

COOPERATIVE EXTENSION WORK IN AGRICULTURE AND HOME ECONOMICS
JNIV ERSITY OF CALIFORNIA, SACRAMENTO COUNTY AND U.S. DEPT. OF AGRICULTURE COOPERATING

TO LIVESTOCK PRODUCERS IN SACRAMENTO COUNTY:
June, 1955
Two field trials were concluded on June 6 here in Sacramento County. They were the Van Vleck Range Fertilizer Trial and the Schneider Ranch 1954 Trial--Stilbestrol on Thursing Calves.

SCHNEIDER RANCH 1954 TRIAL--STILBESTROL ON INURSING CALVES. On January 30, 1954, 50 head of nursing calves (steers) were earmarked, 15 head were implanted with 60 mg . of stilbestrol, 15 head were implanted with 30 mg . of stilbestrol, 20 head in group 3 received no treatment and served as controls. These cattle were weighed as weaners on October 9, 1954, and again as yearlings on June 6, 1955. The weights are summarized below:

ized below:	$1 / 30 / 54$	$10 / 9 / 54$	$6 / 6 / 55$	
Group and		No. Head	Initial	Av. Nt.

Average daily gain from weaning to yearling age was: Group 1 (60 mg .) 1.13 lbs; group 2 (30 mg .) 1.05 lbs group 3 (no treatment) 1.06 lbs . Although nothing significant can be drawn from these figures, it is worthy of note that the 60 mg . group did gain from .07 to .08 lb . more per day from weaning--possibly a holdover effect from the stilbestrol implanted when they were calves. Half of each group, including the controls, were re-implanted with 30 mg . of stilbestrol on June 6 and will be run on irrigated pasture supplemented with grain for the summer. We will bring you these results sometime this Fall.

An interesting sidelight--the 47 steers remaining in this trial averaged 786 pounds-a good weight for steers of this age. However, the range in weight ran from 630 lbs . to $1,000 \mathrm{lbs}$. There were 3 steers that weighed less than 700 and 6 steers that weighed 900 or more-the rest in between. The point we mant to make is--everyone in the cow business is more interested in producing a 900 pound-plus steer rather than a 700 pound-minus steer, everything else including quality being equal. And, it's possible to do this by giving some attention to selection for gaining ability in your improvement program.

SUMMARY OF VANT VLECK RANGE FERTILIZER TRIAL. This trial comprised 160 acres divided into three 30 acre fields that were fertilized and one 70 acre field that was not fertilized. All fields were stocked with yearling heifers: Fields A and B, I head to two acres up to February 18 th when 10 head were sdded to each field bringing the total to 25 head on 30 acres; field C, 1 head to three acres up to February $18 t h$ when 8 head were added, bringing the total to 18 head on 30 acres; field $D, 1$ head to 6 acres up to February 18 th when 7 head were added, bringing the total to 19 head on 70
(acres. The fertilizer was flown on November 12, 1954; the fields were stocked on December 14, 1954 .

Field Acres

* Net beef per acre figured by subtracting beef per acre produced on control field (57 pounds).
It is interesting to note that the phosphorus-treated fields produced a much larger percentage of beef EARLIER than did the field receiving nitrogen alone, as follows:
Fields.

Beef/acre, Dec. 14 to Mar 25.
Beef/acre after Mar 25*
Total beef production/acre

$\frac{A}{71}$	$\frac{B}{81}$	$\frac{C}{35}$	$\frac{D}{11}$
$\frac{81}{152}$	$\frac{140}{221}$	$\frac{100}{135}$	$\frac{46}{57}$

*Field A to May 18, field B, C, and D to June 6.
Returns above fertilizer cost was striking in the case of Field B, which received the 50 pounds of phosphorus and 74 pounds of nitrogen per acre. These returns are figused on the net beef production per acre:

Field
A B C

$17 \frac{1}{2} \phi$
$\$ 7.84$ (loss)
9.43 (loss)
204
$\$ 5.46$ (1 os)
13.53
1.57

It should be noted that field D, receiving no fertilizer, produced from $\$ 9.97$ to $\$ 11.40$ worth of beef per acre. The comparatively poor results on field \mathbb{A} may be due in part to the fact that this field was used the hardest before the trial started, was the most poorly drained and supported a sizeable flock of coots.

