BIOLOGICAL TREATMENT of RUNOFF

Sarah A. White, Ph.D.

27 July 2017

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE

Water challenges & concerns

Biological treatment technologies

- Sediment basins
- Filter strips
 - Vegetative buffers
 - Vegetative waterways
- Constructed water (wetland) treatment basins (CWs)
 - Surface-flow
 - Subsurface-flow
- Floating wetlands

Sediment/erosion control

- Develop an erosion / sediment control plant
- Prevent sediment from leaving the nursery
 - stabilize critical areas grass (time of year) or mulch
 - erosion control blankets/netting

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE

Biological treatment technologies

- Sediment basins
- Filter strips
 - Vegetative buffers
 - Vegetative waterways
- Constructed water (wetland) treatment basins (CWs)
 - Surface-flow
 - Subsurface-flow
- Floating wetlands

Filter strips

Bands of vegetation used between production areas & retention ponds

- Slow runoff
- Trap:
 - Sediment
 - Fertilizer
 - pesticides
 - (potentially) pathogens

Before they enter surface water

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE

Biological treatment technologies

- Sediment basins
- Filter strips
 - Vegetative buffers
 - Vegetative waterways
- Constructed water (wetland) treatment basins (CWs)
 - Surface-flow
 - Subsurface-flow
- Floating wetlands

Wetland (water basin) functions

- Soils provide habitat for microbes
- Microbes process
 - nutrients
 - organic contaminants
- Vegetation slows water
- Plant uptake/absorption
 - nutrients
 - trace metals
 - other compounds

Surface-flow CWS

Case Study: Monrovia® Cairo, GA

Case Study: CW1 – 14 years

- 120 acres of production drain to wetland
- 9.3 acre wetland
- Two-stage
 - deep cell
 - shallow cell

How well do surface-flow CWs clean nursery runoff?

Nitrogen results

Phosphorus results

Surface-flow CWS

- Most efficient with high to moderate runoff volumes
- Efficient nitrogen removal
- Phosphorus not consistently treated
- Pesticide removal 50-98%
 - organochlorine
 - organophosphate
 - pyrethroid

Subsurface flow CWS

Subsurface flow CWS

Subsurface flow CWS

- Reduce ammoniacal N emissions
- Efficient nitrogen & phosphorus removal
 - sediment will become P saturated
- Pesticide removal depends upon pesticide class

Floating treatment wetlands (FTW)

Floating treatment wetlands (FTWs)

Floating wetland: functions

- Large root surface area for microbe habitat
- Particulate filtration
- Nutrient removal
- Provide "edge" shelter & general wildlife habitat

N & P remediation

Remediation efficiencies

	Water Treatment Basin Design (% Removal)			
Contaminant	Filter strip	FTW	Surface flow	Subsurface flow
TSS	41 -100	-	71 ± 35	83
TP	27 - 96	44 ± 75	9 - 54	33 - 90
TN	48 - 85	58 - 84	50 - 90	19 - 90
Herbicides*	30 - 91	?	24 - 100	24 – 97

TSS = total suspended solids | TP = total phosphorus | TN = total nitrogen * Removal efficacy vary by compound, some not removed

Conclusions

- Each technology discussed has specific benefits and limitations
- Technology applied for remediation depends upon site-specific considerations
 - operation size
 - treatment volume
 - contaminants of concern

Contact Information

Sarah A. White, Ph.D.

Department of Plant & Environmental Sciences Clemson University

E-143 Poole Agricultural Center

Clemson, SC 29634-0319

865.656.7433

swhite4@clemson.edu

Resources:

Constructed Wetlands: A How to Guide for Nurseries

Available for free: https://goo.gl/KQyGDU

<u>Cleanwater3.org</u> – treatment technology information

