

Rice 'Strawlage':

A Feed for Drought Induced Feed Shortages?

P.H. Robinson, G. Nader, N Swanepoel, J. Davy with Herb Holzapfel and Henry Smith

UCCE, Davis, Sutter/Yuba, Tehama

UCCE Rice Straw Research: A long term research project

Funded by the California Rice Research Board

• to investigate options to better use rice straw as an animal feed

Headed by Glenn Nader

- kept the focus on rice straw as animal feed
- kept the focus on practicality and on new markets

So far, we have not found all of the answers, but we may have found some of the answers

First Focus

To create a 'mixer ready' forage for the dairy industry

- Eliminate mixing problems of 'traditional' rice straws
 - often wrecked mixers
- Eliminate the need to chop or grind rice straw prior to mixing
 - air quality regulations meant that this was no longer practical
- Determine the maximum incorporation level in TMR
 - eliminate sorting and refusals

SUMMARY OF DAIRYMAN RESPONSES

	Sickle Chop	Slicer Bailed
Particle length uniformity ^a	4.8	6.6
Color ^a	7.8	8.0
Texture ^a	7.6	7.2
Mixability ^a	4.2	6.0
Mixing time affected ^a	6.0	6.6
Sorting (10=no sorting) ^a	5.8	7.0
Leftover RS eaten ^a	6.4	8.4
Overall experience^a Before	6.1	7.1
Overall experience^a After	5.4	7.0
How likely to use again ^a	5.4	7.8

a = 0 to 10 (0=poor, 10=excellent)

Double Chop Rice Straw in a Heifer TMR 20% of DM intake was possible

Second Focus

To create a forage with a higher nutrient value

- For dairy cattle operations:
 - allow higher feeding levels in heifer and dry cow TMR
- For beef cow/calf operations:
 - create a forage that could be close to the sole diet to beef cows

Mean dry matter intake from old-stored, fresh-wet, fresh-wilted and fresh-sundried rice straw

Days after (+) and before (-) harvest

Mean dry matter intake from old-stored, fresh-wet, fresh-wilted and fresh-sundried rice straw

Days after (+) and before (-) harvest

Time Relative to Harvest vs. Gas Production

Time Relative to Harvest (Days)

Time Relative to Harvest vs. Gas Production

Time Relative to Harvest (Days)

Conclusions

- Dry down is associated with a change in rice straw that:
 - depresses intake by ~30%
 - depresses energy level ~20%

Changes a forage with modest nutritional value to one with a very low nutritional value

So What about High Moisture Rice Straw?

One of the Test Rice 'Strawlage' Stacks

The Experimental Plan

All stacks were 16 bales and covered with plastic

The Experimental Plan

All stacks were probed to 20" at 0, 27, 64, 95 and 130 days

Rice Strawlage Temperatures

Rice Strawlage Temperatures

Rice Strawlage Temperatures

Why don't the stacks catch fire?

Covered with a tarp

Imits oxygen for aerobic fermentation

50% moisture

heat must dry it down for combustion to occur

Limited sugars

>130°F for only 5 days

Rice Strawlage pH

--- Control --- Urea --- CS

Rice Strawlage pH

--- Control --- Urea --- CS

Rice Straw Haylage at 60 days

Control

Urea & UN 32

Rice Straw Haylage at 60 days

Control

Cropsaver

Impacts on Moisture and Fiber

Impacts on Protein and Nitrates

Nitrates (ppm DM)

Impacts on Gas Production

Four times of incubation

Impacts on Estimated Metabolizable Energy

ME (Mcal/lb DM)

Impacts on Estimated Metabolizable Energy

ME (Mcal/lb DM)

Impacts of Time of Storage on Estimated Metabolizable Energy

Bales at Feedout

Possible use of Vents ??

Beef Cattle Eating Ensiled Rice Straw

Beef Cattle Eating Strawlage

Overall

- Rice straw can be prepared to be 'mixer ready'
- 'Double chop' dry rice straw works in TMR up to 20% of DM
 - but energy value remains low due to changes during field drying
- Nutrient value of rice straw can be increased as 'strawlage'
 - Urea treatment increases CP content more than ME
 - HS treatment increases ME more than CP

Overall

- Rice straw can be prepared to be 'mixer ready'
- 'Double chop' dry rice straw works in TMR up to 20% of DM
 - but energy value remains low due to changes during field drying
- Nutrient value of rice straw can be increased as 'strawlage'
 - Urea treatment increases CP content more than ME
 - HS treatment increases ME more than CP
 - but animal response appears more than the ME/CP increase
- Fall 2014 research will address this phenominum

