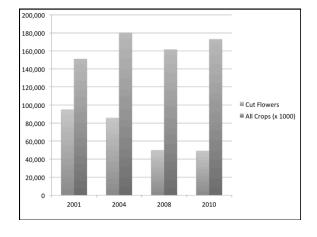


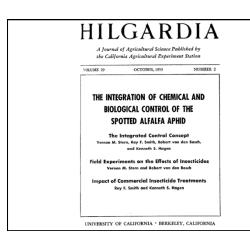
2013 Nursery/Floriculture Insect Symposium Watsonville, Elks Lodge, 121 Martinelli Street Watsonville, CA 95076 - December 12, 2013

How to Integrate Natural Enemies with Pesticides


Michael P. Parrella Department of Entomology & Nematology

University of California, Davis

Overview of Presentation


- Historical perspective
- Pesticide Compatibility with natural
 enemies
 - Definitions and examples in floriculture

	Entomol. 1980. 25:219-36
Copyright	© 1980 by Annual Reviews Inc. All rights reserved

CHANGING ROLE OF INSECTICIDES IN CROP PROTECTION

Robert L. Metcalf

Department of Entomology and Institute for Environmental Studies, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

The chemical barrage, as	If pesticides were completely	Modern insecticides are bio-
crude a weapon as the cave	banned, crop losses would	cides—the root cause of the
man's club, has been hurled	probably soar to 50% and	insecticide treadmill.
against the fabric of life.	food prices would increase 4-	Robert van den Bosch,
Rachel Carson, 1962 (19)	to 5-fold.	1978 (126)
	Norman F. Borlaug	

Norman E. Borlaug, 1972 (9)

Cover: Time Magazine July 12, 1976

Integration of Pesticides with Biological Control

Integration achieved through management of insecticides:

- Application methods
- Improved timing
- Reducing application rates
- Spot treatments*
- Selective insecticides*

Degrees of Compatibility (IOBC)

Tier I Laboratory testing:

< 30% mortality: harmless

30-79% mortality: slightly harmful

80-98% mortality: mod harmful

> 99% mortality: harmful

Degrees of Compatibility (Cont'd)

Tier II testing:

- Semi-Field and Field tests

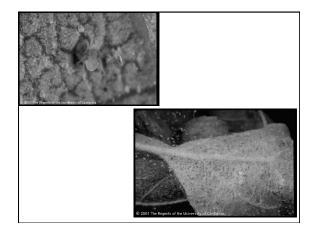
- any product that was >30% harmful in the lab must undergo additional testing

semifield tests are replicable cage/tunnel tests

An insecticide which kills 50% of the pest population and none of its predators may be more valuable than one which kills 95% but at the same time eliminates its natural enemies Wigglesworth, V. B. 1976. Insects and the Life of Man. Chapman and Hall, London. 217 pp.

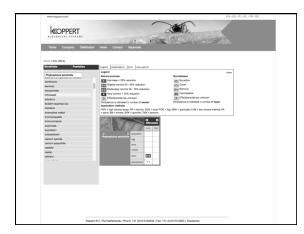
The general principle is that 100% control of a pest population is never achieved and that allowing natural enemies to survive and therefore to continue to provide an ecosystem service is best for maintaining pest populations below injury levels in the long term

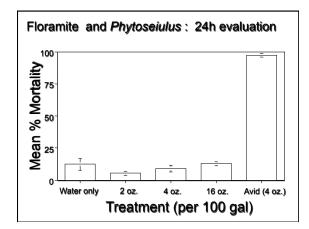
Sublethal effects are often not taken into consideration Hanson, N., Stark, J.D. 2011. Extrapolation from individual level responses to population growth rate using population modeling. Human and Ecological Risk Assessment 17: 1332–1347.

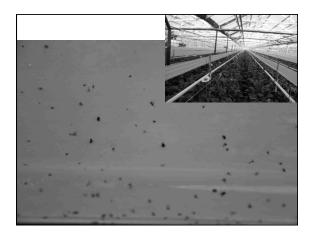

Increasing Pesticide Selectivity

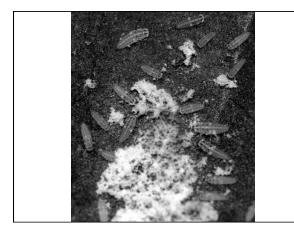
- Most spray schedules and label directions for using insecticides prescribe inflated dosages of insecticides.
- This is the result of the pervasive philosophy of pest eradication that > 99% control must be achieved
- Is natural enemy conservation critical to IPM ?

