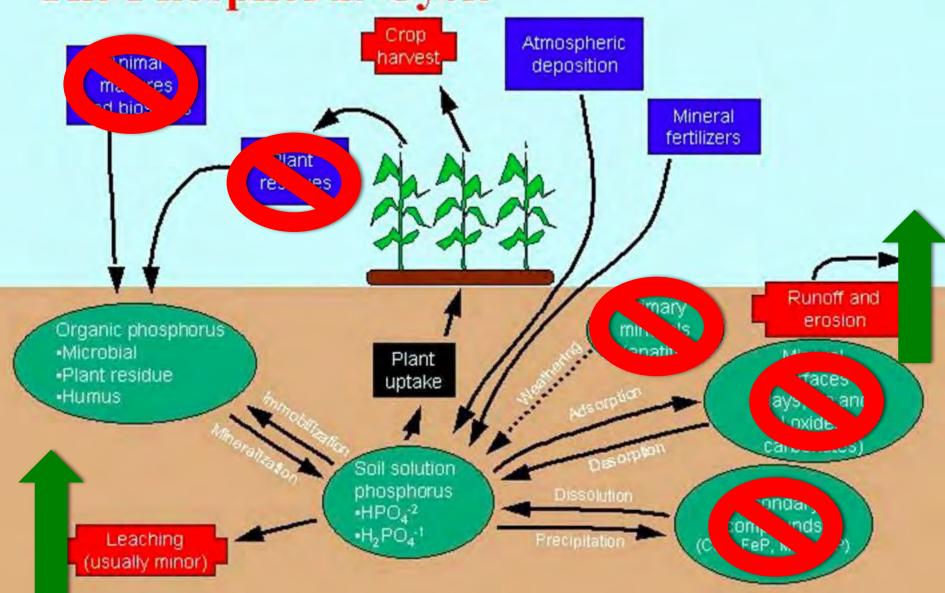
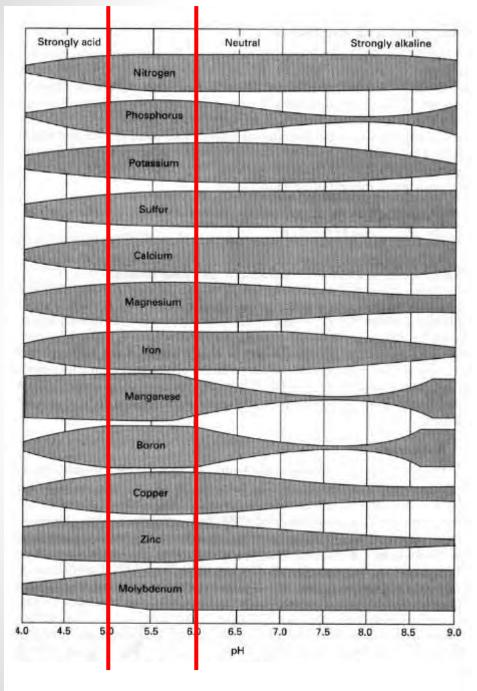
Where Do Nutrients Go When You Irrigate? Managing Irrigation to Enhance Nutrient Retention in Container Production


Tom Fernandez
Department of Horticulture
Michigan State University


The Phosphorus Cycle

Important considerations

- Water quality
 - Soluble salts
 - Alkalinity
- Container substrate physical properties (water availability terminology)
- Determining when to irrigate
 - System size, type and application rate (frequency of irrigation)
 - How much is too much
 - How much is enough
- Nutrient losses
- Cost of water

Optimum pH $\sim 5 - 6$

pH > ~6 will create deficiencies of P, Mn, B, Cu, Zn

pH < ~5 will create deficiencies of many essential elements

Out of Readily Available Water

Permanent Wilting Point

How much is too much?

