
Understanding Water Footprint of Nursery Production

Joshua Knight
Extension Associate, Nursery Crop Production
M.Sc Candidate, Integrated Plant and Soil Science
Department Of Horticulture
University Of Kentucky

Water Footprint

Footprint -> **IMPACT**

Similar in basic concept to a Carbon Footprint / Ecological Footprint

Water Footprint

"Consumptive Use" of water is defined by impact.

Water used for one purpose cannot be used for another purpose at the same time.

Ex. Captured rainfall runoff that has evaporated behind a dam cannot flow downstream and provide habitat.

Water Footprint

Relevant or Competitive uses of water...

- Irrigation
- Drinking water
- Ecological Requirements
 - Dilution of pollutants
 - Habitat support

ex. aquatic animals, vegetation

Is All Consumptive Water Use Equal?

(mostly) NO!

Critical Factors:

- Location
- Time of Year

BUT, comparisons between geographic locations should include unweighted Water Footprint volumes.

A Water Scarcity Index is a ratio equal to

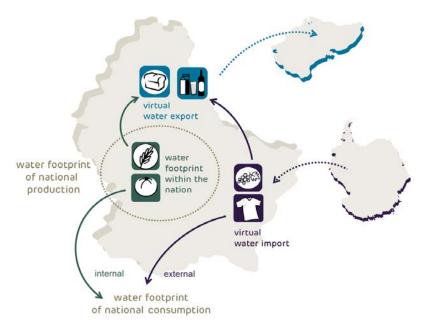
CONSUMPTIVE WATER USE AVAILABILITY

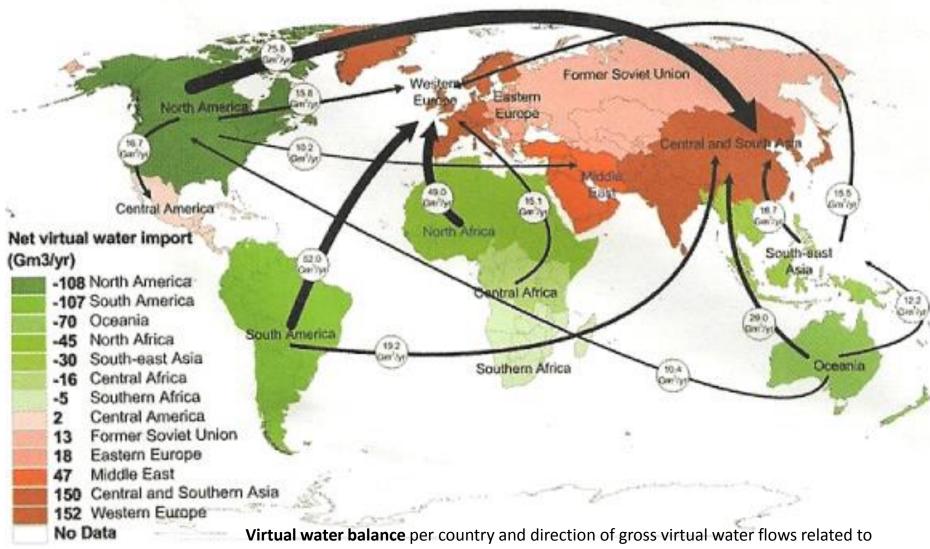
<u>State</u>	<u>January</u>	<u>February</u>	<u>March</u>	<u>April</u>	<u>May</u>	<u>June</u>	July	August	September	<u>October</u>	November	December	Annual Average	Representative Drainage	Population
Virginia	0.014181	0.01832	0.018219	0.025763	0.038401	0.063774	0.117747	0.186882	0.208571	0.155023	0.059899	0.026471	0.077771	James River (163)	909,948
South Carolina	0.019746	0.0189	0.018254	0.031089	0.063785	0.116685	0.201934	0.351206	0.225242	0.221579	0.127507	0.052044	0.120664	Savannah River (181)	1,169,380
New Jersey	0.098284	0.20119	0.039736	0.072174	0.095669	0.177733	0.264605	0.306618	0.283452	0.213289	0.114869	0.124629	0.166021	Delaware River (147)	6,415,590
Maryland	0.063034	0.07346	0.050191	0.063696	0.094937	0.150985	0.267116	0.399776	0.49382	0.409168	0.218213	0.113635	0.199836	Potomac River (156)	3,494,420
South Carolina	0.098463	0.09975	0.105906	0.167028	0.298493	0.466598	0.566113	0.583447	0.61985	0.669924	0.532555	0.200463	0.367383	Santee River (175)	3,126,590
Oregon	0.014323	0.01566	0.043253	0.1111	0.131125	0.313598	0.919018	1.246989	1.05675	0.563217	0.097105	0.026495	0.378219	Columbia River (107)	6,607,400
Florida	0.194408	0.42782	0.397337	0.741969	1.620649	1.441655	0.265662	0.191254	0.099614	0.108456	0.224084	0.327319	0.503352	St. Johns River (196)	2,904,720
California	0.059791	0.0583	0.360868	1.494313	2.897051	4.836142	5.755677	6.114535	6.190987	5.888786	4.471712	0.678311	3.233873	San Joaquin River (162)	1,681,380
California	0.658643	0.22634	0.146492	1.12602	3.780436	5.522125	6.226955	6.444752	6.457482	5.949864	5.023882	4.981959	3.878746	Salinas (170)	307,941

