plástico que flota pero un galón plástico de leche sería muy grande para que le cupiera en la boca.

Tu actividad:

- Arregla los dibujos del Paquete en la Tabla de manera que los animales estén bajo el tipo de plástico con él que tienen problema y junto a los hábitats alimenticios que tienen.
- Compara tu tabla con una clasificada por otro grupo. ¿Hay diferencias? ¿Por qué o por qué no?

Formas de plástico y

	Objetos de 1 dimension	Objetos de 2 dimensiones	Objeto
Tragadores			

hábitats alimenticios de los animales

Tarjeta de trabajo \#5

El plástico en sus muchas formas

Pregunta: ¿En qué formas y figuras viene el plástico?

Tu actividad: Tú tienes un número de objetos de plástico que son a menudo desechados en el océano. Cada objeto es diferente en tamaño, forma, o color. Pero, ¿pueden ser agrupados?

- Localiza dos objetos que pienses que van juntos porque tienen una característica en común. ¿Hay un tercer objeto que tenga esa misma característica y que por eso vaya con los primeros dos? ¿Hay un cuarto? ¿Qué tienen estos tres o cuatro objetos en común para poder formar un grupo?
- ¿Van juntos otros dos objetos para formar un grupo diferente? ¿Hay otros objetos que vayan con ellos? ¿Por qué van juntos?
- Continúa haciéndote estas preguntas hasta que hayas puesto todos los objetos en grupos.
- ¿Qué clasificaciones podrías usar para tus grupos?
- ¿Pueden ser los grupos desintegrados y los objetos de plástico reunidos en diferentes grupos?

Tabla de Actividad \#6

tabla de calorías

Cada dulce significa un artículo de comida para algún animal marino.
 Cada color de dulce representa un número diferente de calorías.

Número de Calorías

Amarillo

Rojo
Verde

3
5
10

Anaranjado
 20

Agregue más colores y números de calorias a la tabla si es necesario.

Tarjeta de anotaciones de actividad \#6
Número de calorías recogidas

Nombre del jugador	Animal	Ronda ${ }^{\text {\# }} 1$	Dañado físicamente	Ronda \#2	RondA \#3
			S \mathbf{N}		
			S \mathbf{N}		
			S N		
			S N		
			S N		
			S N		
			$S \mathrm{~N}$		
			S N		
			S \mathbb{N}		
			S N		
			S N		
			S N		
			S N		
			S N		
			S N		
			S N		
		18	$S \quad N$		

El plástico en el supermercado

Pregunta: ¿Qué tan importante es el plástico para empacar nuestra comida?

Una de las cosas más importantes en tu vida es la comida que comes. Nadie puede vivir sin ella. Pero hoy día, con la excepción
 de alguna gente que cultiva pequeños jardines, la mayor parte de nosotros no producimos nuestra propia comida. Ésta viene desde lejos y es a menudo limpiada, preparada, procesada y empacada antes de que llegue a nosotros. Después de comer nos quedamos con el envoltorio en que la comida vino, el cual tiramos. ¿Qué cantidad de este envoltorio que desechamos es plástico?

Tu actividad: - Tu primera tarea es hacer un cálculo. Si fueras a un
 supermercado local y examinaras cuidadosamente 100 productos diferentes de comida empacados, ¿̇cuántos usarían el plástico como material principal en su empaque? Escribe tu cálculo en la página
 del Cuaderno de laboratorio.

- Tu próxima tarea es reunir información que te permita comprobar qué tan buenos fueron tus cálculos y los del grupo. Ya sea solo o con un amigo, ve a un supermercado local y llena la información en el Cuaderno de laboratorio "El plástico en el supermercado". Para realizar esto tendrás que:

1. Seleccionar un lado de un pasillo del supermercado donde haya una buena variedad de productos de comida.
2. Mientras caminas por el pasillo, registra cuidadosamente (cuenta y marca en el Cuaderno de laboratorio) los productos que ves, y anota el envoltorio en que vienen. (Ve las instrucciones especificas en la hoja.)
3. Calcula el porcentaje de productos que contaste que usan el plástico en alguna forma.
4. Reporta al grupo lo que averiguaste en la próxima reunión.

Cuaderno de laboratorio \#7

El plástico en el supermercado

Nombre del recolector de datos
Supermercado visitado

Fecha de la visita

Procedimiento de recolección de datos:

1. Selecciona en el supermercado un lado de un pasillo en que haya una buena variedad de productos empacados. ¿Qué dice el rótulo del supermercado en el pasillo?
2. Cuenta los productos en este pasillo y registra el envoltorio usado en la TABLA DE REGISTRO de abajo.

- Cuando cuentes el número de diferentes productos disponibles en este pasillo, cuenta las clases de productos, no las cosas individuales. Por ejemplo, si seleccionas è pasillo de panadería y hay diez paquetes de una clase de pan, esto cuenta como un producto. Si hay seis diferentes clases de pan, esto cuenta como seis productos.
- Cuando anotes el tipo de envoltorio, si se usa más de un tipo de material en el envoltorio de un producto, cuenta sólo el material que se usa más, por ejemplo, el puré de manzana puede venir en un frasco con una etiqueta de papel. Puesto que hay más vidrio que papel, cuenta el envoltorio como vidrio.

De los 100 productos de comida empacados en el supermercado, ¿cuántos usan elplástico como material principal? Cálcula:

TABLA DE REGISTRO
Plástico Total =

Vidrio Total $=$ Metal

Otros

Total $=$
Total $=$
3. En el otro lado de esta hoja suma todos los totales y obten un Total final.
4. Copia los totales y el total final de la TABLA DE REGISTRO en la TABLA DE RESUMEN DE DATOS de abajo y luego calcula los porcentajes y anota los resultados.

- Para calcular el porcentaje de cada tipo de envoltorio, divide el Total para ese tipo de envoltorio entre el Total final de productos en el pasillo y multiplica el resulfado por cien. Por ejemplo, si contaste 80 productos en un pasillo y 28 tenían envoltorio plástico, tú divides 28 entre 80 y obtienes 35 . Multiplica esto por 100 y obtendrás 35% que es el porcentaje de productos en el pasillo que son empacados en plástico.

TABLA DE RESUMEN DE DATOS

	Totales	Porcentajes
Productos empacados en:		
Plástico		
Papel		
Vidrio		
Metal		
Otros		
Total final		100%

Hoja de compilación de datos actividad \#7 LOS TIPOS DE EMPACAMIENTO

Cuaderno de laboratorio \#8

Recipientes plásticos en casa

Nombre de recolector de datos:
Fecha de la encuesta:

Procedimiento de recolección de datos

1. En casa, busca en los estantes y alacenas de la cocina, y en el refrigerador recipientes plásticos que contengan comida, bebidas o productos de limpieza. Busca cualquier código de reciclamiento plástico en la parte de abajo de los recipientes. Haz una anớación en la TABLA DE REGISTRO de abajo al lado de cada símbolo de código por cada recipiente que encuentres.

TABLA DE REGISTRO

2. Cuenta las anotaciones en cada línea y anota el total de lalínea a la derecha.
3. Suma los totales de cada línea y anota el Total final en la parte inferior a la derecha.
4. Haz un resumen de tus datos copiando primero los totales de la TABLA DE REGISTRO en los espacios en blanco bajo "Totales" en la TABLA DE RESUMEN DE DATOS de abajo.
5. Luego calcula los porcentajes y anota los resultados de estos cálculos en los espacios en blanco bajo "Porcentajes" en la TABLA DE RESUMEN DE DATOS.

NOTA: Para calcular el porcentaje de cada tipo de plástico, divide el total de este tipo de plástico entre el Total final de recipientes y luego multiplica el resultado por 100. Por ejemplo, si contaste 25 recipientes y cinco de ellos estaban hechos de plástico PETE, dividirás 5 entre 25 y obtendrás 0.2. Multiplica esto por 100 y obtendrás 20% que es el porcentaje de todos los recipientes que contaste que eran recipientes PETE.

TABLA DE RESUMEN DE DATOS

ELIMINADORES DEL PLÁSTICO－p． 55

L\＆กbok＇VNIDOD ヨP 3 ［！ヨวV	（ongu！1s3ljod）Sd ${ }^{\text {（2）}}$
	（0nэl！doud！ 10 d ）dd 「g？
VZVISOW＇OD！	
กdw＊Hว 	
NO！ 	
$\begin{gathered} \text { SO1dWヨ!ヨ } \\ \text { SOO!!Sシ1d Sヨ\&Nヨ!d!วヨy } \end{gathered}$	oOllSVld ヨp sod！I NO！כVD！！！！INヨP！ヨP シ7qVI

Hoja de compilación de datos actividad \#8 TIPOS DE RECIPIENTES

PLÁSTICOS EN ILA CASA						
Recolectores					Totales	Porcent ajes
						100\%

Tarjeta de trabajo \#9

Empacamiento inteligente

Pregunta: ¿Es todo el envoltorio de los productos realmente necesario?
Tu actividad: Tu trabajo es diseñar un envoltorio inteligente. Escoge un producto - puede ser cualquier cosa en que tu equipo esté interesado para diseñarle un envoltorio.

- Un envoltorio inteligente puede incluir materiales que sean reciclables.
- Un envoltorio inteligente puede incluir materiales que tendrían otro uso una vez que el envoltorio esté abierto Ital como la jalea que viene en un frasco que puede ser luego reusado como taza.)
- Un envoltorio inteligente definitivamente no tendría muchos materiales que se tirarían inmediatamente después que se abre el envoltorio.
- Un diseño de envoltorio inteligente consideraría los beneficios de empacamiento, pero evitaría muchos de las inconveniencias.

Usa los materiales de arte provistos para diseñar tu envoltorio. Puedes diseñarlo por medio de dibujos o haciendo un envoltorio del producto.

Cuando hayas terminado, alguien de tu equipo presentará tu envoltorio a todo el grupo señalando sus características y porqué es un ejemplo del empacamiento inteligente.

BENEFICIOS DEL EMPACAMIENTO

1. Conserva el contenido 2. Protege el contenido contra el daño
2. Identifica el contenido
3. Previene su robo
4. Provee instrucciones para SU USO
5. Ofrece convenienclia

INCONVENIENCIAS

DEL EMPACAMIENTO

1. Rápidamente se llenan los terraplenes sanitarios
2. Dañino a los animales
3. Su producción consume energía
4. Su producción consume recursos naturales
5. Su producción produce desperdicios tóxicos
6. Aumenta el costo del producto

Tarjeta de trabajo \#10

Duración de la basura

Pregunta: ¿Cuánto tiempo duran los diferentes tipos de basura antes de descomponerse?

Antecedentes: Cuando la basura se deja afuera en el ambiente, el agua, la luz solar, microorganismos y químicos pueden empezar a degradar el material. Esto es lo que el término "descomponer" significa. El plástico, el metal y el vidrio se descomponen despacio químicamente, mientras que materiales como el papel, la madera y la comida se descomponen más rápido biológicamente.

Tu actividad: - Arregla la basura que te entregaron en orden en relación al tiempo en que estimas que cada objeto tardaría en descomponerse.

- Encima de cada objeto, coloca los rótulos con el límite de tiempo, como se muestra en el dibujo.
- Cuando hayas terminado, compara la duración de tiempo que calculaste con la de otros grupos y luego con la tabla que muestra los cálculos de los científicos.