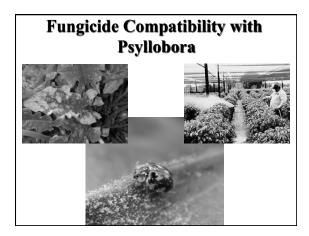
Vertical vs. Horizontal Compatibility


- Vertical: examines the effect of a pesticide on a natural enemy controlling the target pest or another major pest
- Horizontal: examines the effect of a pesticide on a natural enemy controlling another pest

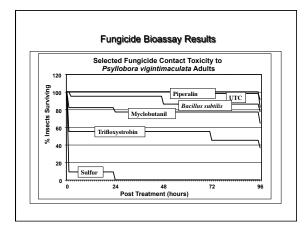






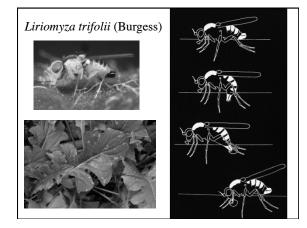


Psyllobora vigintimaculata
Established as obligate powdery mildew consumer and referred to as the small ashy grey ladybird by Davidson (1921)



Fungicide Bioassay Methods

- Uniform-aged adult beetles from colony
- Each individual directly treated using an airbrush spray tower
- 0.5mL solution to each
- Each placed in individual petri dish observation arena and given fresh DI water and leaf disc containing PM daily
- Survival Analysis
- Repeated with 2nd instar larvae



Biological Control of Leafminers on Gerbera with

Integration with Pesticides:

- May be needed if leafminers get out of control; a material to kill leafminers that allows Diglyphus survival
- May be needed if western flower thrips, Lygus, etc., invade the greenhouse; a material to kill these pests that allows Diglyphus survival
- Early detection/spot treatments/residue effect

PLEASE READ THE LABEL COMPLETELY BEFORE USE WARNING KEEP OUT OF REACH OF CHILDREN

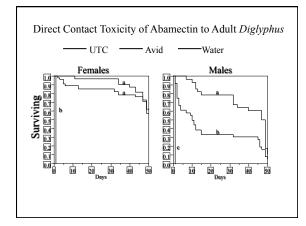
AVID[®]

INSECTICIDE/MITICIDE Active Ingredent: AVID contains 18 gHze ABAMECTIN in the form of an emutafilable concentrate. Also contains: 285 gHze Perrolitionos. J - methy and 9.5 gHze Phenol. 2.6-bit(1,1-dimethyethyeth-methy For the control of Mites on Avocados, Pipfruit, Indoor Tomatoes, Strawberries and Ornamentals and for the control of Leatrollers on Kiwifruit and Tomato-Potato Pyillo on Potatoes.

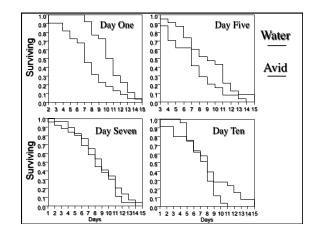
Pack size: 1 and 5 litre

Registered pursuant to the ACVM Act 1997, No. P 4648. See www.foodsafety.govt.nz/industry/acvm/ for registration conditions.

Approved pursuant to the HSNO Act 1996, Approval Code HSR000734.


Syngenta Crop Protection Limited Tower 2, Level 7, 110 Symonds Street, Auckland

UN-2902, PESTICIDE, LIQUID, TOXIC, N.O.S. (Contains: abamectin 1.9%) MARINE POLLUTANT, PACKING GROUP III, HAZCHEM 2X, CONTAIN SPILLAGE


In a transport emergency dial 111, Police or Fire Brigade. For specialist advice in an emergency only, call 0800 734 607 (24 hours).

Abamectin - Compatibility - Diglyphus - Seven Questions -

- 1. Will Avid kill adult Diglyphus via direct contact?
- 2. Will Avid kill *Diglyphus* if adults feed on contaminated sugar water?
- 3. Will Avid kill adult *Diglyphus* through residual action, and if so, for how long?
- 4. Will Avid kill *Diglyphus* larvae if they are sprayed while protected by the leaf?
- 5. Will Avid kill *Diglyphus* larvae if there is direct contact with the larvae?
- 6. Will Avid impact the longevity of adult *Diglyphus* if they are sprayed as larvae in the leaf?
- 7. Will abamectin-poisoned leafminer larvae kill *Diglyphus* larvae feeding on them?

T JODE		Home Links Caree	rs News Green	lab	Engl	ish
USTAINABLE CROP MANAGEMENT						
Our advice -	Products	Company info	Side-effects manu	a		
						_
Side-effects manual						i.
Active ingredient Commercial product Filter		Beneficial organism:	Legend	Legend		
		Amblyseius degenerans	Texicity of	Toxicity on natural enemies		•
		Ambiyselus swirski Anthocoris nemoralis	Class	Toxicity	Mortality	
: 2.4.D		Aphidius spp.	0	Non-toxic	< 25%	
🗹 abamectin		Aphidoletes aphidimyza	õ	Slightly toxic	25-50%	
acephate		Bombus spp.	ŏ	Mod. toxic	50-75%	
acequinocyl		Chrysopa camea	ŏ	Texic	>75%	
acetamiprid		Colecptera		10000		
aorinathrin		Dacnusa sibirica	Texicity o	Toxicity on bumblebees		•
 Adoxophyes orana Granulose Virus 		Diglyphus isaea		Method of application		
alachior		Encarsia formosa				•
 aldicarb 		Eretmocerus spp.	Persist co	Persist code		٠
 alphacypermethrin 		 Feltiela acarisuga 				
amitraz		Hympetnis snn				
		abamectin	abarnectin b		ate	
		8		8		
	larva	0	0			
Diglyphus isaea	adult	0		0		
	persist	1w				
	nymph/adult	0	0			
Phytoseiulus persimilis	persist	2 w	1 w			