Probably the most outstanding gain from fertilizer was the percent increase in carrying capacity over and above that of the control field:

Field	Total cow days	Cow days/	\%Increase in
	3200		acre

Sincerely yours,
f. J. Bling
J. T. Flings

Farm Advisor

COOPHRATIVE EXTENSION WORK IN AGRICULTURE AND HOIE ECONOMICS
UNIVERSITY OF CALI FORNIA, SACRAIENIO COUNTY AND U.S. DEPT. OF AGRICUITURE COOPERATING

TO LIVESTOCK PRODUCERS IN SACRAYENTO COUNTY:
VAN VLECK RANGE FERTILIZER TRIAL, 1955-56 - The purpose of this year's trial was to: (1) Check refertilization; (2) Check fertilizer carryover; and (3) Compare fertilization to supplementing the cattle, The results in brief are: (1) Refertiligation showed a profit of $\$ 5.44$ per acre; (2) There was enough phosphate carryover to make a straight nitrogen application pay-off at $\$ 4.07$ per acre; (3) The supplement also showed a profit of $\$ 4.00$ per acre. The supplemented cattle made the best gains and the cheapest gains, although the carrying capacity per acre was down compared to the fertilized fields,

Here are the Facts: 1955 weaner steers were used for stocking the fields - each steer fire-branded with a number for identification, graded, and weighed individually. The same fields were used as last year. The treatment of each field is shown in the following table:

Field	Size	Treatment/A	Cost/A	Head per Field	
A	30 A	74N 50P (Refertilization)	\$16.96	15	21
B	30 A	74 N (Phosphate carryover)	11.85	10	16
C	30 A	Supplement	3.63	7	10
D	70 A	Control		12	15

As shown above, the fields were stocked in December 27, 1955, and cattle added on January 18, 1956, to bring the totals up to figures shown under the January 18 column. The stocking rates remained the same until the completion date, June 8 .

Now for some specific results:

Field	Total Beef/A	Beef/A from Fert. or Supp.	Profit from Ferto or Supp.	Cost per lb. of extra beef	Average Daily Gain
A	181 lbs.	128 lbs. *	\$5.44	13.3¢	1.63
B	144 "	91 lbs。*	4.07	134	1.72
C	96.6 "	43.6 lbs.*	4.00	$8.3 ¢$	1.83
D	53				1.55

* To arrive at the beef produced from fertilizer or supplement, you subtract 53 pounds (beef produced on the control field) from the total beef per acre on the other fields.

Please note that no fertilizer produced 53 pounds per acre. That's a good return from native range land and compares favorably with the 57 pounds produced on this same field last year. Figuring these steers were worth $17 \frac{1}{2} \phi$, that would bring a gross return from field D of $\$ 9.27$. Charging $\$ 2.00$ rental value per acre would make the net from field $D, \$ 7.27$. To arrive at the total net return for the other fields, you add $\$ 7.27$ to the profit from fertilizer or supplement: Field $A-\$ 12.71$; field B - $\$ 11.34$; field C - $\$ 11.27$. Let me emphasize that the purpose of this trial this year and last year is to see if the fertilizer or supplement would produce enough extra beef to pay for itself and show a profit.
Increased Carrying Capacity is the striking advantage of fertilization. Field A 228% over and above the control field (almost 1 head per $1 \frac{1}{2}$ acres); field B - 144% over D; field C - 54% more carrying capacity than D.

Early Feed as indicated by the way the cattle gained up to March 16 - field A and B, four times the gain per acre. The supplemented cattle gained $2 \frac{1}{2}$ times as much per acre as the cattle on the control field up to March 16.

Just a few words about the supplement that was fed from December 27 to March 16. It was $1 / 3$ cotton seed meal, $2 / 3$ barley self fed with 10% salt. We asked the Van Vlecks to regulate the salt to hold consumption at 4 to 5 pounds daily. It figured at $4 \frac{1}{2}$ pounds exactly. Cost of the supplement was ground barley - $\$ 66.00$ per ton, cotton seed meal - $\$ 80.00$ per ton and salt - $\$ 30.00$ per ton. No supplement was fed after March 16.

$$
\because * * * *
$$

SCHNEIDER RANCA STILBESTROL TRIAL - a Progress Report! The purpose of this trial was to determine the value, if any, of repeated implants of stilbestrol throughout the growing and fattening period on steer calves. The trial started in February, 1955, with 50 nursing calves, all individually identified with an ear tattoo and individually weighed.

These steers are now yearlings and are in a feedlot. Final results of the trial will be obtained just before they go to slaughter. Results to date indicate a definite advantage for implanting steers as nursing calves and re-implanting them at weaning time.

The steers that were implanted with 30 mg . of stilbestrol as calves outgained the control calves by $22 \frac{1}{2}$ pounds up to weaning. Calves in this group that were re-implanted with 15 mg . at weaning time outgained the control steers by another 16 pounds up to last May 22 for a total advantage of $38 \frac{1}{2}$ pounds. The steers that were implanted as nursing calves and not re-implanted at weaning time, did not gain as well as the control calves from weaning to day 22. This would indicate that if steers are implanted with stilbestrol as nursing calves, they should be re-implanted at weaning to maintain the advantage.

Final results will be brought to you this Fall.
Sincerely,

Early Feed Production

Beef faA Dec. 27 to Mar. Itch Beef/A after Mar. 16th

Total

A.D.G.

Average weight/head/out
Average weight/head/in
Average gain

Overall average 1.66
Overall average 738 c
Overall average 270.5
In: Dec. 27, 1955-46 head, Jan. 18 - 16 head, Total 62 head
Outs June 8, 1956.