Container Capacity (CC) = 60% Substrate Moisture Content (SMC) Unavailable Water (UW) = 25% SMC

Available Water (AW) = 35% water depletion

Readily Available Water (RAW) = CC * 35% = 21% (occurs at 39% SMC)

But don't really want wilting, say we water to replace 10% below CC (50% SMC)

Trade size	Container volume (gallon)	Volume AW in pot (gallon)	Irrigation to replace RAW (GPA / Acre-Inch)
#1	1.007	0.35	28,119 / 1.04
#3	3	1.05	41,582 / 1.53
#5	3.734	1.31	44,410 / 1.64
#7	7.492	2.62	64,109 / 2.36
#10	10.257	3.59	69,348 / 2.55
#15	13.351	4.67	66,319 / 2.44

CC = 45% SMC UW = 25% SMC

AW = 20% water depletion

RAW = 11% water depletion (34% SMC)

But to avoid wilting replace at 6% depletion (39% SMC)

Trade size	Container volume (gallon)	Volume AW in pot (gallon)	Irrigation to replace RAW (GPA / Acre-Inch)	Irrigation to replace 6% RAW (GPA / Acre-Inch)
#1	1.007	0.20	14,729 / 0.54	8,034 / 0.30
#3	3	0.60	21,782 / 0.80	11,881 / 0.44
#5	3.734	0.75	23,263 / 0.86	12,689 / 0.47
#7	7.492	1.50	33,579 / 1.24	18,316 / 0.67
#10	10.257	2.05	36,326 / 1.34	19,814 / 0.73
#15	13.351	2.67	34,738 / 1.28	18,948 / 0.70

Replace 6% RAW with Distribution Uniformity = 80%

Trade size	Container volume (gallon)	0% Leaching Fraction (GPA / Acre-inch)	10% Leaching Fraction (GPA / Acre-inch)	20% Leaching Fraction (GPA / Acre-inch)
#1	1.007	10,042 / 0.35	11,047 / 0.41	12,051 / 0.44
#3	3	14,851 / 0.55	16,336 / 0.60	17,821 / 0.66
#5	3.734	15,861 / 0.58	17,446 / 0.64	19 033 / 0.70
#7	7.492	22,896 / 0.84	25,186 / 0.93	27,475 / 1.01
#10	10.257	24,767 / 0.91	27,244 / 1.00	29,721 / 1.09
#15	13.351	23,685 / 0.87	26,054 / 0.96	28,422 / 1.05

How much is enough?

- Experience
 - Weather/evapotranspiration
 - Feel/weight
- Leaching Fraction
- Moisture sensors

Leaching Fraction (LF) =

(amt of water leached with plant / amt without plant)* 100

Courtesy Ted Bilderback, NCSU

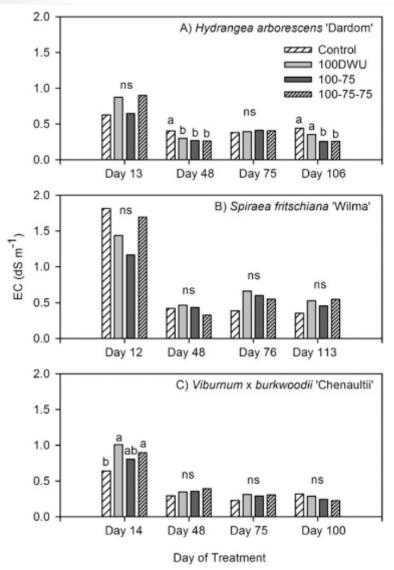
Determining Leaching Fraction

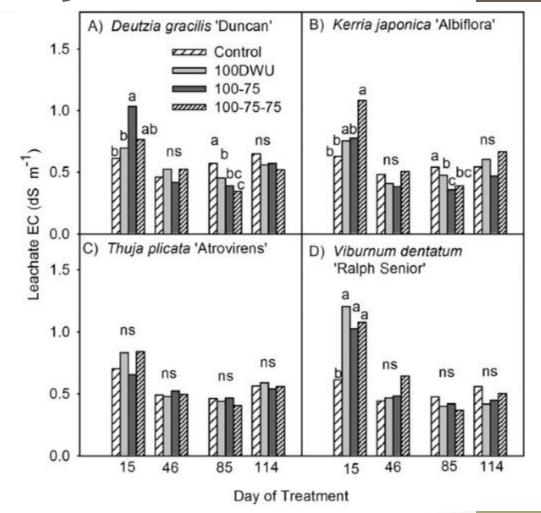
Container	1	2	3	4	5	Avg
Plant Container (ml)	250	225	160	275	210	224
Empty Container (ml)	775	770	740	870	760	783
Leaching Fraction (%)	32	30	21	31	28	29