Selected Water Scarcity Indices (2011)

Purpose of Water Footprint Analysis

International Standard & Broad Application


Purpose of Water Footprint Analysis


International Standard

Due to international trade, freshwater is becoming a **global resource**.

&

Consumers are spatially disconnected from water resources.

trade in agricultural and industrial products over the period 1996-2005. Only the biggest gross flows (> 15 Gm3 /yr) are shown; the fatter the arrow, the bigger the virtual water flow.

Purpose of Water Footprint Analysis

International Standard

Not a stick to beat on water by consumers or producers, but rather a method to analyze consumptive water use and ultimately make practical improvements.

Purpose of Water Footprint Analysis

Broad Application

Water footprint can allow comparisons

- Companies
- Products
- Commodities
- Communities
- Individuals

Comparing Water Footprint	
Smartphone	240 gallons
Cotton T-shirt	26 gallons
Cup of Coffee	35 gallons
Direct Consumption	27 gallons
per day	
-washing, cleaning, etc.	
Plastic Bottle (1 pint)	1.4 gallons

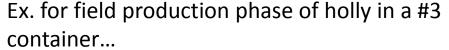
Global annual grey water footprint of packaging aluminium 3 000 Empire State Buildings per year = domestic water supply for London's population for 2.5 years 000 Empire State Buildings per year = domestic water supply for Australia's population for 1 year 000 Empire State Buildings per year = domestic water supply for France's population for 2 years 315 000 Empire State Buildings per year = domestic water supply for India's population for 4 years = domestic water supply for China's population for 6 months If filled with water, 1 Empire State Building would hold 1 million cubic metres of water Data and source credit: Water Footprint Network and Referenced materials Icons: Water Footprint Network & Creative Commons License

Illustrating water conservation from recycling...

Water Volume requirement to **produce** new packaging expressed in volume of Empire State Building.

1 million cubic meters= 1 empire state building

How it works...


Basic Water Footprint Calculation in Nursery Production

How it works...

Basic Water Footprint Calculation in Nursery Production

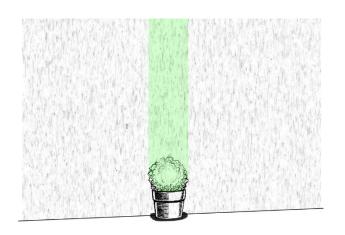
Embodied WF = Weighted volume of water required for fabrication of inputs

Injection molded HDPE plastic container

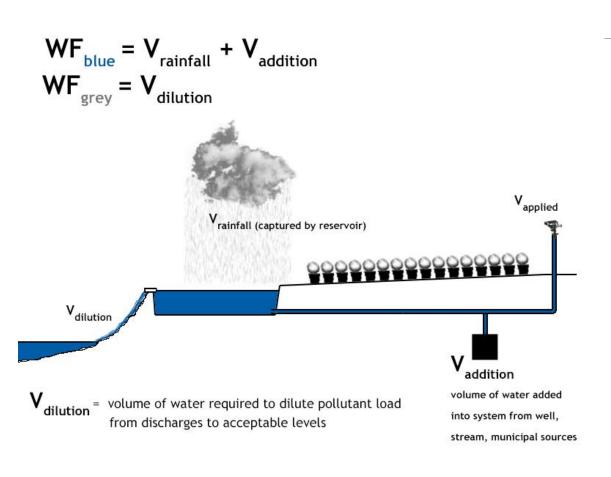
= 0.534 Gallons (weighted)