Actividad \# 10

Tabla de descomposición

Objetos recogidos

Es posible que encuentres que ayuda trabajar con un amigo cuando limpias la playa, uno recogiendo la basura y el otro tomando notas. Una forma fácil de llevar control de los objetos que encuentras es hacer marcas de registro. Al terminar suma las marcas de registro de cada línea y escribe el número en el cuadro a la derecha.

Sea parte de la solución

Pregunta: ¿Qué puede hacer tu grupo para ayudar a resolver los problemas causados por la basura plástica?

Informando a otros acerca de los problemas de la basura de la playa y animándolos a dejar de ensuciar, tu grupo puede ayudar a resolver algunos de los problemas causados por la basura plástica en las vías navegables. Verdaderamente puedes ayudar a tu comunidad a controlar el problema de la basura plástica en las vías navegables y en la playa. Verdaderamente puedes realizar la belleza de tu comunidad, y realmente puedes ayudar a proteger la vida y seguridad de los animales marinos.

Tu actividad:

- Asegúrate de haber leído los antecedentes en voz alta en tu grupo pequeño.
- En los próximos 10 ó 15 minutos, ofrece tantas respuestas como sea posible a las siguientes dos preguntas:
a. ¿Qué puede hacer tu grupo de ióvenes para ayudar a resolver los problemas causados por plásticos y otra basura en las vías navegables?
b. ¿Qué puede hacer tu grupo para enseñar a otros acerca de la basura plástica?
- Escoje a una persona de tu grupo pequeño para decirle a todo el grupo un par de tus mejores ideas. Hoy tu grupo de ióvenes decidirá acerca de uno o dos proyectos que llevarán a cabo y ayudarán a resolver el problema de la basura plástica.

Tarjeta de trabajo \#

La prueba del sabor: ¿Lo embotellado es mejor?

Pregunta: ¿Qué tipo de agua crees que sabe mejor?
Antecedentes:
En cada vaso de agua potable existen una variedad de minerales disueltos y otras substancias. A pesar de que estas substancias no son visibles en el agua, definitivamente afectan el sabor del agua. El agua potable en muchos lugares de California tiene un contenido de mineral disuelto mucho más alto que el promedio. Si hay un alto nivel de minerales disueltos decimos que el agua es "dura." El agua dura tiene a menudo altos niveles de calcio y magnesio que hacen que el agua sepa un poco calcárea. Muchos californianos prefieren beber agua embotellada en lugar de agua corriente. Pero, ¿̇sabe el agua embotellada realmente mejor? En una prueba del sabor, el agua fría de "Los Angeles Department of Water and Power" una y otra vez fue catalogada como mejor que muchas aguas embotelladas caras. Algunas aguas embotelladas son simplemente agua corriente filtrada por las cuales los consumidores pagan un precio muy alto. Y el agua embotellada no es necesariamente más saludable que el agua corriente. La preferencia personal es el factor más importante para determinar qué agua sabe mejor, tal vez siendo influída por el tipo de agua a que el individuo se acostumbró. En esta actividad se usa una prueba del sabor "a ciegas," esto quiere decir que los que prueban el água no verán la marco o tipo de agua que están probando.
Actividad: - Arregla la prueba del sabor. Los miembros que tomarán la prueba del sabor no deben ver mientras se prepara. Rotula cada vaso con una letra y escribe el tipo de agua que se puso en cada vaso.

- Usa la Tarieta de anotaciones en el Cuaderno de laboratorio
 para registrar tus propios resultados. Usa la "clave" para asignar a cada muestra de agua una anotación. Cuando se terminen todas las pruebas, cataloga las muestras del 1 (mejor) al 5 (peor).
- Promedia los resultados para cada tipo de agua. ¿Cuáles fueron los resultados de la prueba del sabor? ¿Cómo se relacionan los resultados con el costo del agua?

La prueba del sabor: ¿Es lo embotellado mejor?

TARJEIA DE ANOTACIONES

Muestra
de agua
Anotación
Clasificación
\mathcal{A}
B
C
\mathcal{D}
E
\mathcal{F}

Mis comentarios:

CLAVE

1= Sabe excelente
$2=$ Muy bien
3= Pasable
$4=$ No muy bien
$5=$ Terrible

Escenas de charadas

Construye tu propia Tomamuestras de agua Meyer

Pregunta: ¿Cuál es la mejor manera de obiener una muestra de agua a una profundidad o en un lugar específico?

Actividad: 1. Usa la pierna de una media usada como la red que contendrá la botella y la piedra. La piedra debe ser bastante grande para hundir la botella cuando está llena de aire.
2. Haz un nudo alrededor del cuello de la botella con las puntas de la parte de arriba de la media y luego conecta una cuerda de aproximadamente 40 pies (o más larga si vas a trabajar en agua muy profunda) a este nudo. Sujeta también un corcho a esta cuerda, como se muestra en el dibujo, usando la armella y otro pedazo de cuerdc
3. Haz nudos en la cuerda a intervalos de cinco pies e inserta hilo de color en ellos así podrás ver a qué profundidad se obtienen las muestras de agua.
4. Prueba el tomamuestras en un bote de basura par. asegurarte que el corcho salga cuando le das un ¡alón fuerte a la cuerda. Ponle el corcho a la botella, baja el tomamuestras hasta que esté completamente sumergido en el agua y dale un ialón fuerte a la cuerda. Para hacer esto necesitarás pararte en una silla. Si el corcho no
 sale, amarra la cuerda del corcho en un lugar diferente y trata de nuevo.

La temperatura del agua a diferentes profundidades

Pregunta: ¿Cómo se relaciona la temperatura del agua con la profundidad?

1. Mide la temperatura de la superficie del agua. Anota la temperatura en la sección Cuaderno de laboratorio.
2. Predice cuál será la temperatura en el mismo lugar en que tomaste la temperatura de la superficie pero a tres profundidades diferentes. Escoge tres profundidades en las cuales tomar muestras y escribe tus predicciones en la sección Cuaderno de laboratorio.
3. Baja el Tomamuestras Meyer al agua con el tapón puesto. Cuando esté en el lugar deseado, dale un jalón a la cuerda para quitarle el corcho a la botella. Espera algunos segundos para que la botella se llene. Saca cuidadosamente la botella hacia la superficie y métele el termómetro. Registra la temperatura verdadera junto a la temperatura que predijiste y luego regístrala en el gráfico. Si estás trabajando en un puente o muelle alto, asegúrate de tomar en cuenta la distancia entre el lugar donde estás parado y la superficie del agua.
4. Repite el mismo procedimiento en el mismo lugar pero a diferentes profundidades sacando una muestra, tomando la temperatura y luego registrándola en la tabla y el gráfico. Si estás llevando a cabo este experimento en agua a una profundidad mayor de 50 pies, toma más de tres muestras a profundidad, tal vez tomando muestras cada diez pies.
5. Compara tus medidas verdaderas con las predicciones.

Sugerencias para tomar la temperatura del agua

- Toma la temperatura inmediatamente después de sacar la muestra de agua en la botella.
- Resguarda el termómetro de los rayos directos del sol.
- Pon la cubeta del termómetro en el agua en la botella y espera por lo menos un minuto.
- Si es posible, lee el termómetro mientras la cubeta permanece en el agua. Si no lo haces así, léelo inmediatamente después de sacarlo.

La temperatura del agua a diferentes profundidades
Fectua:
Lugar:

	Predicción de	Temperatura
Profundidad	temperatura	verdadura
Superficie	$\mathfrak{N} / \mathfrak{A}$	
pies		
pies		

Profundidad en pies

Cuaderno de laboratorio

Midiendo la salinidad de muestras de agua

13											
12											
11											
11											
0											
9											
8											
7											
5											
1											
	2	2	46	6	810	1012	14	1	82	0	24
						rcenta	aje de				

Instrucciones:

1. Pon un punto donde se intersectan Los ejes de 4 en La "Indicación en el tubo" y el cero de "Porcentaje de sal". Esto se Face porque en la solución salina alo\% el 4 en el tubo toca la superficie del agua.
2. Pon el fidfómettro en la solución salina al 3% y averigua qué número en el tubo toca la superficie del agua. Pon un punto en el cruce de ese número en La "Indicación en el tubo" y el 3 en el eje de "Porcentaje de sal." Conecta los primeros dos puntos.
3. Repite el paso 2 para las sotuciones salinas al 10% y 20%.
4. Ahora, tu fidtómetro está calibrado.

¿Clara u obscura?

Prueba uno:

Profundidad a la cual desaparece el disco
Profundidad a la cual vuelve a aparecer
El limite de visibilidad (promedio de las dos profundidades)

Prueba dos:
Profundidad a la cual desaparece el disco
Profundidad a la cual vuelve a aparecer El limite de visibilidad (promedio de las dos profundidades)

Prueba tres:
Profundidad a la cual desaparece el disco
Profundidad a la cual vuelve a aparecer
El limite de visibilidad
(promedio de las dos profundidades)

Promedio de los tres
limites de risibilidad
$\mathcal{M i s}$ comentarios:

INSPECTORES DEL AGUA - p. 39
Cuaderno del laboratorio "7

Densidad
del
agua
Liviana

Tarjeta de trabajo \#8

Poniendo a prueba la dureza del agua.
Pregunta: ¿Podemos determinar qué muestras de agua son "más duras" 3 "más suaves" que otras?

1. ¿Qué tipo de aguapredices queres la más dura y çúal es la más suave: destilada, corriente, embotiellada o salada? Anota tus predicciones en la sección del Cuaderno de laboratorio de abajo.
2. Llena un frasco de agua destilada hasta la mffadi: Agrega una gota de jabón líquido, cúbrelo y agíalo 5 veces. Continúa agregando gotas deriaborn, una a la vez, agitando cinco veces hasta que obtenga $5^{\text {h }}$ espuma duradera. Registra en la sección del Cuaderno de laberaterio de abajo las gotas necesarias para producir espuma duradera.
3. Repite el procedimiento con otras muestras de agua manteniendo todo exactamente igual, excepto el tipo de agua. Usa un frasco limpio y rotulado para cada muestra. Registra el número de gotas necesarias para producir espuma duradera. 4. Habla de los resultados. ¿Es tu agua corriente dura o suave? ¿Qué tipo de agua es la más dura? ¿Qué tipo de agua es la más suave? ¿Qué tipo es mejor para tavar-mepa? ¿Fueron tus predicciones correctas?

Tus predicciones:

¿Qué tipo de agua"es La más suave y fiatá espuma más rápidamente?
 producir espuma?

Tus observaciones:

| Agua destilada |
| :--- | :--- | :--- |
| Agua corriente |
| Agua embotellada |
| Agua salada |$\square \square$| gotas |
| :--- |
| gotas |
| gotas |
| gotas |

Cuaderno de laboratorio \#9
En busca de la vida acuática

Nombre (nombre propio o nombre que (le das)	Descripción	Número encontrado	Hábitat(s) donde se encontró	Dibujo

GUARDIANES DEL AGUA FRESCA - p. 9

Tarjeta de trabajo \#2

Construye un purificador solar de agua

Pregunta: ¿Se puede crear agua potable del agua salada?
Actividad:

1. Sigue la ilustración para preparar tu purificador solar de agua. El nivel de agua salada debe estar por lo menos una pulgada abajo de la parte de arriba del frasco.
2. Asegúrate de que el plástico cubra completamente la parte de arriba del cubo. El plástico debe colgar lo suficiente para hacer una forma de cono que apunte hacia el frasco cuando se coloca el peso. Pero asegúrate de que el plástico no toque el frasco.
3. Coloca tu purificador al calor del sol y déjalo allí por algunas horas.
4. Después de algunas horas, o al día siguiente, quita la cubierta plástica y prueba el agua en el frasco.
5. (Opcional) Pon otro material además de la sal en el agua (colorante de comida, jugo de limón, azúcarl y ve lo que pasa.