Older recommendations are for LF ≤ 20 %, based on greenhouse studies

LF = 0 should be considered for nurseries. YOU MUST Monitor

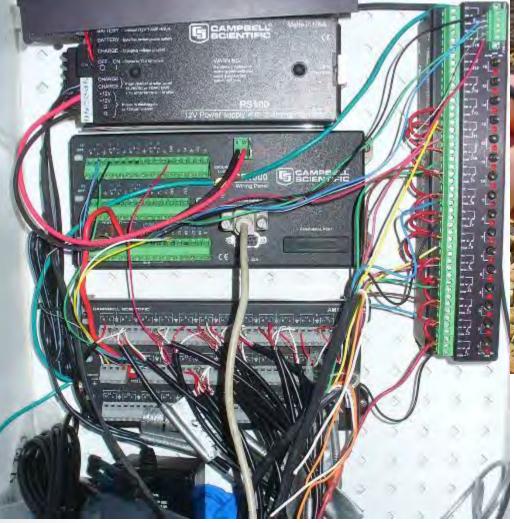
container EC if go to 0 LF


Tom Fernandez
Department of Horticulture
Michigan State University


Leachate pH and EC

Soluble Salts (EC)

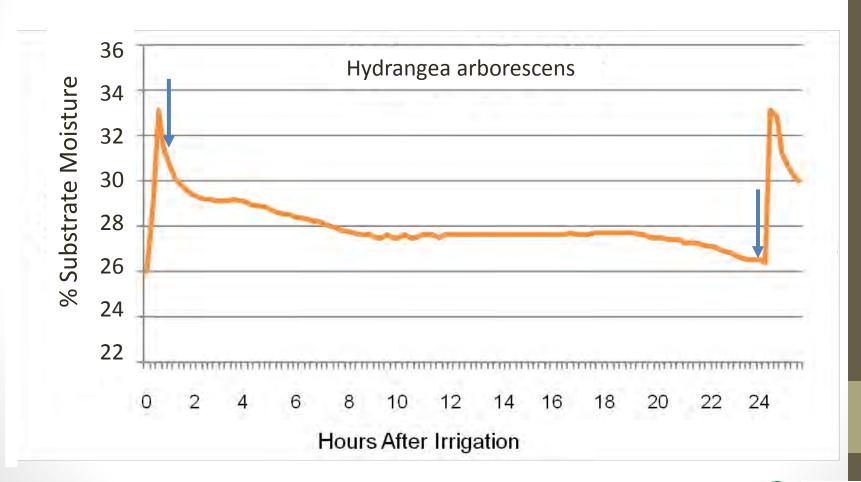
Types of Moisture Sensors



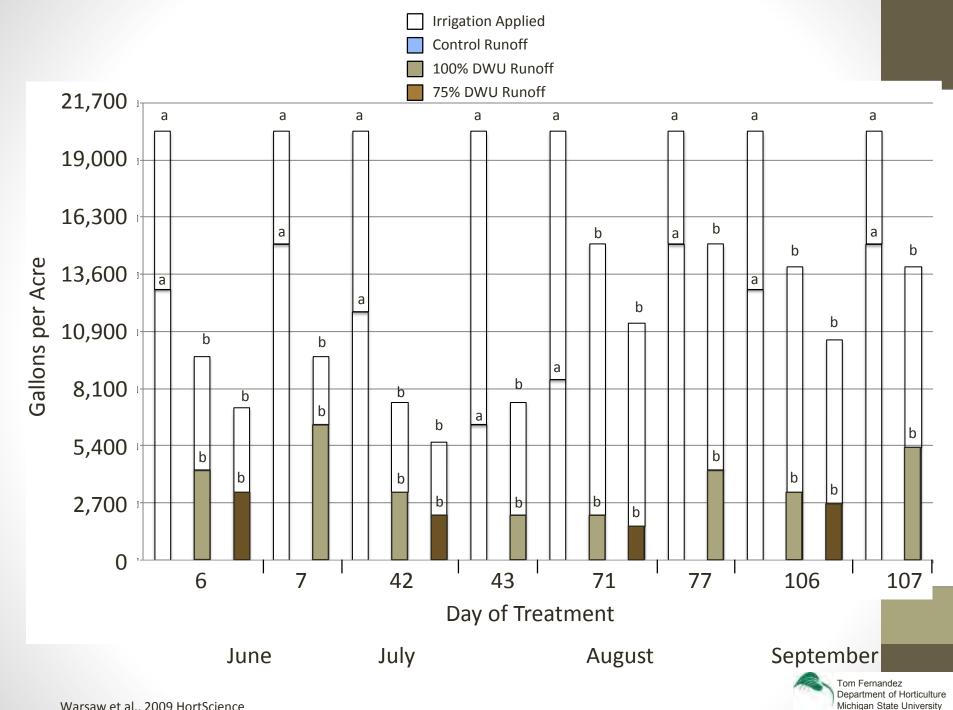
2010 - 2015

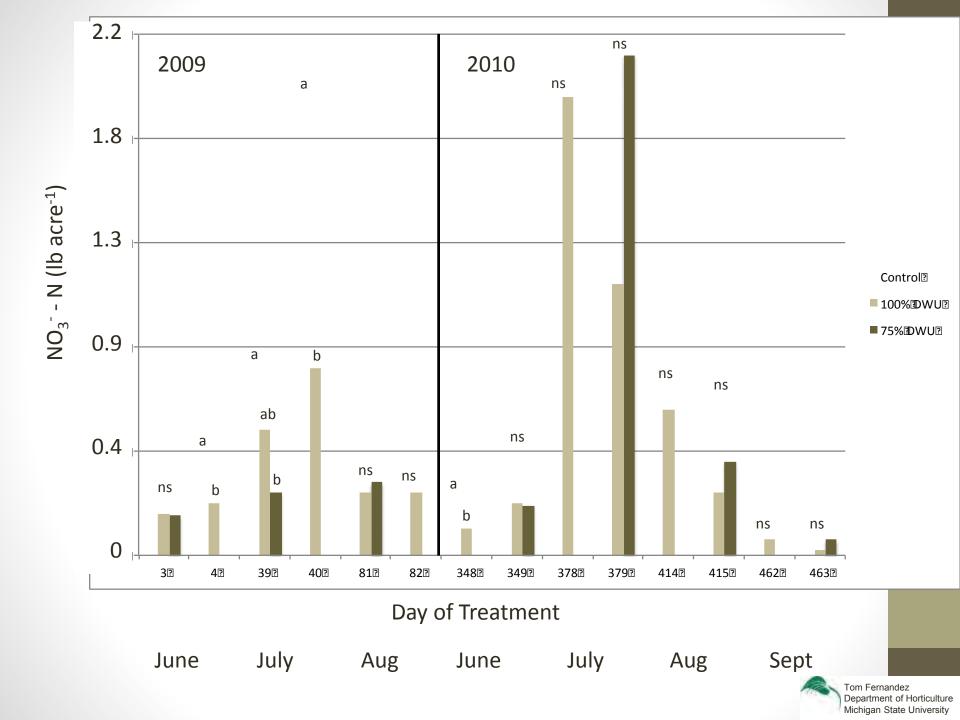
Substrate volumetric moisture content determined with Theta probes or Decagon 10HS sensors via a Campbell datalogger programmed to calculate