Herbicides (total)

= 0.262 Gallons (weighted)


••••

Total Embodied WF


= ~ 4.2 Gallons (weighted)

Basic Water Footprint

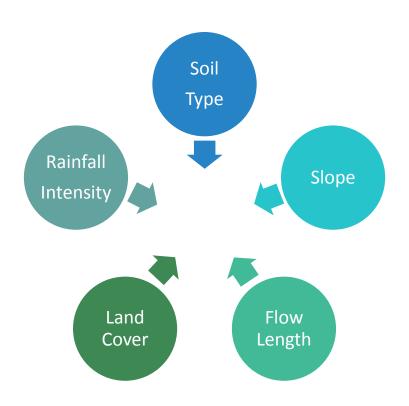
Green WF = water used <u>directly</u> during atmospheric events

Volume of irrigation events avoided due to precipitation

Grey WF is "simple":

Measure or estimate volume and pollutant load of discharges

Aside from metered additions, Blue WF is complex:


How much rainfall runoff is there to capture?

☐ Interview Grower
 ☐ Complete Checklist
 ☐ Get Climate Data (30-Y normals)
 ☐ Calculate Green WF
 ☐ Calculate Grey WF
 ☐ Model Captured Rainfall Runoff
 ☐ Calculate Blue WF

Nursery Name												
Physical Address												
CRITICAL INFORMATION												
Irrigation												
Total Area Irrigated					Are	a Unde	r Cover	Area NOT Under Cover				
Irrigation Method A	Ove	rhead	D	rip		Mist		Ebb/FI	ood	Other		
Area of Irrigation A							□ Coven	ed		□ Uncov	ered	
Estimated % Irrigation Appli	ed Retur	ning to F	Reservoir									
Irrigation Method B	Ove	rhead	D	rip		Mist		Ebb/FI	ood	Other		
Area of Irrigation B							□ Coven	ed		□ Uncov	ered	
Estimated % Irrigation Appli	ed Retur	ning to F	Reservoir									
Irrigation Method C	Ove	rhead	D	rip		Mist		Ebb/Fl	ood	Other		
Area of Irrigation C					-			ed		□ Uncovered		
Estimated % Irrigation Appli	ed Retur	ning to F	Reservoir									
Monthly Data	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De
Irrigation Method A												
frequency (per week)												
amount per event												
Irrigation Method B												
frequency (per week)									_	\bot		
amount per event												
Irrigation Method C												
frequency (per week)												
amount per event											<u> </u>	
Water Additions (gallons)												
stream (price \$per)						Ь			—			
well (price \$per)						Ь			_			
municipal (price \$per)		_				▙	+	+	_	+	_	_
other (price \$per)												_
Water Discharges					_	-	_	_	-	_		
Volume (gallons)												_
Pollutant Loads		_			_	_		_	_	_	_	
N (specify unit	_	-			+-	\vdash	+	+	+	+-	-	\vdash
P (specify unit (specify unit	_	_			+-	\vdash	+	+-	+	+-	_	\vdash
(specify unit	_	_			+-	\vdash	+-	+	+	+		\vdash
(specify unit	_	_			+-	\vdash	+-	+	+	+		\vdash
Water Storage Capacity												
Average Depth of Reservoir (empty)												

How? – Calculating Water Footprint

How much of typical rainfall is caught?