Tarjeta de trabajo \# 3

iSaca el lodo!

Una simulación del tratamiento del agua

Pregunta: ¿Cómo limpian el agua las instalaciones de tratamiento del agua?

Actividad:

Paso dos: Coagulación

Agrega $1 / 2$ cucharadita de alumbre al agua lodosa y revuélvela. El alumbre hace que la tierra se vuelva terrones.

Paso cuatro: Filtración

Haz unos cinco hoyos pequeños en el fondo de uno de los vasos. En este vaso, pon una capa de grava en el fondo y luego una capa de arena sobre ella. Echa cuidadosamente el agua lodosa a través de la arena y la grava. Ten cuidado que no se eche ni se ¿remueva la tierra que se ha asentado en el fondo. Recoge el agua más clara que pasa por los hoyos en el otro vaso plástico.

Paso cinco: Desinfección con Cloro

 Agrega unas cuantas gotas de "cloro" a tu muestra de agua limpia. No bebas el agua.GUARDIANES DEL AGUA FRESCA - p. 18
Cuaderno de laboratorio \#3
Saca el Lodo: Ilna simulación del
tratamiento del agua
Observación

Paso cuatro:
Filtración

Paso cinco:
Desinfección
\mathcal{M} is comentarios:

Tabla de datos \#S

(

Tarjeta de trabjao \#5a

iPiensa antes de deshacerte de ellos!

 Inspección de materiales peligrosos en casa> Pregunta: ¿Cómo evitamos que materiales peligrosos dañen nuestras reservas de agua dulce?

Actividad: 1. Avisa a tus padres que vas a llevar a cabo una inspección de materiales peligrosos en casa. Hazles saber que serás cuidadoso al manejar los productos y que no abrirás ningún recipiente.
2. Realiza tu inspección mirando en la cocina, el cuarto de baño, el garaje o en otro lugar donde se guarden materiales potencialmente peligrosos. Escribe en las páginas de inspección el nombre de cada producto que sospeches es una substancia peligrosa. Escribe cualquier palabra que veas en la etiqueta que te haga pensar que es peligrosa.

Tarjeta de trabajo

El aceite y el agua no se mezclan

Pregunta: ¿ Qué pasa cuando el aceite llega al agua subterránea o al agua superficial?

Actividades: Aceite en el agua superficial

1. Echa agua en uno de los vasos y luego echa una pequeña cantidad de aceite de cocina en la superficie del agua. Imagina que éste es aceite en la superficie del océano, una bahía o un lago. Habla con tu grupo de lo que pasaría en un derrame de aceite a los pequeños organismos que viven y se alimentan en la superficie del agua. ¿Qué les pasaría a los organismos que usan la superficie del agua como criadero? ¿Qué les pasaría a las aves que flotan en la superficie o se zambullen en el agua para comer?
2. Realiza los próximos cuatro pasos, dibujando o describiendo los resultados de cada paso en la hoja de Cuaderno de laboratorio. (1) Examina tu pluma seca con la lupa. Dibuja o describe lo que ves. (2) Sumerge tu piuma en el segundo vaso lleno sólo con agua limpia y dibuia o describe cómo se ve. (3) Sumerge tu pluma directamente en el aceite flotando en la superficie del agua y luego dibuja o describe cómo se ve. (4) Limpia la pluma con detergente, enjuaga y sécala y luego dibuja o describe cómo se ve.
3. Habla con tu grupo de los cambios que observaste después de que tu pluma fue expuesta al agua y luego al aceite. ¿Cómo afectan las plumas aceitosas su habilidad de volar, mantenerse calientes o limpiarse? ¿Cuáles crees que son las mejores maneras de limpiar aves

Tarjeta de trabajo \# 6b

El aceite y el agua no se mezclan cubiertas de aceite?

Aceite en el agua subterránea

1. Mucha gente en los EE. UU. depende del agua subterránea para su agua potable. El agua subterránea usualmente no se encuentra en ríos o lagos subterráneos sino en aquíferos. Un acuífero es una capa subterránea de roca porosa o grava que contiene agua. Este experimento mostrará cómo el aceite desechado inadecuadamente o que gotea de los carros puede contaminar un acuífero.
2. Haz 5 ó 6 hoyos en el fondo de uno de los vasos plásticos. Luego echa $1 / 2$ vaso de arena o grava de acuario fina en este vaso. Esta capa representa un acuífero subterráneo. Mide 1/2 vaso de agua, échalo en la grava y recoge el agua que se filtra en el otro vaso. Mide la cantidad de agua que pasó. La cantidad de agua restante es almacenada entre las partículas de arena o grava, como ocurre en un acuífero.
3. Habla de lo que pasaría si alguien echara aceite de motor usado en el suelo sobre este acuífero.
4. Para representar esto, echa varias gotas de pintura de agua roja en la arena empapada de agua en el vaso. Imagina que hay una bomba o pozo que extrae agua de este aquífero para obtener agua potable. ¿Te gustaría tomarla? Echa 1/2 vaso de agua en el vaso para representar lluvia. Nota cuánto aceite pasa y cuánto se queda en la grava. Echa otros vasos de agua sobre la grava. Nota cuánta agua adicional se necesita para dejar limpia la grava.

El aceite y el agua no se mezclan

Paso \#

1-ptuma seca
2 - pluma sumergida en agua Cimpia

3 - pluma sumergida en aceite flotando en la superficie del agua

4-pluma después de ser lavada con detergente, enjuagada y secada

Cantidad de agua que pasó por el acuifero Facia el segundo vaso

Cantidad de agua que quedó atrapada en el acuifero (resta la cantidad de arrifa de $1 / 2$ vaso)

Cantidad de agua necesaria para limpiar el acuifero de"aceite" (pintura roja) agregado

Tarjeta de trabajo \# 8

Derrame de petróleo

Pregunta: ¿Cuál es la mejor manera de limpiar después de un derrame de petróleo?
Antecedentes: Estas son las herramientas que los profesionales usan para limpiar derrames de petróleo:
Barreras de contención - representadas por tu cuerda. Se usan para acorralar el petróleo en la superticie del agua y evitar que se extienda. Recolectores - representados por los goteros. Se usan para aspirar el petróleo de la superificie del agua.
Dispersadores químicos - representados por los atomizadores llenos de agua y líquido para lavar trastos. Se usan para hacer que el aceite se descomponga y se hunda.
Toallas absorbentes - representadas por las servilletas. Se usan para limpiar las rocas y la playa.

Actividad: 1. Como grupo, usen sus herramientas para quitar tanto petróleo como sea posible de su modelo de vía de navegación.
2. Usen las herramientas en la forma que quieran o desarrollen nuevas herramientas. Sin embargo, para simular la vida real, no pueden sacar grandes cantidades de agua de la palangana.

Tarjeta de trabajo

Protege las reservas de agua de la tierra

Pregunta: ¿Qué puede hacer tu grupo para ayudar a proteger los recursos de agua dulce?

Antecedentes: El agua limpia es crítica para la supervivencia de la mayor parte de las cosas vivas en la tierra. Desafortunadamente el agua es a menudo contaminada por humanos con resultados algunas veces desastrosos. Muchos individuos y organizaciones están trabajando para limpiar el agua contaminada o para educar a otros en cómo prevenir que el agua se contamine. La gente joven a menudo se preocupa particularmente acerca del futuro de nuestro ambiente y, por medio de servicio comunitario o proyectos de educación pública, puede contribuir a la protección de nuestros recursos vitales de agua.

Actividad: 1. Asegúrate de haber leído la sección Antecedentes en voz alta a tu grupo.
2. En los próximos 10 ó 15 minutos, da tantas respuestas como puedas a las siguientes dos preguntas:
a. ¿Cuáles son algunas de las formas en que los humanos hacen que el agua dulce se contamine?
b. ¿Cuáles son algunas de las formas en que tu grupo puede ayudar a resolver algunos de los problemas del agua contaminada?
3. Selecciona una persona de tu grupo para decir al grupo entero un par de sus mejores ideas. Hoy tu grupo decidirá acerca de uno o dos proyectos que en realidad va a llevar a cabo y que ayudarán a resolver el problema de la contaminación del agua.

La búsqueda en el humedal

Con tu grupo, busca las cosas de la lista en el área designada del humedal. Cuando encuentres algo, dibújalo o describelo tan detalladamente como sea posible.

- Un joven y un adulto de la misma especie lya sea planta o animall
- Algo interesante en el agua
- Algo más pesado que el peso combinado de toda la gente de tu grupo
- El color naranja
- Tres sonidos diferentes de animales
- Una huella de animal
- Una planta que pienses que puede tener un uso para los humanos ¿Para qué podrían usarla los humanos?
- Un olor que normalmente no encontrarías en la casa o la escuela
- Algo que se mueve más rápido que tú
- Un signo de descomposición de una planta
- Algo que un animal dejó trás de sí

La búsqueda en el humedal

Tres partes florecientes distintas

- Dos tipos de suelo notablemente diferentes

Algo que ves nadando

Tarjeta de trabajo \#2
Hoja de inspección de plantas

Nombre del área

Plantas

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6.
7.
8. \qquad
9.
10.

\&
r

PROTECTORES DE LOS HUMEDALES - p. 20
 Cuaderno de laboratorio \#3

Inspección de vistas del humedal

1. En los cuadros deabajo del encabezamiento adecuado describe cada tipo de animal del fumedal que ves. Describe el tamaño del animal, color, otras características de identificación y también to que el animal estaba faciendo cuando Lo viste. Ulsa un cuadro diferente para cada especie de animal que encuentras. Registra también en cada cuadro el número de animales o plantas que ves de esa especie.

Cuaderno de laboratorio\#3

2. Haz un gráfico de barras del número total de especies de La fauna que observaste.

10 9 8 7 6 5 4 4 3 1

Aves

Insectos
Reptiles/
Mamiferos Anfibios
3.

Haz otro gráfico de Garras del número total de animales que observaste.

15

Aves Peces/	Insectos	Reptilest	Mamiferos
	Mariscos	68	Anfibios

Tarjeta de trabajo

\#4

Minimodelo de un humedal

Actividad:

5. Recoge la bandeja y echa cuidadosamente el agua que escurrió de la tierra en el vaso graduado. ¿Dónde está el resto del agua? Quita el humedal. Nota cómo absorbió parte de la lluvia.
6. Ahora, haz llover otra vez, esta vez sin el humedal. Rocía otra vez medio vaso de agua sobre la tierra en el mismo lugar y a la misma velocidad que antes. Observa y escribe lo que notas en la hoja del Cuaderno de laboratorio. ¿Qué fue diferente esta vez con respecto a la velocidad y la cantidad de agua que se escurrió de la tierra?