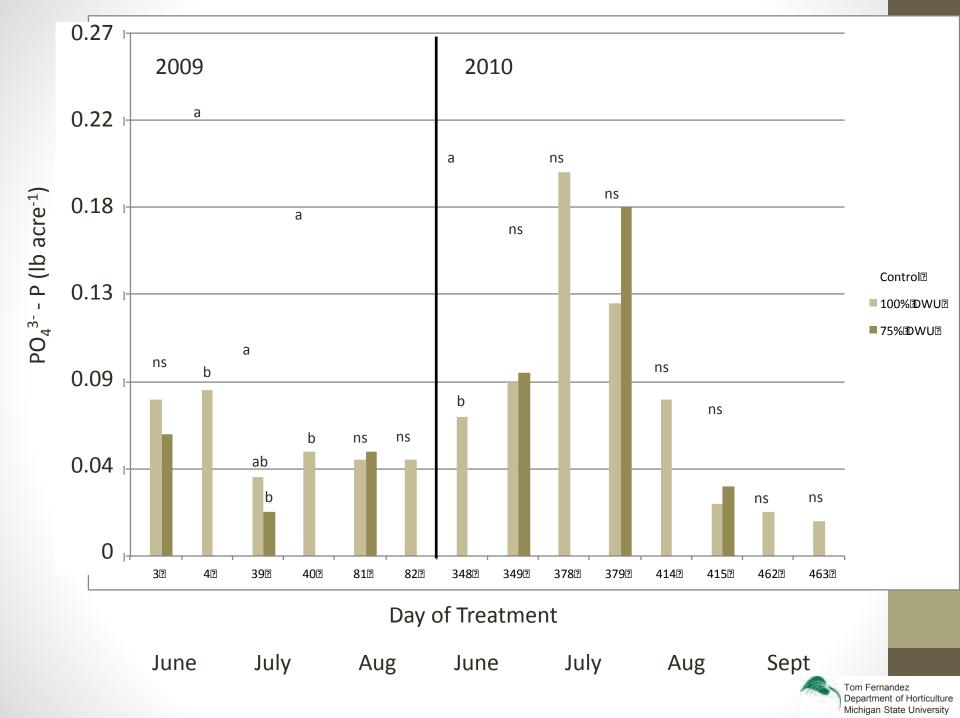
DWU and apply irrigation by controlling solenoid valves. Irrigation applied based on the highest plant DWU.


Tom Fernandez
Department of Horticulture
Michigan State University

Wireless sensor networks


Calculating Daily Water Use (DWU)

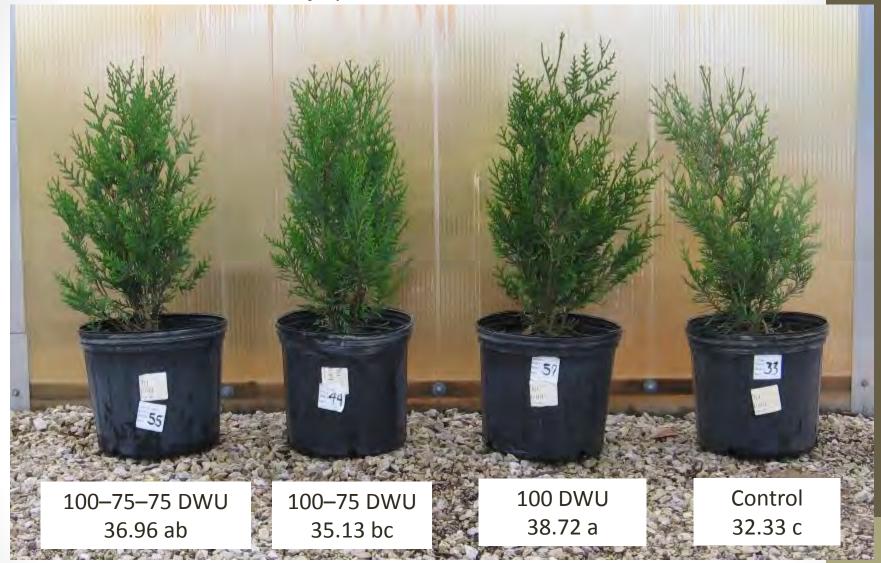




Overhead Irrigation Typical Treatments

- Control = ¾ acre-inch per day
- 100 DWU = 100% of plant daily water use (ET) replaced
- 100-75 DWU = alternating 100% DWU with 75% DWU
- 100-75-75 DWU = alternating 1 day at 100 % DWU with 2 days of 75% DWU

Hydrangea arborescens 'Abetwo'



Kerria japonica 'Albiflora'



Thuja plicata 'Atrovirens'

