Biofilm Management

California 2017

Paul Fisher, pfisher@ufl.edu

There are many aspects of water quality. Know what you are treating for...

- Pathogens, algae, biofilm/microbes, (biological)
- Alkalinity, EC, specific salts, agrichemicals (chemical)
- Particles (physical)

Before buying equipment, get your water tested

Why do emitters clog up?

- Biological
 - Slimy organic material
- Chemical:
 - Soak in vinegar (low pH) cleans up?
 - Send solution to testing lab to analyze specific ions

- Sediment:
 - When soak in water, solid particles drop out

So many options!

Sodium hypochlorite Shloring gas Drum filter Copper ionizatio Calcium hypochlorite **ECA** Air injection Ozone Hypochlorgus acid **Acid injection** Quaternary Ammonium Chlorine dioxide Crushed glass filter aper filter Reverse osmosis Potassium permanganate

First, identify the type of clogging...

Biological issue in Florida

 Chemical/Particle issue in New Jersey

Case Study 1: Biological issue

New greenhouse 5000 gal/day

Clogged drippers

Well water

Water-soluble fertilizer and line cleaner

Screen filter (140-mesh 100 micron) Plus 200 mesh (74 micron) small screen filters

Water quality report

Location	рН	Electrical conductivity (EC, in mS/cm)	Dissolved Iron (ppm)	Total suspended solids (TSS, in mg/L)
Well head before filter	6.1	0.1	1.0	0
After filter	5.8	0.1	0.8	0
Greenhouse emitter with fertilizer	5.6	1.9	1.9	6.3

Biofilm:3M Petrifilm method

>5,000 cfu/mL bacteria = high biofilm risk

Bacteria counts

Location	Bacteria count (colony forming units/milliliter, cfu/ml)	
Well head before filter	48,300	
After filter	101,100	
Greenhouse emitter	2,117,000	

Sodium
hypochlorite
(bleach) at 2 ppm
to oxidize iron and
bacteria

Two 36-in (0.9 meter) diameter sand filters, #20 crushed silica (190-250 micron)

Rapid pay back

Fixed Costs:

Sand media filter	\$5082
PVC pipe and fittings	\$2228
Flow meter	\$470
Chlorine tank	\$91
Labor (estimated)	\$1800
TOTAL	\$9671

Variable Costs:

Sodium hypochlorite \$66/year \$0.07 / 1000 gallons* treated (10% CI by weight, \$1.80/gallon)

Benefits:

Current value of marketable trees	\$280000
Previous value of marketable trees	\$168000
Net gain in value (Year 1)	\$112000

^{*}Divide price per gallon by 3.8 to convert to liters

After treatment system installed

Iron removal from back-flushed filter

General biofilm control: Steps

- 1. Remove small emitters & open blow-out lines, flush system
- 2. Sanitizing shock (not onto plants):
 Line cleaner or
 Chlorine dioxide (20 ppm) or
 Chlorine (20-50 ppm) or
 Peroxyacetic acid
- Suppress buildup:
 Filtration plus sanitizing agent at a low concentration

Biofilm control and residual

- Copper ionization
- Chloramines
- Peroxyacetic acid
- Quaternary Ammonium Cl
- Chlorine
- Chlorine dioxide
- Ozone
- Ultraviolet light, heat, filtration

Residual, long term

Reactive, short term

Clean WateR3 research: biofilm testing

Andrea Neira Jesenia Mosqueda Ulrich Adegbola

Clean WateR3 research: biofilm testing

Andrea Neira Jesenia Mosqueda Ulrich Adegbola

No treatment very strong suppression of biofilm other than clear water

Measured crop growth and dripper flow rate

No effect on begonia growth from any sanitizer

Chlorine was least effective at keeping drippers flowing uniformly in this pilot trial

 A range of 0 would mean all drippers have exactly the same flow rate on a bench

Algae control and phytotoxicity trials: Experimental set up

Algae control trials: Experimental set up

No fertilizer & some sanitizers reduce algae

Calcium nitrate at 50ppm N applied continuously in mist for 2 Weeks

If you are suppressing algae, you are probably also suppressing crop growth

No fertilizer

Fertilizer

2ppm Copper sulfate

1:5000 X3

1:1000 ZeroTol 0.5ppm ClO₂

Calcium nitrate at 50ppm N applied continuously in mist for 2 Weeks

Case study 2: Chemical/Particle

• 25-acre greenhouse, 21M gal per year

Case study 2: not all clogging is from biofilm

- 1 to 2 ppm of iron in well water when tested by lab.
- Remember that lab only tests dissolved iron, not solid rust
- Add a drop of bleach and leave water overnight

Iron deposits

Iron deposits

Annual cost of iron deposits

- 13,468 hours of labor (6.5 workers) to inspect, clean and replace clogged emitters, filters, and irrigation lines @ \$11/h = \$148,148
- \$4,449 to replace new irrigation lines or emitters
- Total annual cost of \$152,597
- Plus shrinkage, labor to remove stained leaves
- What would you do?

Potassium permanganate oxidizer

Simple injector system

Greensand filters

Automatic back flush

Before water treatment

 Total annual cost (labor & materials) of \$152,597

Treatment costs

- Equipment and installation \$200,000
- Potassium permanganate \$0.84/1,000 gal, or \$17,640 per year

Payback within two years

Thank You!

- Test why clogging is occurring
- Only add a treatment if you have an issue
- Choose an appropriate technology for your problem