Demostración de Filtración

7. Tira el agua de la última demostración y vuelve a poner el humedal. Esta demostración de filtración será igual que la última, con la excepción de que agregarás tierra y contaminante al suelo.
8. Rocía un puñado pequeño de tierra sobre el suelo y luego echa más o menos una cucharadita de mezcla de bebida en polvo en alguna parte de la tierra. El polvo de color representa la contaminación como los pesticidas o un sitio para deshechos tóxicos que se encuentran en la tierra pero que terminan en el agua cuando llueve.
9. Rocía $1 / 2$ vaso de agua sobre todo el suelo para simular lluvia. Observa y escribe lo que ves en la hoja del Cuaderno de laboratorio. ¿Qué les pasó a las partículas de tierra y a la mezcla de bebida en polvo?
10. Quita el humedal y rocía más tierra y mezcla de bebida en polvo sobre la tierra de manera que haya la misma cantidad que antes.
11. Haz llover otra vez rociando $1 / 2$ vaso de agua en toda la tierra. Escribe tus observaciones sobre las diferencias de lo que le pasó a las partículas de tierra y la mezcla de bebida en polvo cuando "llovió" después de quitar el humedal.

Minimodelo de un humedal

Con el humedal en su lugar:
¿QUÉ PASÓ CUANDO
"LLOVIÓ?"
Sin el humedal:

Con el humedal en su lugar:

> ¿QUÉ PASÓ CUANDO LLOVIÓ SOBRE LA TIERRAY LOS CONTAWNIES?

Sin el humedal:

Trazando la ruta migratoria del Pacifico

$$
\begin{aligned}
\text { Pregunta: } & \text { ¿Qué rutas toma el ganso canadiense cuando migra } \\
& \text { por Norte América y cuál es la importancia de los } \\
& \text { humedales de California para su migración? }
\end{aligned}
$$

Actividad: 1. En esta actividad vas a volverte un biólogo de la fauna. Tu trabajo es explicar la ruta que toma el ganso canadiense
 cuando migra de ida y vuelta por Norte América entre sus áreas de anidación en el norte y sus áreas de invernación en el sur.
2. Como eres un biólogo, constantemente estás recibiendo reportes de cazadores, naturalistas, excursionistas, escolares y observadores de pájaros que han encontrado gansos canadienses anillados. Ahora todos estos reportes de anillamiento que han sido recogidos están en tu bolsa. Cada reporte de anillamiento tendrá una fecha. Según la fecha podrás decir si el ave estaba migrando hacia el norte o el sur, o estaba en su área de anidación o en sus áreas de invernación cuando fue encontrada.
3. Antes de empezar, encuentra la Leyenda en la hoja del mapa. Lena cada cuadro en la clave usando un color diferente.
4. Saca el primer reporte de anillamiento de la bolsa. Mira primero la fecha y, usando la leyenda en la parte de abajo de la hoja del mapa, determina si el ganso estaba migrando hacia el norte o el sur o estaba en su área de anidación o en sus áreas de invernación. Usa el color correspondiente, luego marca el lugar con un punto en el mapa.
5. Saca otro reporte de anillamiento de la bolsa y haz la misma cosa. Continúa hasta que hayas trazado todos los reportes.
6. Sombrea los espacios entre puntos del mismo color para mostrar las rutas migratorias y el área general de anidación y de invernación. El proceso que acabas de terminar es el proceso verdadero usado por los científicos para explicar las rutas migratorias de las aves.

1. Ganso atrapado a mano en el sur de Alberta, Canadá, el 16 de agosto de 1992.
2. Ganso anillado observado por una familia caminando en el suroeste de Montana el 28 de noviembre de 1992.
3. Ganso matado por un cazador en Alberta, Canadá el 16 de agosto de 1992.
4. Número de anillo de ganso leído a distancia por un observador en la lsla de Vancouver, Colombia Británica el 9 de julio de 1992.
5. Cazador reporta anillo desde el área central de Oregón el 30 de diciembre de 1989.
6. Ganso atrapado en el sur de Oregón por estudiantes de escuela intermedia después de haber sido debilitado por una tormenta, el 15 de noviembre de 1992.
7. Ganso encontrado muerto por campistas en el centro de Utah el 11 de noviembre de 1989.
8.. Anillo de ganso enviado de Alberta, Canadá sin información acerca de la recuperación o la causa de la muerte el 4 de agosto de 1992.
8. Cazador reporta ganso que fue herido por su grupo en el este de Idaho el 13 de octubre de 1992.
9. Ganso al que se le anilló en el norte de California fue identificado por su anillo y reportado desde el norte de Montana por un residente el 19 de mayo de 1992.
10. Esqueleto de un ganso con anillo encontrado y reportado desde el área
central de Nevada el 30 de septiembre de 1992.
11. Ganso capturado otra vez casi un año más tarde en el mismo lugar donde Oregón el 8 de le aniló, en el nore de Oregón el 8 de octubre de 1992.
12. Ganso que se anilló en Utah matado por un cazador en Idaho el 31 de octubre de 1992
13. Ganso herido atrapdo en Sel área central de Nevada el 11 de noviembre de 1992.
14. Ganso que se anilló en California en 1974 y herido por cazador aproximadamente 18 años más tarde en Oregón el 30 de enero de 1992.
15. Ganso muerto encontrado cerca de la frontera de Nevada, California y Arizona el 13 de enero de 1992. Muerte causada por un depredador.
16. Cadáver de ganso encontrado en las afueras de la ciudad de San Diego, California, el 2 de febrero de 1991.
17. Ganso herido encontrado en el noroeste de Nevada el 13 de mayo de 1991.
18. Ganso anillado capturado vivo cerca del lago Tahoe, California el 29 de agosto de 1992.
19. Ganso capturado vivo por un naturalista en una costa del norte de la Colombia Británica el 18 de agosto de 1991.

> 21. Ganso anillado observado en el Círculo Ártico por un voluntario en un viaje de investigación científica el 17 de julio de 1992 .

Reportes de Anillamiento de glansos Canadienses

22. Una mujer pescando encuentra un ganso recién matado en el sur de Alaska el 30 de julio de 1991

Ganso encontrado después de ser atropellado por vehículo en la costa central de la Colombia Británica el 26 de septiembre de 1990.
24. Ganso herido por cazador en el norte de Alberta el 30 de septiembre de 1991.
25. Ganso capturado otra vez por un anillador de aves en los Áreas del Noroeste el 9 de abril de 1991.
26. Ganso anillado capturado vivo por campistas en las Áreas del Noroeste el 4 de julio de 1992.
27. Dos gansos a los que se les anilló el mismo día en 1974 encontrados muertos cerca de la frontera de Oregón y ldaho el 30 de marzo de 1991.
28. Ganso lesionado encontrado en el centro de Oregón cerca de la frontera con Washington el 4 de abril de 1990.
29. Ganso muerto encontrado por excursionistas cerca de un pequeño lago en las montañas Sierra de California el 9 de octubre de 1991
30. Ganso herido por un perro y luego rescatado por escolares en una isla costera de la Colombia Británica el 30 de junio de 1991.
31. Número de anillo de ganso leído a distancia por un naturalista en el norte del Yukon, Canadá, el lero de agosto de 1992.
32. Ganso anillado accidentalmente lesionado y matado mientras lo recapturaban en una operación para anillamiento en suroeste de Utah el 14 de febrero de 1990.
33. Anillo de ganso enviado del noroeste de la Colombia Británica sin información de la recuperación o causa de muerte el 27 de marzo de 1992.
34. Ganso muerto encontrado por una familia en el centro de Alberta, Canadá el lero de mayo de 1990.
35. Ganso capturado y liberado por perseguidor en el centro de Idaho el 18 de agosto de 1990.
36. Número de anillo de ganso observado por un grupo de observadores de pájaros en el Estuario del Río Tijuana, en la frontera entre California y México el 31 de octubre de 1991.
37. Anillo enviado del centro de México el 25 de diciembre de 1990.
38. Anillo encontrado en el área central de California, el lero de abril de 1991.
39. Ganso anillado capturado y liberado en el noroeste de México el 19 de mayo de 1992
40. Ganso herido por cazador en el centro norte de México el 31 de enero de 1991.

Criaturas del cieno

Pregunta: ¿Hay animales que vivan enterrados en el cieno del lodazal?
Actividad: 1. Observa la demostración con la criba presentada por tu líder de grupo.
2. Con tu grupo, usa tu juego de cribas para realizar los siguientes pasos:

- Agarra las mallas de manera que la que tiene hoyos más grandes quede arriba y la que tiene hoyos más pequeños en la parte de abajo.
- Pon un pedazo de cieno del tamaño de una pelota de golf en la malla de arriba y aflójalo con el palito de paleta mientras otra persona cuidadosamente echa agua sobre el cieno. Cuando $2 / 3$ del cieno hayan pasado por la malla de arriba, separa las mallas para examinar.
- Delicadamente coloca cualquier organismo que encuentres en los recipientes de recolección.
- Identifica los organismos usando los dibujos de abajo y registra el número que encuentres. Si los organismos que encuentras son diferentes a los de los dibujos, haz un bosquejo y regístralos en los cuadros vacíos provistos. Pon una pequeña cantidad de cieno en un recipiente y examínalo con la lupa.

Tarjeta de trabajo "6

Guía de identificación de criaturas del cieno

Almeja/Mejillón

(1 a 3" de largo)

Anfipodo (1/4" de largo)

Camarón
(1 1/2" de largo))

Instrucciones para doblar la miniquía de campo para huellas de animales

1. Doblen la hoja transversalmente para que el texto y los dibujos aparezcan en el lado de afuera.

2. Doblen los bordes separadamente para formar una "W".

3. Dóblenla en dos otra vez para formar un pequeño rectángulo. Luego desdoblen este último doblez y dóblenla al revés haciendo los pliegues bien marcados en cada lado.

4. Desdoblen hasta el paso \#1, cuando la hoja está doblada solamente a la mitad.

5. Coloquen la hoja plana en la mesa con el borde doblado más cerca de ustedes y corten a lo largo a través de los lados hasta el centro como se ve en el diagrama.

6. Desdoblen la hoja completamente con el texto y los dibujos hacia arriba y con el borde corto de la hoja más cerca de ustedes.

7. Vuelvan a doblar la hoja a la mitad, esta vez a lo largo. Paren la hoja en la mesa de manera que los dibujos se miren hacia arriba como se muestra en el diagrama.

Instrucciones para doblar la miniquía de campo para huellas de animales (COntinuación)

8. La parte que cortaron con las tijeras debe abrirse y formar un diamante. Agarren los dos lados de afuera y empujen hacia adentro hasta formar una puerta giratoria de cuatro lados.

"puerta giratoria"

9. Finalmente, doblen juntando todas las páginas para formar un librito. Asegúrense de que la portada esté en el frente.

10. Hagan los pliegues bien marcados en todos los lados y LISTO, HAN ACABADO.

11. Corta una rebanada fina del tallo. ¿Puedes ver los foyos? Mira con La lupa si tienes una.
12. Arranca una espiga de anea. Las partes individuales de la pelusa blanca son los frutos. Míralas con la lupa, si tienes una.
13. Encuentra el bulbo castaño en el centro de cada espiga. Estos son los ovarios. Si son fertilizados por el polen amarillo se convierte en una semilla que puede transformarse en una nueva planta.