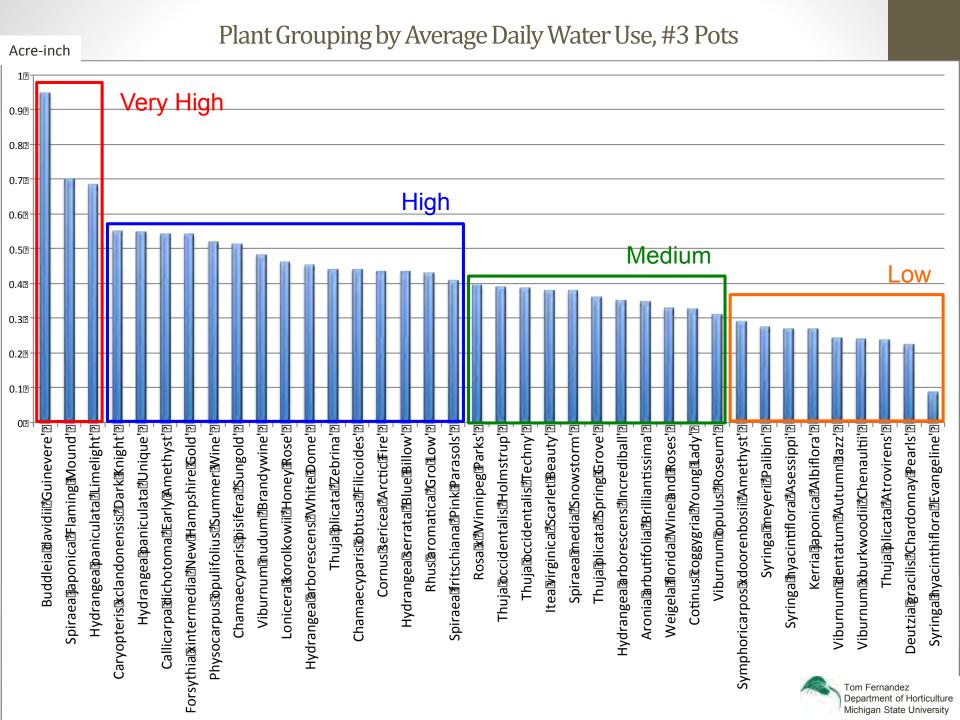
Growth Index-Hydrangea paniculata 'Limelight'

Viburnum dentatum Autumn Jazz

100–75–75 DWU 13.69 a

100–75 DWU 13.13 a 100 DWU 13.43 a Control 9.72 a

	Foliar Nutrient Content						
	Control ^z 100DWU 100-75 100-7						
	Hydrangea paniculata 'Limelight'						
Day 63							
N (%)	2.87 A ^y	2.88 A	2.99 A	2.96 A			
P (%)	0.24 A	0.29 A	0.30 A	0.29 A			
K (%)	1.65 A	2.23 A	2.07 A	2.07 A			
Day 90							
N (%)	2.24 A	2.35 A	2.38 A	2.31 A			
P (%)	0.14 B	0.17 AB	0.18 A	0.17 AB			
K (%)	0.41 B	0.65 A	0.61 AB	0.67 A			
		Itea virgi	<i>inica</i> 'Morton	'			
Day 63							
N (%)	2.50 A	2.69 A	2.46 A	2.65 A			
P (%)	0.22 A	0.22 A	0.22 A	0.24 A			
K (%)	0.65 A	0.55 A	0.58 A	0.66 A			
Day 90							
N (%)	2.37 A	2.74 A	2.59 A	2.55 A			
P (%)	0.16 B	0.20 AB	0.20 AB	0.21 A			
K (%)	0.48 A	0.53 A	0.54 A	0.55 A			
	Physocarpus opulifolius 'Seward'						
Day 63							
N (%)	3.19 A	3.19 A	3.19 A	3.33 A			
P (%)	0.31 B	0.37 A	0.37 A	0.39 A			
K (%)	1.09 B	1.46 A	1.59 A	1.66 A			
Day 90							
N (%)	2.15 A	2.20 A	2.28 A	2.28 A			
P (%)	0.21 B	0.23 AB	0.25 A	0.24 A			
K (%)	0.38 B	0.41 A	0.45 A	0.42 A			
		Spiraea me	<i>edia</i> 'Darsno	rm'			
Day 63							
N (%)	2.27 A	2.38 A	2.23 A	2.42 A			
P (%)	0.63 A	0.67 A	0.66 A	0.66 A			
K (%)	1.26 A	1.63 A	1.66 A	1.64 A			
Day 90							
N (%)	2.50 A	2.70 A	2.63 A	2.74 A			
P (%)	0.72 B	0.81 AB	0.87 A	0.81 AB			
K (%)	1.14 B	1.39 AB	1.52 A	1.32 AB			

