Polyacrylamide Soil Amendment Improves Water Quality in Nurseries

Steve Tjosvold UC Cooperative Extension

June 19,2018 California Nursery Conference Watsonville, CA.

What is polyacrylamide (PAM)?

- Long-chained polymer used to aggregate (flocculate) and help settle suspended solids.
 - Forms used are anionic and non-toxic.
 - Not the cross-linked gels used for water absorption.
 - Non-agricultural uses:
 - Waste and potable water treatment.
 - Processing and washing fruits and vegetables.
 - Clarification of juices, wine, and beer.
 - Manufacturing of cosmetics and paper products.
- Agricultural and other commercial land uses:
 - Stabilizing soil, preventing soil erosion
 Reducing sediment in runoff water.
 - Reducing sediment in runoff water

Improving Water Quality in California Nursery Crops using Polyacrylamide (PAM)

- S. Tjosvold, M. Cahn, and R. Lentz
- **Goal:** to reduce sediment and associated nutrients in nursery runoff with PAM- amended potting soil.
- Funding: California Specialty Crop Block Grant (Oct 2013 to June 2016)
- California Association of Nurseries and Garden Centers (2013) • Field Sites:
- Sunland Garden Products / Berger, Watsonville, CA.
- Suncrest Nursery, Watsonville CA.
- Monterey Bay Nursery, Royal Oaks CA.
- David Chambers, Staff Research Associate, UC Cooperative Extension

Effect of PAM Concentration Fresh and Dry Weights per Plant at Harvest (grams)												
	Untreated		50 g/m3		100 g/m ³		200 g/m ³		400 g/m ³		<u>sig</u> ,	<u>/ NS</u>
Media	FW	DW	FW	DW	FW	DW	FW	DW	FW	DW	FW	DW
GP	60.9	12.4	57.2	11.6	62.9	13.0	62.8	12.5	60.7	12.4	NS	NS
SC	72.9	14.9	52.2	10.5	69.7	14.4	58.1	12.1	59.0	12.7	NS	NS
ом	50.0	13.0	49.3	13.5	54.6	15.3	49.6	14.0	54.4	14.9	NS	NS
AUS	37.1	10.6	35.4	10.1	36.6	10.3	34.1	10.4	36.2	10.8	NS	NS
GP= RW + Coir + PM (2:2:1); Lavandula x intermedia 'Grosso' SC = RW + Sand (4:1); grown in GP and SC, OM= RW + Coir + Iava (80:15:5); Lavandula stoechas 'Silver Anuk' AUS= RW+ Lava + Sand (60:25:15). grown in OM and AUS											NS = not significa p < 0.05	t nt

Soil Physical Properties measured after drainage • Bulk Volume • Total Porosity (%) - Water Filled Pores (%) • Air Filled Pores (%)

% Total Porosity, Water, Air, and Bulk Volumes												
PAM rate:	0	25 g/m³	50 g/m³	100 g/m ³	200 g/m³	400 g/m³	SIG					
SC = RW + Sand (4:1)												
Bulk Volume	2101	2120	2112	2055	2141	2139	NS					
Total Porosity %	76.8	77.0	76.9	76.2	77.2	77.2	NS					
Water %	48.2	48.9	56.2	50.2	55.9	49.3	* +					
Air %	28.5	28.1	20.7	26.0	21.3	27.8	*-					
CMS = RW + Coir + Lava + Loam (70:15:5:10)												
Bulk Volume	2173	2093	2212	2157	2114	2162	NS					
Total Porosity %	84.7	84.1	84.9	84.5	84.2	84.6	NS					
Water %	50.4	50.6	50.3	49.8	51.4	51.0	NS					
Air %	34.3	33.5	34.6	34.7	32.8	33.6	NS					
		GP = R	W + Coir +	PM (2:2:1)								
Bulk Volume	2112	2012	1979	1951	2019	1957	*-					
Total Porosity %	93.1	92.7	92.6	92.5	92.8	92.5	* -					
Water %	75.7	68.3	65.5	62.1	68.2	67.9	* -					
Air %	17.3	24.5	27.1	30.4	24.6	24.6	*+					
Total, Water and Air = % AFTER DRAINAGE	vol.			SIG * Contrasts 0 vs PAM, Fisher's LSD 95% NS Not Significant								