Registro de crecimiento del jardín de aneas

1. Individualmente, o en un grupo de 2 ó 3 personas, escoge una de las plantas de aneas para seguir su crecimiento. Tu primer trabajo es darle un nombre a la plantay luego idear una manera para marcar la planta para poder siempre identificarla como tuya.
2. Después, idea una manera para medir tu planta desde el fondo de donde sale de la tierra fiasta la parte de arriba de su foja más alta. Cuenta luego el número de hojas, cuenta el número de flores y Luego mide la altura de Las espigas más altas (puede tomar algún tiempo para que tu planta tenga espigas). Registra toda esta información en la tabla de la siguiente página.
3. Sigue tomando medidas durante un tiempo. Registra siempre La fecfia y la información en la tabla.
4. Cuando Fayas terminado de registrar el crecimiento de tus aneas después de varias semanas o meses, faz gráficos usando la información que recolectaste. Por ejemplo: un gráfico en barra que muestre el número de flores y fojas durante un tiempo; un gráfico lineal que muestre la altura de las fojas y flores más altas por un tiempo. Pide a tu lider u otro adulto que te ayude si es necesario.

83

REGISTRO DEL CRECIMIENTO DEL JARDÍN DE ANEAS

Nombre de la
Nombres de los observadores:
planta de aneas \qquad
\qquad
Marca de identificación \qquad
\qquad
\qquad

| Altura de |
| :---: | :---: | :---: | :---: | :---: |
| la hoja |
| más alta | | Número |
| :---: |
| de hojas |
| en la |
| planta |\quad| Altura de |
| :---: |
| la espiga |
| más alta | | Número |
| :---: |
| de |
| espigas |
| en la |
| planta |\quad| Comentarios |
| :---: |

Gavilán
ratonero

Animales de los humedales

Tarjeta de trabajo \#11

Trabajando para los humedales de California

Pregunta: ¿Qué puede hacer tu grupo para ayudar a proteger y restaurar los humedales de California?

Actividad: 1. Ten presente que las cosas que más amenazan la salud de los humedales y la fauna que depende de ellos son:

- agua contaminada de ríos y drenajes de lluvia que corren hacia el humedal
- tirar basura
- especies de plantas que no son nativas que desplazan plantas nativas del humedal
- desecar y construir en los humedales

2. En los próximos 5 ó 10 minutos idea algunas formas en qué tu grupo puede ayudar a resolver o educar a otros acerca de estos problemas y cualquier otra forma para ayudar a proteger los humedales.
3. Escoge una persona de tu grupo para que le diga al grupo grande tus mejores ideas. Tu grupo va a decidir hoy acerca de uno o dos proyectos que en verdad va a llevar a cabo y que ayudarán a proteger los humedales de California.

llnstrucciones para doblar la miniquía de campo de árboles de riachuelos y arroyos de California

1. Doblen la hoja transversalmente para que el texto y los dibujos aparezcan en el lado de afuera.

2. Doblen los bordes separadamente para formar una "W".

3. Dóblenla en dos otra vez para formar un pequeño rectángulo. Luego desdoblen este último doblez y dóblenla al revés haciendo los pliegues bien marcados en cada lado.

4. Desdoblen hasta el paso \#1, cuando la hoja está doblada solamente a la mitad.

5. Coloquen la hoja plana en la mesa con el borde doblado más cercano a ustedes y corten a lo largo a través de los lados hasta el centro como se ve en el diagrama.

6. Desdoblen la hoja completamente con el texto y los dibujos hacia arriba y con el borde más corto de la hoja más cercano a ustedes.

7. Vuelvan a doblar la hoja a la mitad, esta vez a lo largo. Paren la hoja en la mesa de manera que los dibujos se miren hacia arriba como se muestra en el diagrama.

Ilnstrucciones para doblar la miniquía de campo

8. La parte que cortaron con las tijeras debe abrirse y formar un diamante. Agarren los dos lados de afuera y empujen hacia adentro hasta formar una puerta giratoria de cuatro lados.

"Puerta Giratoria"

9. Finalmente, doblen juntando todas las páginas para formar un librito. Asegúrense de que la cubierta esté en el frente.

10. Hagan los pliegues bien marcados en todos los lados y LISTO HAN ACABADO.

Cuaderno de laboratorio \#3

Cuaderno del Paseo por un Riachuelo

Nombres de los miembros del grupo:

Nombre del riachuelo: Ciudad o condado:
Describe el sitio del comienzo de tu paseo:

Describe el sitio del final de tu paseo:

Hacer: Cada 50 a 100 yardas, o cuando cambien las condiciones, haz una observación del riachuelo y sus alrededores llenando una nueva Hoja de observación. El ejemplo de abaio contiene descripciones o ejemplos de lo que puedes escribir.

EJEMPLO de observación
Vegetación Usa palabras como: "falta," "pisada," "densa," "ajardinada," "dosel de árboles."
Pozas y rápidos poco profundos Usa palabras como: ninguno(a), algunos(as), muchos(as), principalmente pozas, principalmente rápidos poco profundos.
Contaminación Describe signos de contaminación usando los siguientes términos: espuma, brillo aceitoso, mal olor, color extraño, algas, lodoso.
Tuberias de desagüe Anota cualquier tubería de desagüe en el áre.a. ¿Hay algo que esté saliendo? Si es asi, ies algo limpio?
Basura Describe los desechos naturales de madera y la basura humana que veas.

Fondo del arroyo Usa palabras como: rocoso, arenoso, lodoso, de cemento.

Sombra Usa palabras como: muy sombreado, asoleado, sombras desiguales.

Erosión de riberas Usa palabras como: estables, derrumbándose, apayadas por raices, cementadas, cubiertas con rocas.

Fauna ¿Qué tipos de animales ves dentro y fuera del aqua?
Otras notas Usa este espacio para anotar cualquier observación interesante que no corresponda con ninguna de las categorías de arriba.

Empieza tus observaciones en la próxima hoja.

Cuaderno de laboratorio \#3

HOJA DE OBSERVACIÓN DEL PASEO POREL RIACHUELO

Observación \#

Vegetación
Pozas y Rápidos poco profundos

Contaminación

Tuberias de desagüe

Basura

Fondo del arroyo

Sombra

Erosión de riberas

Fauna

Otras notas

VIGILANTES DE LOS RIACHUELOS - p. 35
Cuaderno de laboratorio \#3
CUADERNO DE PASEO POR EL
RIACHUELO
Notas

LO TRISTE DE LA EROSIÓN

Pregunta: ¿A qué se parece la erosión de las riberas de un arroyo y qué puede hacerse para prevenirla?

1. Llena las bandejas a la mitad con partes iguales de tierra diatomita y agua. Mezcla bien con las manos. Se sentirá como yeso blanco.

Advertencia:

> Echa la tierra diatomita de la bolsa a las bandejas de aluminio con cuidado para evitar levantar polvo. NO ES BUENO INHALAR EL POLVO.
2. Levanta un lado de la bandeja unas $6^{\prime \prime}$ usando libros u otros objetos, luego empuia, echa y menea la tierra diatomita hacia el lado más bajo de la bandeja para crear una superficie inclinada. Una parte de la bandeja quedará sin nada. Deja algunos terrones. Déjala así algunos minutos para que se asiente y luego baja la bandeja.
3. Con la botella de agua puesta en "spray " o "fine spray " haz "lluvia" rociando agua sobre la tierra diatomita por unos 15 ó 20 segundos. Debes ver pequeños "arroyos" formándose. Nota que, por unos 30 ó 45 segundos después de que dejas de rociar, el agua continuará fluyendo. Empezarás a ver cómo ocurre la erosión.

LO TRISTE DE LA EROSIÓN

4. Riega unas pizcas de pasto en la superficie de la tierra a lo ancho de un arroyo y luego haz llover otra vez por unos 15 ó 20 segundos. ¿Qué pasa?
5. Riega ahora más pasto cortado a lo largo del arroyo y presiónalo sobre la tierra con los dedos para representar plantas enraizadas en el suelo a lo largo de las riberas. Asegúrate de que las riberas estén bien cubiertas de pasto. Esto representa las riberas de arroyos saludables con mucha vegetación. Haz lluvia otra vez. ¿Qué pasa esta vez?
6. Sé un urbanizador de tierra y construye un estacionamiento en las riberas del arroyo usando un cuadro de papel aluminio de $4^{\prime \prime} \times 6^{\prime \prime}$. Haz que llueva otra vez. Compara la cantidad de erosión río abajo antes y después de crear el estacionamiento.
7. Sé un urbanizador de tierra otra vez y construye una hilera de casas en las riberas del arroyo usando casas de Monopolio. Haz que llueva otra vez. ¿Qué les pasa a las casas?
8. Sé un ingeniero de control de inundaciones y transforma tu riachuelo en un canal o alcantarilla de concreto usando tiras largas y delgadas de papel aluminio. Observa cómo esto afecta la velocidad del escurrimiento.

¿Quién puede soportar el agua? Indicadores biológicos: de la calidad del agua

Pregunta: ¿Cómo podemos saber qué tan limpia es el agua de un riachuelo con sólo mirar a los animales que viven en el agua?

Actividad: 1. Encuentra con tu grupo un área en el riachuelo de aproximadamente 3×3 de tamaño, con fondo rocoso o guijarroso, si es posible, en el cual llevar a cabo tu recolección.
2. Trata de encontrar y recoger uno de cada tipo de los pequeños animales de su sitio de recolección usando los siguientes métodos.

Si estás usando tamices:

- Acércate a tu área de recolección desde río abajo. Dos personas deben agarrar los agarraderos del tamiz y colocar la parte de arriba del tamiz en el fondo del arroyo para que el agua corra por él. Una de las dos personas debe ir río arriba del tamiz y recoger y restregar todas las rocas para que los organismos se caigan de las rocas y sean acarreados por la corriente hacia el tamiz. Luego deben agitar el fondo del arroyo con los pies desalojando cualquier animal en el fondo del riachuelo. Recoge cuidadosamente el tamiz y deposita los organismos en tus recipientes de recolección llenos de agua. Devuelve todos menos uno de cada tipo de animal a la misma área de donde fue tomado. Repite esto una o dos veces.

Si estás usando redecillas de mano:

- Busca en la superficie, el fondo y las partes inferiores de las rocas en tu área de recolección capturando todos los animales acuáticos visibles y colocando uno de cada uno en los recipientes de interior blanco. Usa los espolvoreadores y redecillas de mano para ayudarte en tus esfuerzos.

¿Quién puede soportar el agua?

3. Coloca uno de cada tipo de los animales que tu grupo encontró en los recipientes de interior blanco para observarlos mejor, agrega más agua si es necesario y mantén los recipientes en un lugar fresco.
4. Usa la Guía de identificación de macroinvertebrados para identificar los animales que encontraste y haz una lista de ellos en la hoja \#5a del Cuaderno de laboratorio. Escribe también si cada uno de los animales que encontraste es Clase 1, Clase 2 。 Clase 3 mirando las listas en la parte de abajo de la hoia del Cuaderno de laboratorio. Si hay un animal que no puedas encontrar en la Guía de identificación de macroinvertebrados, pídele a tu líder que te ayude a buscarlo en otra guía de campo.
5. Reúnete con tu líder y todo el grupo para una plática final y después devuelve cuidadosamente todos los animales a los lugares donde fueron encontrados.

Cuaderno de laboratorio \#5a

¿Quién puede soportar el agua?

Indicadores biológicos de la calidad del agua

Escribe los nombres de todos los tipos de animales que tu grupo encontró. Usa la Guía de identificación de macroinvertebrados para averiguar cómo se llama cada animal.

Luego usa las listas de abaio para escribir junto al nombre de cada animal la clase a que pertenece, Clase 1, Clase 2 ○ Clase 3.