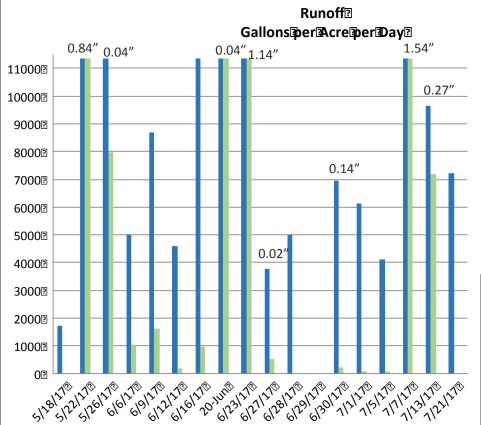

Irrigation and Runoff

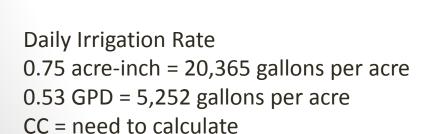
Application Rates: N = 123 lb/ac, P = 15 lb/ac (35 lb P2O5)

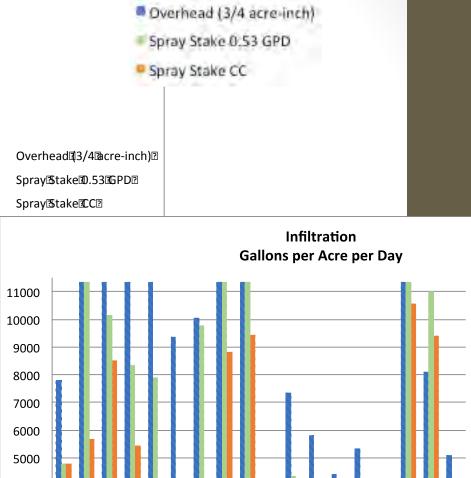
Amount recovered based on 100% land use with #3 containers spaced 1.5 ft on-center over 4 months.

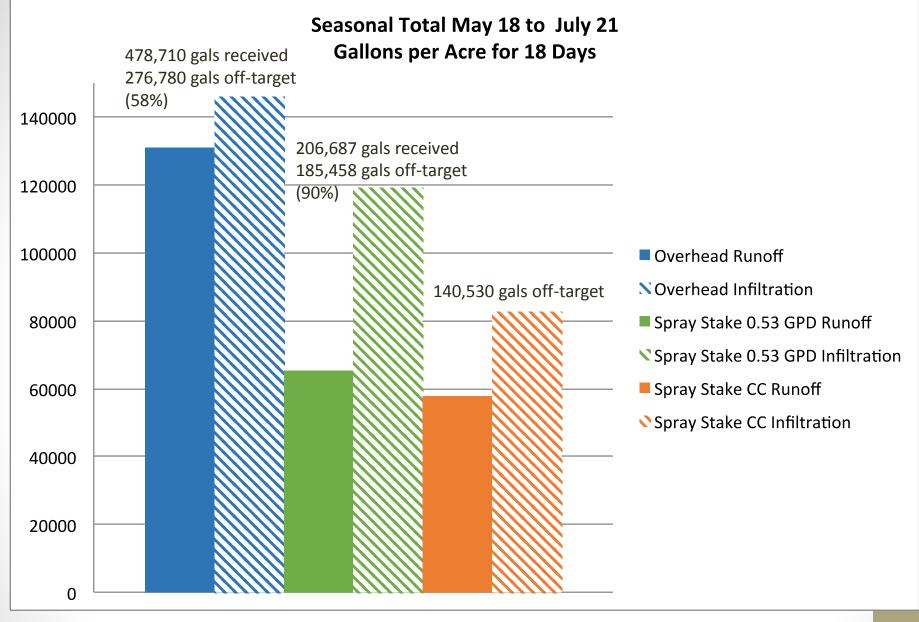
Treatment	Irrigation Applied gal/acre	Runoff volume gal/acre (% Applied, % of Control Applied)	Nitrate recovered lb/acre (% Applied)	Phosphate recovered lb/acre (% Applied)
Control	2.4 million	1.04 million (43%)	12 (10%)	3.1 (21%)
100% DWU	1.6 million	0.48 million (31%, 20%)	7.2 (6%)	1.7 (11%)
100-75% DWU	1.4 million	0.29 million (21%, 12%)	5.9 (5%)	1.2 (8%)
100-75-75% DWU	1.3 million	0.37 million (29%, 15%)	5.7 (5%)	1.2 (8%)