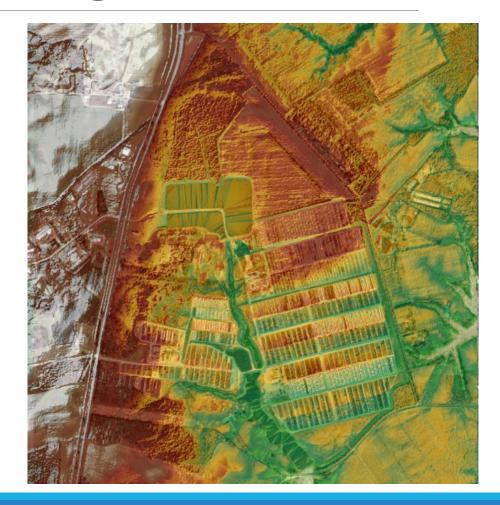
Calculating Blue WF

FIND LOCATION

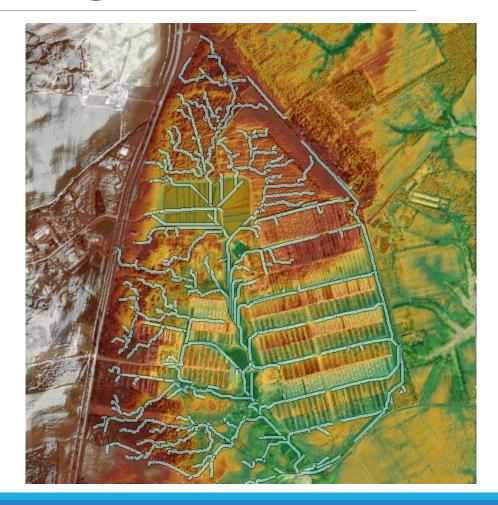
Physical address or GPS Coordinates

Define production / irrigated area

 Models tell us how much runoff can be expected from given rainfall and irrigation


Define water reservoirs

100% of rainfall captured in reservoir


Find boundaries of catchment

- 1. Elevation map
- 2. Find Flows
- 3. Boundaries

Find boundaries of catchment

- 1. Elevation map
- 2. Find Flows
- 3. Boundaries

Find boundaries of catchment

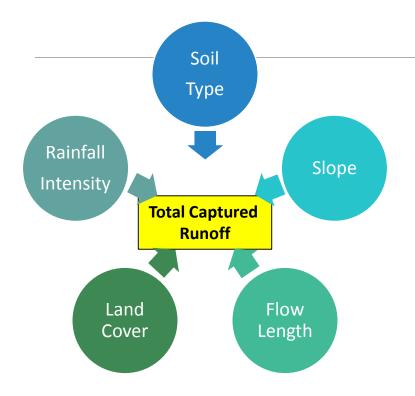
- 1. Elevation map
- 2. Find Flows
- 3. Boundaries

Define land cover*

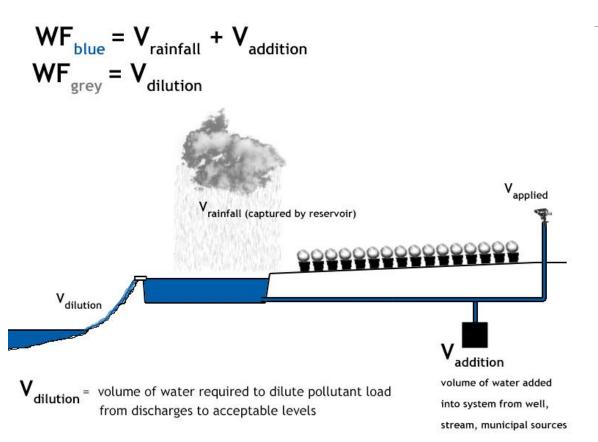
Trees/woods, grasses

*only necessary for unengineered areas

Find soil drainage types*


*only necessary for unengineered areas

Rainfall Intensity (monthly)


Rainfall intensity estimated from 30-year normals (1981 – 2010)

	<u>Jan</u>	<u>Feb</u>
Rainfall (inches) 30-yr average	3.33	3.01
Rainfall events => 1 inches	0.8	0.9
Rainfall events => 0.5 inches	2.6	2.4
Rainfall events => 0.1 inches	6.5	5.9
Rainfall events => 0.01 inches	10.1	9.6

Total Captured Runoff is compared with Reservoir Capacity and estimated losses to evaporation (monthly)...

You can only capture what you can use or hold!

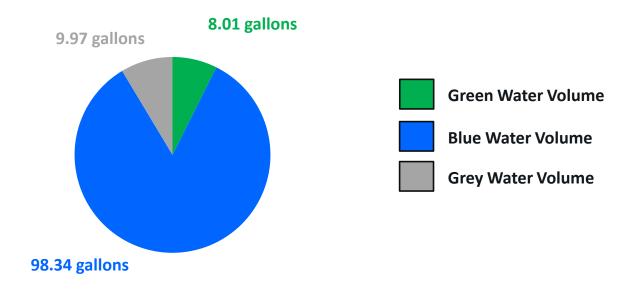
Captured Rainfall+ AdditionsBlue Water

Example Estimated Calculations

Green Water Volume 30 m gallons / yr Grey Water Volume 50 m gallons / yr Blue Water Volume 300 m gallons / yr