Nombre

Clase

Clase 1-Sensibles a la contaminación

Larva de frígano
Larva de cachipolla
Larva de coridálido acuático

Larva de escarabajos de rápidos poco profundos
Ninfas de la mosca de las piedras

Clase 2 - Moderadamente tolerantes a la contaminación

Escarabajos acuáticos
"Water Penny"
Escarabajo de los rápidos poco profundos
Cochinilla acuática

Jején
Larva de tábano
Ninfa de zigóptera
Platelminto
Caracol de branquias

Típula
Almeja
Cangrejo de río Larva de mosca enana dixa

Clase 3 - Organismos tolerantes a la contaminación
Caracol que respira aire Mosca enana
Lapa
Cresa de cola de rata
Sanguiiuela

¿Quién puede soportar el agua?

 Indicadores biológicos de la calidad del aguaLlena esta hoja con todo el grupo al concluir la actividad. Con los otros grupos, use la información de los Cuadernos de laboratorio de todos los otros grupos para llenarla.
Pon en la lista cada tipo de animal encontrado hoy por cualquiera de los grupos. Pon cada uno baio la categoría adecuada.

Clase 1 (No toleran la contaminación - iNecesitan agua limpia!!

Número total de TIPOS encontrados \qquad $\times 3=$ \qquad
Clase 2 (Pueden vivir con algo de contaminación)

Número total de TIPOS encontrados \qquad $\times 2=$ \qquad
Clase 3 (No les importa vivir en agua contaminada)
\qquad

Número total de TIPOS encontrados \qquad $\times 1=$ \qquad

$$
\text { TOTAL GENERAL = } \square
$$

(Suma los tres totales de arriba)

Evaluacón de calidad del arroyo

Excelente $=23$ y más
Buena = de 17 a 22
Regular = de 11 a 16
Pobre = 10 ó menos

Guia de identificación de macroinvertebrados

Página 1 de 3

Caracol que respira aire (Air Breathing Snail)

Caracol de branquias
(Gill Snail)

Cangrejo de río
(Crayfish)

Cochinilla acuática (Aquatic Sowbug)

Guia de identificación de macroinvertebrados

Página 2 de 3

Larva de típula (Cranefly Larva)

Cuerpo negro o café; más de 1/3" de largo: como oruga

Larva de mosca enana dixa
Larva de frígano
(Dixa Midge Larva)

 (Caddisfly Larva)

Uno o dos ganchos - garras en o cerca
de la parte baja del
abdomen
de la parte baja del
abdomen

别

Larva de escarabajo de los rápidos poco profundos (Riffle Beetle Larva)

Larva del jején (Blackfly Larva)
 cuerpo más ancho que el otro

Larva de mosca enana (Midge Larva)
 mismo ancho

Guia de identificación de macroinvertebrados

Larva del coridálido acuático
(Hellgrammite)

Página 3 de 3

Cresa de cola de rata

 (Rat-tailed Maggot)

Sanguijuela
(Leech) Cuerpo con disco grande de succión en cada extremo: cuerpo segmentado

10 pies \div número de segundos $=$ velocidad (en pies por segundo)

Nombre
Nombre
del bote
del dueño(s)

Tiempo

10 pies \div __ segundos =__ pies por segundo
10 pies *__ segundos = _ _ pies por segundo

10 pies : __ segundos =__ pies por segundo
10 pies :__ segundos =__ pies por segundo
10 pies : _ segundos =__ pies por segundo
10 pies :__ segundos =__ pies por segundo
10 pies : segundos =__ pies por segundo
10 pies :___ segundos =__ pies por segundo
10 pies * _ segundos = __ pies por segundo
10 pies : __ segundos =__ pies por segundo
10 pies *__ segundos =__ pies por segundo
10 pies : __ segundos =__ pies por segundo
10 pies : _ segundos $=$ \qquad pies por segundo

10 pies * _ segundos $=$ \qquad pies por segundo

10 pies \div \qquad segundos $=$ \qquad pies por segundo

Nombre del bote

Nombre del dueño(s)
\qquad
Prueba 2
\qquad
Prueba 3
Prueba 4 \qquad
Prueba 5 \qquad
Total
Promedio \qquad
(total $\div 5$)
Nombre del bote

Nombre del dueño(s)

Prueba 1 \qquad
Prueba 2 \qquad
Prueba 3 \qquad
Prueba 4 \qquad
Prueba 5 \qquad
Total
Promedio (total $\div 5$)

Riachuelo de ensueño

Fondo del riachuelo ¿De qué está compuesto el fondo? ¿Cemento, tierra, grava o rocas?

Agua corriente ¿Hay agua en el riachuelo? ¿Es agua que corre o parece estancada? ¿Qué parece? ¿̇Lodosa, clara, hay algún olor o color?

Riberas del riachuelo ¿Qué hay en las riberas? ¿Cemento, suelo árido en contacto con el agua, un solo tipo de planta o una variedad de ellas, árboles, arbustos, helechos o pasto?

Otra vegetación

¿Hay plantas que crecen en el arroyo?
¿Hay algas o musgo creciendo en las rocas del arroyo?
¿Hay plantas muertas o en descomposición en el fondo del riachuelo? ¿Hay hojas, ramitas o ramas caídas?

Dosel de árboles ¿Hay árboles cercanos que cuelgan sobre el riachuelo? ¿Uno, algunos o muchos?

Pozas y rápidos poco profundos iFluye el agua en una corriente constante? ¿O hay áreas que fluyen más rápido (rápidos poco profundos), y algunas que fluyen más despacios (pozas)?

Contaminación Camina un poco río arriba y río abajo. ¿Ves algún lugar donde hay agua entrando al arroyo? Si es así, ¿̇qué parece?

Describe cómo es el agua, particularmente cualquier color u olor que se puede notar.

Albergue Haz una lista de todos los albergues que notas, incluso cosas muy pequeñas que puedan ser hogar para animales pequeños.

Sombra Describe cualquier cosa que veas cerca del riachuelo que produzca sombra a diferentes horas del día.

Señales de vida animal Haz una lista de todos los animales que ves u oyes en o cerca del riachuelo. Incluye aves, insectos o cualquier otro animal. Describelos en el otro lado de esta hoja si no sabes los nombres.
$\overline{\text { ¿Hay insectos en las rocas o cerca de las riberas? ¿Algunos, muchos muchos de }}$ diferentes tipos?

Describe cualquier otra evidencia de animales que veas, como huellas en el lodo, arbustos pisados, nidos, madrigueras, etc.

Hazte amigo de los riachuelos locales

Pregunta:
¿Qué puede hacer tu grupo para ayudar a proteger y restaurar riachuelos y arroyos en tu comunidad?

1. Recuerda que las cosas que más amenzan la salud de riachuelos y arroyos y la fauna que depende de ellos son:
a. echar basura
b. erosión de las riberas
c. agua contaminada que viene de las calles cuando llueve y que va a dar a riachuelos
d. agua contaminada de negocios e individuos que desaguan ilegalmente en drenajes de lluvia
e. quitar árboles y plantas de los lados del arroyo
f. construir edificios o caminos muy cerca de los riachuelos
2. En los próximos 15 ó 20 minutos piensa en algunas maneras en que tu grupo puede ayudar a resolver o educar a otros acerca de algunos de los problemas de arriba de riachuelos y arroyos.
3. Escoge a una persona de tu grupo para que le diga a todo el grupo tus mejores ideas. Hoy tu grupo va a decidir acerca de uno o dos proyectos que van a llevar a cabo realmente y que ayudarán a los riachuelos en tu comunidad.

Dictionary
 English - Spanish

A

Absorb/absorbent - Absorber/absorbente
Adapt/adaptation - Adaptar/adaptación Aeration - Aeración
Agricultural land - Tierras de labrantío
Air Breathing Snail - Caracol que respira aire
Air freshener - Desodorante para el ambiente
Algae - Algas
Alum, powdered - Alumbre en polvo
Ammonia - Amoníaco
Amphibian - Anfibio
Amphipod - Anfípodo
Anchor screw - Tornillo de ancla
Aquatic - Acuático
Aquatic Beetle "Water Penny" Escarabajo acuático
Aquatic Sowbug - Cochinilla acuática
Aquifer - Acuífero

B

Bacteria - Bacteria
Bait - Carnada
Banding - Anillamiento
Basking sharks - Marrajos gigantes
Bass - R6balo
Bay Laurel - Laurel
Beach clean-up - Limpieza de la playa
Beetle - Escarabajo
Benthic area - Zona béntica
Big Leaf Maple - Arce de hoja grande
Biodegradable - Biodegradable
Bioremediation - Bioremedio
Bird banding - Anillar a las aves
Black Cottonwood - Álamo negro
Blackfly - Jején
Blind taste test - Prueba a ciegas
Body of water - Masa de agua
Bottlenose Dolphin - Delfín naríz de botella
Boundary layer - Capa limítrofe
Breed - Engendrar
Breeding ground - Área de anidación
Buffer zones - Zonas amortiguadoras
Bulb of the thermometer - Cubeta del termómetro
Buoyancy - Flotabilidad/flotación
Burrows - Madrigueras

C

Caddisfly - Frígano
Calcium - Calcio
Calibrate - Calibrar
California Black Walnut - Nogal negro de California
California Buckeye - Castaño de California
California Clapper Rail - Rascón picudo de California
California Gold Rush - Fiebre del oro de California
California Sycamore - Sicomoro de California
Calorie - Caloría
Camouflage - Camuflage
Canadian goose - Ganso canadiense
Canopy - Dosel
Cattail - Anea
Cattail spikes - Espigas
Chalky - Calcárea
Chemical dispersants - Dispersadores químicos
Chlorine - Cloro
Chlorophyll - Clorofila
Clams - Almejas
Coagulation - Coagulación
Coast Live Oak - Roble costero
Code - Código
Component - Componente
Condensation - Condensación
Conserve/conservation Conservar/conservación
Containment booms - Barreras de contención
Contaminate - Contaminante
Cord grass - Espartina
Cork - Corcho
Corrosive - Corrosivo
Cottontail rabbit - Conejo de rabo blanco
Cottonwood, Fremont - Álamo de Fremont
Crab-Cangrejo
Cranefly - Típula
Crayfish - Cangrejo de río
Creatures - Criaturas
Creek - Riachuelo
Creek beds - Cauces de riachuelos
Croak - Croar
Crowding - Atestamiento
Damselfly - Zigóptera
Data - Datos
Debris - Desecho
Decompose - Descomponer
Delta - Delta (mas.)
Delta Smelt - Esparlano del delta
Dens - Guaridas
Desalination - Desalinización
Diatomaceous earth - Tierra diatomita
Digest - Digerir
Diluted - Diluído
Dipnets - Redecillas de mano
Discharge - Desagüe
Discharge pipes - Tuberías de desagüe
Dissolved - Disuelto
Distilled water - Agua destilada
Diving birds - Aves zambullidoras
Dowel - Clavija
Dragonfly - Libélula
Drawbacks - Inconveniencias
Dredges - Espolvoreadores
Drilling platforms - Plataformas de
perforación
Drinking water - Agua potable
Drought - Sequía
Dwellers - Habitantes
Ecology - Ecología
Ecosystem - Ecosistema
Eddies - Remolinos
Elegant Tern - Charrán elegante
Embankment - Terraplén
Emergent - Emergente
Endangered species - Especies en
peligro de extinción
Entangiement - Enredamiento
Environmentalists - Ambientalistas
Erosion - Erosión
Estuary - Estuario, estero
Extinct/extinction -
Extinguido/extinción
Eye screw - Armella
Fertilizers - Fertilizantes
Field biologist - Biólogo de campo
Field guide - Guía de campo
Filter - Filtrar
Filter feeders - Filtradores
Fin Whale - Rorcual
Fingernail Clam - Almeja
Fishing line - Sedal
Flatworm - Platelminto
Flocks - Bandadas