	Pot Leachate Loss (mg/pot/irrigation) and Turbidity (NTU)																				
	Turb. Susp. Solids					Org. N			NO _{3"} N			NH4- N			PO4			P total			
Media	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE
GP	10.2	12.5	0.9	4.3	3.8	0.8	0.66	1.15	0.17*	2.0	2.1	0.5	3.9	3.0	1.3	3.7	4.4	0.7	4.2	4.8	0.8
sc	45.3	15.0	7.8**	10.2	6.1	1.4*	0.3	0.1	0.07	8.9	6.8	1.5	6.8	6.7	1.5	0.50	0.22	0.17	0.50	0.23	0.16
ом	19.5	10.6	3.2	25.4	22.4	4.0	2.4	6.4	3.6	14.4	17.5	3.5	11.3	13.5	4.5	10.1	10.7	2.2	11.2	11.7	2.5
AUS	38.7	7.4	4.8 **	33.5	17.6	4.9 *	1.3	0.5	0.6	16.5	14.9	3.7	1.3	2.0	0.5	0.15	0.11	0.02	0.25	0.14	0.03*
GP= AUS=	GP = RW + Coir + PM; SC = RW + Sand; OM= RW + Coir + lava; SE = standard error AUS= RW + Lava + Sand SE = standard error * significant p=0.01 * p=0.05																				

Plot Runoff: Mean Concentration mg/L. Turbidity (NTU)

	Turb. S			Su	usp. Solids		Org. N		NO3- N			NH4- N			PO ₄			P total			
Media	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE	0	PAM	SE
GP	10.5	10.1	1.1	20.4	27.4	3.2	8.2	7.8	1.8	21.3	24.9	1.4	2.9	3.5	0.9	2.5	4.0	0.5*	2.8	4.9	0.7*
sc	9.9	9.4	1.0	18.1	18.0	1.6	8.7	8.9	1.9	21.8	23.3	1.3	2.4	2.5	0.5	1.4	1.3	0.1	1.5	1.4	0.1
ом	4.5	7.8	1.1	11.1	23.4	6.2	28.2	46.0	12.4	16.2	25.6	7.8	12.0	20.4	11.7	21.9	37.5	4.0*	10.4	20.6	5.8
AUS	4.4	3.0	0.6	0.3	0.3	0.02	15.5	15.6	4.3	6.0	6.0	1.5	11.0	9.7	3.2	15.1	15.1	2.2	0.3	0.3	0.02
GP= AUS:	GP= RW + Coir + PM; SC = RW + Sand; OM= RW + Coir + Iava ; AUS= RW + Lava + Sand Segmentation Segmentation S																				

Four- Month Fi	eld Plots:	Effect of PA	AM on Soil S	ettling at Ha	arvest ?
			Ì		
		Soil			
	Media	Untreated	PAM	SE	
	GP	2091.5	2158.3	23.3 *	
	sc	2155.2	2195.2	17.2	
	ом	2184.5	2199.5	26.0	
	AUS	2115.5	2084.5	25.3	
		SE = standar	rd error *Signific	ant p = 0.0541	

- PAM reduces turbidity (NTU) 67 to 80 % in sand component soils.
- PAM reduces suspended solids (SS) in leachate 40 to 47% in sand component soils.
- Organic soils have relatively low tubidity and SS.
- Effective PAM rate about 100 g/m³
- No reduction of growth at all tested PAM rates (25, 50, 100, and 400 g/m³).
- PAM leaches out of pot in the first 10 irrigations.
- About half cent per 1 gallon pot.
- Some increase in water holding capacity in some soils.
- Some reduction of soil shrinkage in some soils.

Summary

- Mixing such small rates uniformly may be an issue. PAM rate is about ½ of the amount that would be added preplant for potassium nitrate fertilizer.
- PAM leachate could be slippery on floors or ground at highest normal concentrations.
- Soil media should be kept dry. No soil piles uncovered in the rain. Covering soil is a good idea anyway at anytime.