Total Water Volume 380 m gallons / vr

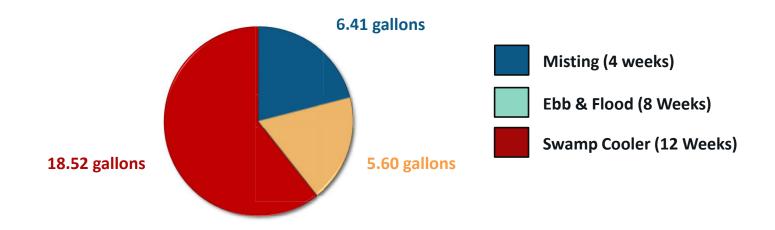
For entire catchment area!


From Total Water Volume => Per Plant Consumptive Water Use:

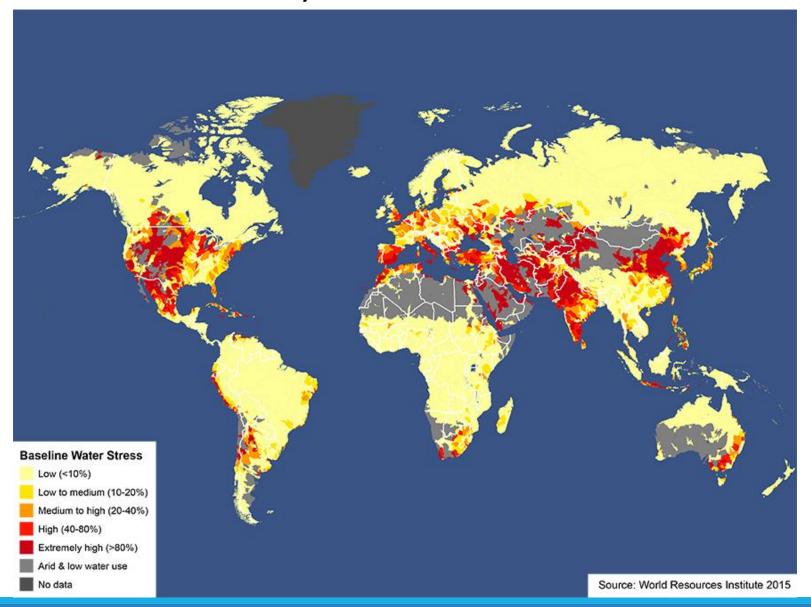
(Total Water Volume per year)(Length of Production Cycle)

(Plant Density) (Total Production Area)

Ex. #3 Container Buxus


Water Volume of Consumptive Use Characterized by Water Type

Total = 116.32 gallons


Ex. Greenhouse 72 Cell Tray

Water Volume of Consumptive Use Characterized by Production Use

Total = 30.53 gallons

What about scarcity?

Water Volume vs. Weighted Water Volume

- Appropriate for comparing changes in water use efficiency from system changes
 - irrigation schedule
 - recycling techniques
- Appropriate for comparing system efficiencies among similar systems with variable water scarcity.

- Appropriate for comparing environmental impacts across systems with variable water scarcity.
- Appropriate for quantifying environmental impact to location throughout year.
- Moving Target! ... Changes with shifting climate (availability) and use changes.

How is scarcity calculated?

"What is the potential to deprive another freshwater user—human or ecosystem—by consuming freshwater in this region?"

Generally expressed as in range between .01 and 100.

How is scarcity calculated?

Generally expressed as in range between

.01 ------ 100

Low scarcity High scarcity (water abundance) (water limited)

Calculation Methods

Withdrawal-to-Availability ratio (WTA) ~2008 (early)
Consumption-to-Availability ratio (CTA) ~2012 (common)
Inverse of Availability minus Demand (AWARE) ~2017 (new)