D
 D

Damselfly - Zigóptera
Data - Datos
Debris - Desecho
Decompose - Descomponer
Delta Smelt - Esparlano del delta
Dens - Guaridas
Desalination - Desalinización
Diatomaceous earth - Tierra diatomita
Digest - Digerir
Duted - Diluído
Discharge - Desagüe
Discharge pipes - Tuberías de desagüe
Dissolved - Disuelto
Distilled water - Agua destilada
Diving birds - Aves zambullidoras
wel - Clavija
Drawbacks - Inconveniencias
eadores
Plataformas de perforación
Drinking water - Agua potable
Dwellers - Habitantes

E
 E

Ecology - Ecología
cosystem - Ecosistema
Eddies - Remolinos
Elegant Tern - Charrán elegante
Embankment - Terraplén
Endangered species - Especies en peligro de extinción
Entangiement - Enredamiento
Environmentalists - Ambientalistas
Erosion - Erosión
Estuary - Estuario, estero
Extinct/extinction -
Extinguido/extinción
Eye screw - Armella

F
 F

Fertilizers - Fertilizantes
Field biologist - Biólogo de campo
Field guide - Guía de campo
ter - Filtrar
Fin Whale - Rorcual
Fingernail Clam - Almeja
Flatworm - Platelminto
Flocks - Bandadas

Flow - Corriente
Fluctuate - Fluctuar, variar
Food chain - Cadena alimenticia
Food pyramid - Pirámide alimenticia
Forster's Tern - Charrán Forster
Fox, red - Zorro rojo
Fremont Cottonwood - Álamo de Fremont
Freshwater - Agua dulce
Frog - Rana
Fungi - Hongo
Funnel-Embudo
Fur Seal (Northern) - Foca de piel fina
Fuzz - Pelusa

G

Gilled Snail - Caracol de branquias
Gills - Branquias
Glands - Glándulas
Graph - Gráfico
Grasping tails - Colas prensiles
Gravel - Grava
Great Blue Heron - Garzón cenizo
Great egret - Garzón blanco
Groundwater - Agua subterránea
Gulpers - Tragadores
Gutters - Cunetas

H

Habitat - Hábitat
Hand lenses - Lupas
Harrier (Northern) - Gavilán ratonero
Harvest mouse - Ratón campestre
Hellgrammite - Larva del coridálido
acuático
Herds - Rebaños
Heron - Garzón
Herring - Arenque
Hindered - Obstaculizado
Horsefly - Tábano
Hydrogen peroxide - Agua oxigenada
Hydrometer - Hidrómetro
Hypothesis - Hipótesis

I

Impurities - Impurezas
Ingestion - Ingestión
Insect repellant - Repelente contra insectos
Invertebrates - Invertebrados
Isopod - Isópodo
J-
K
Killer whale - Orca

Kitty litter - Grava sanitaria para gatos
Krill - Camaroncitos

L

Laceration - Laceración
Landfill - Terraplén sanitario
Larvae - Larva
Leaching - Lixiviación
Leech - Sanguijuela
Lifespan - Duración de vida
Limpet - Lapa
Litter - Basura
Loggerhead Sea Turtle - Tortuga mordedora
Logging - Tala

M

Macroinvertebrates -
Macroinvertebrados
Maggot - Cresa
Magnesium - Magnesio
Mammal - Mamífero
Maple - Arce
Marina - Marina
Marine grade plywood - Madera marina contrachapada
Marsh, freshwater - Ciénaga
Marsh, saltwater - Marisma
Mating - Apareamiento
Mats - Esteras
Mature - Madurar
Mayfly - Cachipolla
Meadow - Pradera
Metal drums - Bidones
Metal screening - Tela de alambre
Microorganisms - Microorganismos
Midge - Mosca enana
Migrate - Migrar
Mollusk - Molusco
Monitor - Inspeccionar
Monk Seal - Foca fraile
Mosquito - Mosquito
Moss - Musgo
Mothfly - Mariposa nocturna
Mouth of a river - Desembocadura
Mud - Cieno
Mudflat - Lodazal
Murky - Obscura
Mussels - Mejillones

\mathbf{N}

Native Americans - Americanos nativos o indígenas
Nesting site - Lugar de anidación
Netting - Redecilla
Non-toxic - No tóxico

Nonpoint source pollution - Fuente de contaminación sin punto
Nutrients - Nutrimentos
Nylon mesh - Malla de nailón
Nymph - Ninfa

0

Oak - Roble
Oil spill - Derrame de petróleo
Oily sheen - Brillo aceitoso
Oligochaete - Oligoqueto
Opossum - Zariqüeya
Organism - Organismo
Oxygen - Oxígeno
Oyster - Ostra

\mathbf{P}

Pacific Flyway - Ruta migratoria del Pacífico
Package - Envoltorio
Paint thinner - Adelgazador de pintura
Panty hose - Medias
Parakeet Auklett - Periquito alcuela
Pebble - Guijarro
Pelagic area - Zona pelágic
Percentage - Porcentaje
Perch - Perca
Peril - Peligro
Pesticides - Pesticidas
Physically impaired - Dañado físicamente
Phytoplankton - Fitoplancton
Pickleweed - Salmuera
Pilings on a pier - Pilotajes de muelles
Plankton - Plancton
Plaster of paris - Yeso blanco
Poison oak-Hiedra venenosa
Polar caps - Casquetes polares
Pollen - Polen
Pollutants - Contaminantes
Pollution - Contaminación
Polychaete - Poliqueto
Pond - Charca
Pools - Pozas
Porous - Poroso
Porpoises - Marsopas
Power plant - Planta de energía
Predator - Depredador
Prey - Presa
Protect - Proteger
Purify - Purificar

Q-

R

Racoon - Mapache

```
Rat-tailed Maggot - Cresa de cola de
        rata
    Reactive - Reactivo
    Record - Registrar
    Recreation - Recreación
    Recycle - Reciclar
    Recycling center - Centro de reciclaje
    Red Alder - Aliso rojo
    Relaxed - Sosegada
    Reptile - Reptil
    Restore - Restaurar
    Reticulated - Reticulado
    Riffle Beetle - Escarabajo de los rápidos
        poco profundos
    Riffles - Rápidos poco profundos
    Rubbings - Calcos
    Run-off - Escurrimiento, escorrentía
    Rust - Óxido
    S
    Salinity - Salinidad
    Salmon - Salmón
    Salt grass - Pasto salado
    Sample - Muestra
    Sanctuary - Santuario
    Sandpipers - Playeros
    Scat-Excremento
    Scavenger hunt - Búsqueda
    Screens - Tamices
    Sea Bass - Cabrilla
    Sea lavendar - Lavanda del mar
    Sea Lion (Northern) - Lobo marino
    Sea otters - Nutrias marinas
    Seagull - Gaviota
    Sediment - Sedimento
    Seedlings - Plantas de semillero
    Seep - Filtrarse
    Settlers - Colonos
    Sewage - Aguas residuales
    Sewer system - Sistema de cloacas
    Sheet metal screw - Tornillo de chapa
    Sheeting - Chapas
    Shellfish - Mariscos
    Shelter - Refugio, abrigo
    Shrimp - Camarones
    Shrubs - Arbustos
    Sieve - Criba
    Silhouette - Silueta
    Silt - Limo
    Simulate/simulation .
        Simular/simulación
    Six-pack rings - Aros asideros/anillos
        plásticos para latas
    Skimmers - Recolectores
    Slides - Diapositivos
    Smother - Asfixiar
    Snail - Caracol
    Snatchers - Arrebatadores
```

Soap suds - Espuma de jabón
Soil - Suelo
Solar water purifier - Purificador solar de agua
Solvent - Solvente
Sowbug - Cochinilla
Spawn - Desovar
Spawning area - Terreno de desove
Species - Especies (fem.)
Sperm Whale - Cachalote
Spoiled - Estropeados
Spray pump - Atomizador de bomba
Sprouts - Retoños
Squirrel - Ardilla
Stalk - Tallo
Stonefly - Mosca de las piedras
Storm drain - Drenajes de lluvia
Styrofoam - Espuma de poliestireno
Submerge - Sumergir, hundir
Suction cups - Ventosas
Suffocate/suffocation - Asfixiar/asfixia
Surface - Superficie
Survey - Encuesta
Survival - Sobrevivencia
Swamp - Pantano
Swan - Cisne
T
Tadpoles - Renacuajos
Tallow - Sebo
Tally marks - Marcas de registro
Tap water - Agua corriente
Temperature - Temperatura
Tern - Golondrina
Thermocline - Termoclina
Thermometer - Termómetro
Threatened species - Especies amenazadas
Tidal water - Agua mareal
Tide - Marea
To snatch - Arrebatar
Tolerance - Tolerancia
Topographic map - Mapa topográfico
Toxic - Tóxico
Toxic chemicals - Químicos tóxicos
Track - Rastrear
Tracks (animal) - Huellas
Transplant - Trasplantar
Trout - Truchas
Tule - Tule
Turpentine - Trementina/aguarrás
Turtle - Tortuga
Twine-Bramante

U

Upstream - Río arriba
Urban run-off - Escurrimiento urbano
V
Vacuoles - Vacuolas
Vernal pools - Charcas primaverales
W
Wade - Vadear
Walnut - Nogal
Washing away - Derrubio
Waste - Desechos
Water strider - Zapatero
Water table - Capa freática
Water treatment facilities -
Instalaciones de tratamiento de agua
Watercolors - Acuarelas
Waterproof - A prueba de agua
Watershed - Cuenca
Waterways - Vías navegables o vías deaguaWeaken - Debilitar
Webbed feet - Patas palmeadas
Wetland - Humedal
White Alder - Aliso blanco
White Croaker - Roncador blanco
Wildlife - Vida silvestre
Willow - Sauce
Wintering ground - Área de invernación
X -
Y -
Z
Zooplankton - Zooplancton

Diccionario Español. - Inglés

A

A prueba de agua - Waterproof
Absorber/absorbente -
Absorb/absorbent
Acuarelas - Watercolors
Acuático - Aquatic
Acuífero - Aquifer
Adaptar/adaptación - Adapt/adaptation
Adelgazador de pintura - Paint thinner
Aeración - Aeration
Agua corriente - Tap water
Agua destilada - Distilled water
Agua dulce - Freshwater
Agua mareal - Tidal water
Agua oxigenada - Hydrogen peroxide
Agua potable - Drinking water
Agua subterránea - Groundwater
Aguas residuales - Sewage
Álamo de Fremont - Cottonwood, Fremont
Álamo de Fremont - Fremont Cottonwood
Álamo negro - Black Cottonwood
Algas - Algae
Aliso blanco - White Alder
Aliso rojo - Red Alder
Almeja - Fingernail Clam
Almejas - Clams
Alumbre en polvo - Alum, powdered
Ambientalistas - Environmentalists
Americanos nativos - Native Americans
Amoníaco - Ammonia
Anea - Cattail
Anfibio - Amphibian
Anfípodo - Amphipod
Anillamiento - Banding
Anillar a las aves - Bird banding
Apareamiento - Matíng
Arbustos - Shrubs
Arce - Maple
Arce de hoja grande - Big Leaf Maple
Ardilla - Squirrel
Área de anidación - Breeding ground
Área de invernación - Wintering ground
Arenque - Herring
Armella - Eye screw
Aros asideros/anillos plásticos para
latas - Six-pack rings
Arrebatadores - Snatchers
Arrebatar - To snatch
Asfixiar - Smother

