Slow Sand Filters

Remove TMV & Other Pathogens

Loren Oki, Ph.D.

Cooperative Extension Specialist

Department of Plant Sciences Department of Human Ecology University of California, Davis

California Nursery Conference Columbus, OH July 17, 2017

Slow Sand Filtration

- What is slow sand filtration?
- System design and operation
- Research results

What is Slow Sand Filtration?

Sand Filters

- Rapid sand filtration
- Slow sand filtration

What is Slow Sand Filtration?

Rapid sand filtration

- Coarse sand (>1mm)
- Removes larger particles only
- Does not remove pathogens or pollutants
- 2-20 gpm/ft²
- Low maintenance

What is Slow Sand Filtration?

Slow sand filtration

- Removes pathogens
- Removes many pollutants
- Low maintenance
- Slow flow rates
 - $\blacksquare 0.06-0.2 \text{ gpm/ft}^2 (33-100 \times \text{slower})$
 - 12' dia tank can treat 10,000 gpd

Mechanism

- "Schmutzdecke"Where most treatment occurs
 - A community of microorganisms
 - Sand bed surface to 6 inches below
- Organisms that have been identified:
 - algae, bacteria, diatoms, and zooplankton
- Mechanisms for removal are not fully understood
- Particulate removal before filtration

Capabilities

Can remove

- Pathogens
- Nutrients (reductions)
- Chemical pollutants

Specifications

- Uniform particle size
 - 30-60 mesh (0.425-0.3mm)
 - Uniformity Coefficient (UC)<3</p>
- Round, not sharp
- 1m water head over sand
- Sand must stay submerged
- Sand surface must not be disturbed
- Flow control
- Recommend 1m sand depth
- Recommend at least two filters

System Design

Installations

@ 70 gpd/ft² \rightarrow 3,500 gpd

Berylwood Tree Farm, Somis, CA

Installations

- 850 ft² surface
 - 33 ft dia.
- 60,000 gpd
 - @70 gpd/ft²
- Treated storage
 - 132,000 gal
- Untreated storage
 - 1,720,000 gal5.3 ac-ft

Installations

350,000 gpd ~4,440 sq.ft @80 gpd/ft²

Filter Cover

Supernatant water

Underdrain system (lowest level)

From: Sabine Werres, Federal Biological Research Center for Agriculture and Forestry, Braunschweig, Germany

Experimental Design

Flow rates and time-to-treatment

- Generate and capture irrigation runoff
- Inoculate treatment water
 - Phytophthora capsici
- Collect water samples
 - Pretreatment
 - From within sand bed
 - Post treatment
- Analyze for P. capsici

SSF Studies

Treatment Performance

Pathogen switch

And simulated pump failure

- Phytophthora capsici
- Fusarium oxysporum (added directly to filter)

TMV removal

SSF System setup

TMV removal

- Purified TMV added to columns
- Collected water samples weekly
- Testing via
 - ELISA
 - bioassay
 - Leaf- N. glutinosa, C. quinoa
 - Whole plant- N. tabacum, N. benthamiana
- Required 6-9 weeks to achieve removal

TMV removal, bioassay results

				_
	Column 2	Column 3	Column 4	
TIME	N.b./N.t.	N.b./N.t.	N.b./N.t.	_
-0	-/-	-/-	-/-	←Before TMV addition
24 hrs	+/+	+/+	+/+	
Wk 1	+/+	+/+	+/+	
Wk 2	+/+	+/+	+/+	Samples collected from below sand bed
Wk 3	+/+	+/+	+/+	
Wk 4	+/+	+/+	+/+	Systemic hosts
Wk 5	-/+	+/+	+/+	Nicotiana benthamiana (N.b. and N. tabacum (N.t.)
Wk 6	-/-	-/-	-/-	
Wk 7	-/-	-/-	-/-	and W. tabacam (N.t.)
Wk8	-/-	-/-	-/-	
Wk 9	-/-	-/-	-/-	
Wk 10	-/-	-/-	-/-	
Wk 11	-/-	-/-	-/-	
Wk 12	-/-	-/-	-/-	

Summary

- What is slow sand filtration?
 - Compare rapid and slow sand filters
 - How they work
- System design and operation
 - Flow control is critical
- Research results
 - Phytophthora and Fusarium control
 - TMV removal

Acknowledgements

- Mike Harris
 Eric Lee
 Bruno Pitton
 Dept. Plant Sci, UCD
- Darren HaverGrant JohnsonUC South Coast Res & Ext Ctr
- Deb Mathews
 Sohrab Bogadi
 Dept. Plant Pathology
 UC Riverside
- Harold LeverenzDept. Civil & Environ.Engineering

- Steve TjosvoldUCCE Santa Cruz County
- David Chambers
 UCCE Santa Cruz County
- Jim MacDonaldDept. Plant Path
- Ed Caswell-Chen Dept. Plant Path
- Linda BolkanDept. Plant Path
- Dave RizzoDept. Plant Path

UC Nursery & Floriculture Alliance

California Nursery Conference

June (18-22) Monterey, CA

UCNFA.ucanr.edu