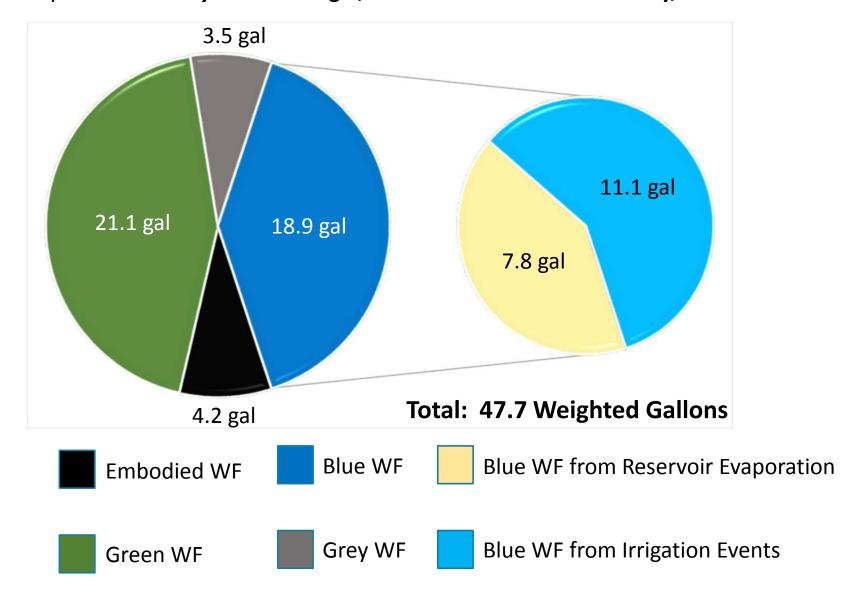
Selected Water Scarcity Indices (CTA Method) (2011)

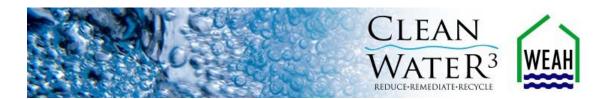
A Water Scarcity Index is a ratio equal to

CONSUMPTIVE WATER USE AVAILABILITY

<u>State</u>	<u>January</u>	<u>February</u>	<u>March</u>	<u>April</u>	<u>May</u>	<u>June</u>	July	August	September	<u>October</u>	November	December	Annual Average	Representative <u>Drainage</u>	Population
Virginia	0.014181	0.01832	0.018219	0.025763	0.038401	0.063774	0.117747	0.186882	0.208571	0.155023	0.059899	0.026471	0.077771	James River (163)	909,948
South Carolina	0.019746	0.0189	0.018254	0.031089	0.063785	0.116685	0.201934	0.351206	0.225242	0.221579	0.127507	0.052044	0.120664	Savannah River (181)	1,169,380
New Jersey	0.098284	0.20119	0.039736	0.072174	0.095669	0.177733	0.264605	0.306618	0.283452	0.213289	0.114869	0.124629	0.166021	Delaware River (147)	6,415,590
Maryland	0.063034	0.07346	0.050191	0.063696	0.094937	0.150985	0.267116	0.399776	0.49382	0.409168	0.218213	0.113635	0.199836	Potomac River (156)	3,494,420
South Carolina	0.098463	0.09975	0.105906	0.167028	0.298493	0.466598	0.566113	0.583447	0.61985	0.669924	0.532555	0.200463	0.367383	Santee River (175)	3,126,590
Oregon	0.014323	0.01566	0.043253	0.1111	0.131125	0.313598	0.919018	1.246989	1.05675	0.563217	0.097105	0.026495	0.378219	Columbia River (107)	6,607,400
Florida	0.194408	0.42782	0.397337	0.741969	1.620649	1.441655	0.265662	0.191254	0.099614	0.108456	0.224084	0.327319	0.503352	St. Johns River (196)	2,904,720
California	0.059791	0.0583	0.360868	1.494313	2.897051	4.836142	5.755677	6.114535	6.190987	5.888786	4.471712	0.678311	3.233873	San Joaquin River (162)	1,681,380
California	0.658643	0.22634	0.146492	1.12602	3.780436	5.522125	6.226955	6.444752	6.457482	5.949864	5.023882	4.981959	3.878746	Salinas (170)	307,941

1.0 = All Available Water is Being Used

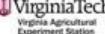

Weighted Water Footprint =



Green Water Volume

Marketable Plants in Production Area

Example: Preliminary WF of a single, marketable #3 Container Holly, East Coast U.S.



http://cleanwater3.org/

Department of of Food and Agriculture

Joshua Knight

joshua.knight@uky.edu

Extension Associate, Nursery Crop Production
M.S. Candidate, Integrated Plant And Soil Science
Department of Horticulture
University Of Kentucky
NCER.CA.UKY.EDU