Asfixiar/asfixia - Suffocate/suffocation Atestamiento - Crowding
Atomizador de bomba - Spray pump
Aves zambullidoras - Diving birds

B

Bacteria - Bacteria
Bandadas - Flocks
Barreras de contención - Containment booms
Basura - Litter
Bidones - Metal drums
Biodegradable - Biodegradable
Biólogo de campo - Field biologist
Bioremedio - Bioremediation
Bramante - Twine
Branquias - Gills
Brillo aceitoso - Oily sheen
Búsqueda - Scavenger hunt

C

Cabrilla - Sea Bass
Cachalote - Sperm Whale
Cachipolla - Mayfly
Cadena alimenticia - Food chain
Calcárea - Chalky
Calcio - Calcium
Calcos - Rubbings
Calibrar - Calibrate
Caloría - Calorie
Camaroncitos - Krill
Camarones - Shrimp
Camuflage - Camouflage
Cangrejo - Crab
Cangrejo de río - Crayfish
Capa freática - Water table
Capa limítrofe - Boundary layer
Caracol - Snail
Caracol de branquias - Gilled Snail
Caracol que respira aire - Air Breathing Snail
Carnada - Bait
Casquetes polares - Polar caps
Castaño de California - California Buckeye
Cauces de riachuelos - Creek beds
Centro de reciclaje - Recycling center
Chapas - Sheeting
Charca - Pond
Charcas primaverales - Vernal pools
Charrán elegante - Elegant Tern

Charrán Forster - Forster's Tern
Ciénaga - Marsh, freshwater
Cieno - Mud
Cisne - Swan
Clavija - Dowel
Cloro - Chlorine
Clorofila - Chlorophyll
Coagulación - Coagulation
Cochinilla - Sowbug
Cochinilla accuática - Aquatic Sowbug
Código - Code
Colas prensiles - Grasping tails
Colonos - Settlers
Componente - Component
Condensación - Condensation
Conejo de rabo blanco - Cottontail rabbit
Conservar/conservación Conserve/conservation
Contaminación - Pollution
Contaminante - Contaminate
Contaminantes - Pollutants
Corcho - Cork
Corriente - Flow
Corrosivo - Corrosive
Cresa - Maggot
Cresa de cola de rata - Rat-tailed Maggot
Criaturas - Creatures
Criba - Sieve
Croar - Croak
Cubeta del termómetro - Bulb of the thermometer
Cuenca - Watershed
Cunetas - Gutters

D

Dañado físicamente - Physically impaired
Datos - Data
Debilitar - Weaken
Delfín naríz de bolella - Bottlenose Dolphin
Delta (mas.) - Delta
Depredador - Predator
Derrame de petróleo - Oil spill
Derrubio - Washing away
Desagüe - Discharge
Desalinización - Desalination
Descomponer - Decompose
Desecho - Debris
Desechos - Waste
Desembocadura - Mouth of a river
Desodorante para el ambiente - Air freshener
Desovar - Spawn
Diapositivos - Slides
Digerir - Digest

Diluído - Diluted
Dispersadores químicos - Chemical dispersants
Disuelto - Dissolved
Dosel - Canopy
Drenajes de lluvia - Storm drain
Duración de vida - Lifespan

E

Ecología - Ecology
Ecosistema - Ecosystem
Embudo - Funnel
Emergente - Emergent
Encuesta - Survey
Engendrar - Breed
Enredamiento - Entanglement
Envoltorio - Package
Erosión - Erosion
Escarabajo - Beetle
Escarabajo acuático - Aquatic Beetle "Water Penny"
Escarabajo de los rápidos poco profundos - Riffle Beetle
Escurrimiento urbano - Urban run-off
Escurrimiento, escorrentía - Run-off
Esparlano del delta - Delta Smelt
Espartina - Cord grass
Especies (fem.) - Species
Especies amenazadas - Threatened species
Especies en peligro de extinción -
Endangered species
Espigas - Cattail spikes
Espolvoreadores - Dredges
Espuma de jabón - Soap suds
Espuma de poliestireno - Styrofoam
Esteras - Mats
Estropeados - Spoiled
Estuario, estero - Estuary
Excremento - Scat
Extinguido/extinción -
Extinct/extinction

F

Fertilizantes - Fertilizers
Fiebre del oro de California California Gold Rush
Filtradores - Filter feeders
Filtrar - Filter
Filtrarse - Seep
Fitoplancton - Phytoplankton
Flotabilidad/flotación - Buoyancy
Fluctuar, variar - Fluctuate
Foca de piel fina - Fur Seal (Northern)
Foca fraile - Monk Seal
Frígano - Caddisfly
Fuente de contaminación sin punto

- Nonpoint source pollution

G

Ganso canadiense - Canadian goose
Garzón - Heron
Garzón blanco - Great egret
Garzón cenizo - Great Blue Heron
Gavilán ratonero - Harrier (Northern)
Gaviota - Seagull
Glándulas - Glands
Golondrina - Tern
Gráfico - Graph
Grava - Gravel
Grava sanitaria para gatos - Kitty litter
Guaridas - Dens
Guía de campo - Field guide
Guijarro - Pebble

H

Habitantes - Dwellers
Hábitat - Habitat
Hidrómetro - Hydrometer
Hiedra venenosa - Poison oak
Hipótesis - Hypothesis
Hongo - Fungi
Huellas - Tracks (animal)
Humedal - Wetland

I

Impurezas - Impurities
Inconveniencias - Drawbacks
Indígenas - Native Americans
Ingestión - Ingestion
Inspeccionar - Moritor
Instalaciones de tratamiento de agua

- Water treatment facilities

Invertebrados - Invertebrates
Isópodo - Isopod

J

Jején - Blackfly

K

Krill - Krill

L

Laceración - Laceration
Lapa - Limpet
Larva - Larvae
Larva del coridálido acuático
Hellgrammite
Laurel - Bay Laurel
Lavanda del mar - Sea lavendar
Libélula - Dragonfly
Limo - Silt
Limpieza de la playa - Beach clean-up

Lixiviación - Leaching
Lobo marino - Sea Lion (Northern)
Lodazal - Mudflat
Lugar de anidación - Nesting site
Lupas - Hand lenses

M

Macroinvertebrados -
Macroinvertebrates
Madera marina contrachapada -
Marine grade plywood
Madrigueras - Burrows
Madurar - Mature
Magnesio - Magnesium
Malla de nailón - Nylon mesh
Mamífero - Mammal
Mapa topográfico - Topographic map
Mapache - Racoon
Marcas de registro - Tally marks
Marea - Tide
Marina - Marina
Mariposa nocturna - Mothfly
Mariscos - Shellfish
Marisma - Marsh, saltwater
Marrajos gigantes - Basking sharks
Marsopas - Porpoises
Masa de agua - Body of water
Medias - Panty hose
Mejillones - Mussels
Microorganismos - Microorganisms
Migrar - Migrate
Molusco - Mollusk
Mosca de las piedras - Stonefly
Mosca enana - Midge
Mosquito - Mosquito
Muestra - Sample
Musgo - Moss
\mathbf{N}
Ninfa - Nymph
No tóxico - Non-toxic
Nogal - Walnut
Nogal negro de California California Black Walnut
Nutrias marinas - Sea otters
Nutrimentos - Nutrients

0

Obscura - Murky
Obstaculizado - Hindered
Oligoqueto - Oligochaete
Orca - Killer whale
Organismo - Organism
Ostra - Oyster
Óxido - Rust
Oxígeno - Oxygen

P

Pantano - Swamp
Pasto salado - Salt grass
Patas palmeadas - Webbed feet
Peligro - Peril
Pelusa - Fuzz
Perca - Perch
Periquito alcuela - Parakeet Auklett
Pesticidas - Pesticides
Pilotajes de muelles - Pilings on a pier
Pirámide alimenticia - Food pyramid
Plancton - Plankton
Planta de energía - Power plant
Plantas de semillero - Seedlings
Plataformas de perforación - Drilling platforms
Platelminto - Flatworm
Playeros - Sandpipers
Polen - Pollen
Poliqueto - Polychaete
Porcentaje - Percentage
Poroso - Porous
Pozas - Pools
Pradera - Meadow
Presa - Prey
Proteger - Protect
Prueba a ciegas - Blind taste test
Purificador solar de agua - Solar water purifier
Purificar - Purify

Q

Químicos tóxicos - Toxic chemicals

R

Rana - Frog
Rápidos poco profundos - Riffles
Rascón picudo de California -
California Clapper Rail
Rastrear - Track
Ratón campestre - Harvest mouse
Reactivo - Reactive
Rebaños - Herds
Reciclar - Recycle
Recolectores - Skimmers
Recreación - Recreation
Redecilla - Netting
Redecillas de mano - Dipnets
Refugio, abrigo - Shelter
Registrar - Record
Remolinos - Eddies
Renacuajos - Tadpoles
Repelente contra insectos - Insect repellant
Reptil - Reptile
Restaurar - Restore
Reticulado - Reticulated

Retoños - Sprouts
Riachuelo - Creek
Río arriba - Upstream
Róbalo - Bass
Roble - Oak
Roble costero - Coast Live Oak
Roncador blanco - White Croaker
Rorcual - Fin Whale
Ruta migratoria del Pacífico - Pacific Flyway

S

Salinidad - Salinity
Salmón - Salmon
Salmuera - Pickleweed
Sanguijuela - Leech
Santuario - Sanctuary
Sauce - Willow
Sebo - Tallow
Sedal - Fishing line
Sedimento - Sediment
Sequía - Drought
Sicomoro de California - California Sycamore
Silueta - Silhouette
Simular/simulación Simulate/simulation
Sistema de cloacas - Sewer system
Sobrevivencia - Survival
Solvente - Solvent
Sosegada - Relaxed
Suelo - Soil
Sumergir, hundir - Submerge
Superficie - Surface

T

Tábano - Horsefly
Tala-Logging
Tallo - Stalk
Tamices - Screens
Tela de alambre - Metal screening
Temperatura - Temperature
Termoclina - Thermocline
Termómetro - Thermometer
Terraplén - Embankment
Terraplén sanitario - Landfill
Terreno de desove - Spawning area
Tierra diatomita - Diatomaceous earth
Tierras de labrantío - Agricultural land
Típula - Cranefly
Tolerancia - Tolerance
Tornillo de ancla - Anchor screw
Tornillo de chapa - Sheet metal screw
Tortuga - Turtle
Tortuga mordedora - Loggerhead Sea
Turtle
Tóxico - Toxic
Tragadores - Gulpers
Trasplantar - Transplant
Trementina/aguarrás - Turpentine
Truchas - Trout
Tuberías de desagüe - Discharge pipes
Tule - Tule
u.
V
Vacuolas - Vacuoles
Vadear - Wade
Ventosas - Suction cups
Vías de agua - Waterways
Vías navegables - Waterways
Vida silvestre - Wildlife
W.
X -
Y
Yeso blanco - Plaster of paris
Z
Zapatero - Water strider
Zariqüeya - Opossum
Zigóptera - Damselfly
Zona béntica - Benthic area
Zona pelágic - Pelagic area
Zonas amortiguadoras - Buffer zones
Zooplancton - zooplankton
Zorro rojo - Fox, red