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE CLEANWATER³.ORG




Treatments 2017


Overhead at ¾ inch per day


Spray stake at 0.53 GPD

Spray stake at 9% reduction from CC

Total irrigation applied for the 18 days Overhead = 366,563 gallons per acre Spray Stake 0.53 GPD = 94,540 gallons per acre

Plus 112,147 gallons per acre in precipitation

Summary

- Irrigating based on plant water use
 - No difference in growth
 - Possible reduction in production period
 - Better plant nutrition
- Spray-stake irrigation
 - Decreases water used
 - Even larger decrease in water used when set-point irrigation used
 - Greatly reduces runoff and infiltration losses
 - Fertilizer and pesticide movement
- Better monitoring needed as move toward more conservative irrigation practices

Funding partners

SCRI - CLEAN WATER³
REDUCE, REMEDIATE, RECYCLE
CLEANWATER³, ORG

Cost of Water at the Michigan State Research Nursery

- For 160 irrigation events per year = \$0.032 cost per 3 gallon plant
- Reduce water use by 30% = \$0.022 cost per plant
- Reduce water use by 70% = \$0.009 cost per plant
- Reduce fertilizer leaching by 6% = save \$0.005 per plant
- Saving \$0.015-\$0.023 per plant, Whoopee!!
- Additional revenue of \$158-\$242 per acre
- Water is cheap!

....at least east of the Mississippi

McCorkle Nursery, GA

- Gardenia crop: 20,000 sq ft area with 23,400 plants (50,965 plants per acre)
- Gardenia was a "problem" crop for them
- Reduced production time from 11-22 to 8-11 months
- Improved survival from 10% loss to zero loss

Econo	mic]	Impact	
Decilo		mpace	

E(CO	n	on	Im	lpa	ICL	

	~ 1 -
	Coctc

しひろしろ

Control node

Sensors (4 @ \$90)

Base station, computer & software

Fewer plant losses Time/interest (avg 6 months shorter

production cycle @ 8%)

Total Savings/Profit

Rain gauge

Installation

Total Cost

Less fertilizer, pesticides, maintenance, labor

Savings/Profit

Net

\$21,200 (\$0.90 per plant)

Department of Horticulture

Michigan State University

\$675 \$360

\$13,000 (\$6.50 per plant)

\$300 \$1,000

\$1,500

\$3,835

\$500

\$7,700

\$17,365

Cost of Water

- Cheap! But not the consequences of over-irrigation
- For 160 irrigation events per year = \$0.032 cost per plant
- Save \$0.005 to 0.018 per plant!
- Less shrinkage, shorter production cycle, less fertilizer applied, less fertilizer lost, less labor, less pesticides used = up to \$0.90 more revenue per plant (remember this example is with a "problem" crop)
- Less off-site movement of water and contaminants

If scheduling done properly

- Use water more efficiently
- Retains fertilizer where it's needed
- Reduces certain problems with low quality water (alkalinity)
- Reduces plant losses
- Improves plant growth/quality
- Shortens production cycle (greatest cost benefit)
- Reduces runoff volume
- Reduces nutrient loss in runoff