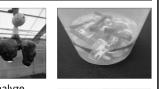

I got my water tested – now what?	CLEAN WATER ³
WaterQual	A set of the set of th
 Rosa Raudales (Univ of Connecticut) Bruce MacKay (ThomasBaine Ltd.) 	$\label{eq:result} \begin{array}{ c c c c } \hline \mbox{Total area and abulant} & & & & \\ \mbox{resultant} & & & & & \\ \hline \mbox{Total constraints} & & & & & \\ \hline \mbox{Total constraints} & & & & & \\ \hline \mbox{Total constraints} & & & & & \\ \hline \mbox{Total constraints} & & & & & \\ \hline \mbox{Total constraints} & & & & & \\ \hline \mbox{Total constraints} & & \\ \hline \$
Paul Fisher (Univ of Florida)	Reference and long Weight () [ref. + per
	Patients PL Topic y gat Waydown PDL Topic y gat Entrandra Topic y gat Wand PDL Topic y gat Magnetic PDL Topic y gat Wand PDL Topic y gat Magnetic PDL Topic y gat Wand PDL Topic y gat Magnetic PDL Topic y gat Mand PDL Topic y gat
	Kan Ner (ryg) ei gan an Orlenh (2) (ryg) ei gan Wegneres Prezi Ner (Ner (ryg) ei gan an Ner (Ner (ryg) ei gan a
Linked Videos	Physical eader pacify Transmission color-2020 (1994) + Transmission Backageral problems
	Nat prote laction [17 pers. • Nanodersent primes] 7 pers.

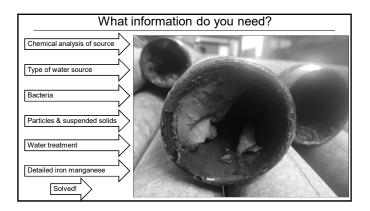
	Wate	rQual			E0			
			of a water source t	or use in impation of plants in	greenhouses and			
	nulser	85.						
Fotal ions and alkalini	ty							
pH	8	no units required +		Alkalinity		279 \$	ppm CaCO3	
Electrical conductivity (EC)	1.5	mS/cm ·		Total Dis	ssolved Salts (TDS)		mg/L	•
Hardness (Ca+Mg)		ma/L •		Sodium	absorption ratio (SAI	R)		
		ingre					no units required	
							no unito requireo	
				 There the 	mplorpm +			
	Cat	item (Sa)	impl, in ppm	· Draine (Dr)	why is blue a			
	the	peaker (Ng)	unit in the	Michael (M)	ingit or ppin .			
	they but	protein (Ng) See Surfur (S)	regil, or pper regil, or pper 5	Michai (N) Sodum (No)	mp1. or ppm •			
	Stag Suff Sur	protein (Ng) See Surfur (S)	regil, or ppen	Michael (M)	mpl.organ •			

		A	Also in	Span	lish			
WaterQual	Esta	maderos y viveros. duzca sus datos para	a la calidad de una fuente de los parámetros de calidad q	ve le interesan (no es n	te rego de plantas en recesario infroduce los datos para			
lones totales y alcalini	dad							
pH	8			Alcalini	dad	279	ppm CaCO3	•
Conductividad eléctrica (CE)	1.5	mS/cm	-	Total Di	issolved Salts (TDS)		mg/L	•
Dureza (Ca + Mg)		mg/L	-	Relació	n absorción de sodio	(RAS)		
		lahin Suha (S) Iom Pe) Iom (N) Iom (S) Iom (S)	ingt, organ 5 - ingt, organ - ingt, organ - ingt, organ -	Salar (He) Clero (C) Passes (P)	ingk organ + ingk organ + ingk organ +			

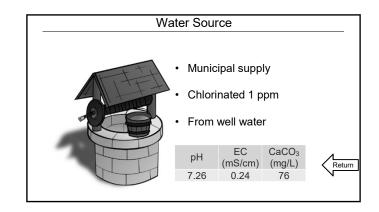
	Interpretation for greenhouse & nursery use						
Measurement	Test value	Result	Explanation of result				
pH Alkalinity	8 279 ppm CaCO ₃	High (>7) High(>150 ppm CaCO ₃)	pH and alkalinity levels this high means some pH adjustment (addition of acid) will be required in the spray tank with certain agrichemicals - check the pesticide label.				
			For use in irrigation, injection of acid is recommended to reduce alkalinity and avoid an increase in substrate- pH over time.				
			You may also need to include ammonium or urea nitrogen at 40% or above of total N in fertilizer to help avoid a rise in pH when using hydroponics or a container substrate.				
Check	Check it out at CleanWater3.org						


Can you diagnose this grower's issue?

- Two locations same water source & type of irrigation system
- In one, pipes filling up with brown chunky & slimy material



Quick tests for plugged up pipes & emitters


- Biological
 - Slimy organic material

- Chemical:
 - Soak in vinegar (low pH)
 Send solution to testing lab to analyze specific ions
- Sediment:
 - When soak in water, solid particles drop out

Components		Results		Target Ranges	Acceptable
		mg/L	meq	(mg/L)	(mg/L)
MAJOR CATIONS	6				
Potassium	к	3.83	0.10		<100
Calcium	Ca	31.35	1.57	25 - 75	<150
Magnesium	Mg	7.07	0.59	10 - 30	<50
Sodium	Na	5.09	0.22	0 - 20	<50
MAJOR ANIONS					
Phosphate	PO4	1.52	0.05		<90
Sulfate	SO4	27.50	0.57	0 - 120	<240
Chloride	CI	12.00	0.33	0 - 20	<140
HCO3 Alkalinity	HCO3	92.72	1.52		
CO3 Alkalinity	CO3	0.00	ND		
Ammonium Nitrog	enNH4-N	ND			<10
Nitrate Nitrogen	NO3-N	ND			<75
pH	pH	7.26		5.50 - 7	4-10
Soluble Salts	EC	0.24		0.20 - 0.80	0-1.5
Total Alkalinity	CaCO3	76.00		40 - 160	0-400
Iron	Fe	0.01		< 1	<4
Manganese	Mo	ND		< 1	<2
Boron	в	0.03		< 0.10	<0.5
Copper	Cu	0.04		< 0.10	<0.2
Zinc	Zn	0.07		< 0.50	<1
Molybdenum	Mo	0.02		< 0.10	<0.2
Alternieum		0.40			

Particles 8	Suspend	led Solids		Return
Samples	Turbidity (NTU)	Total suspended solids (TSS, mg/L)		,
Raw water "near source"	1.5	0.1		
Raw water "far outlet"	14.0	6.5	\bigcirc	0
Ideal range	<29	<5 mg/L		

Bacteria count					
Samples	Bacteria count (CFU/ml)	3-1			
Raw water "near source"	0				
Raw water "far outlet"	1				
Ideal range	<5000 CFU/ml				
		Return			
		V			

C	Detailed iron/manganese						
Samples	lron (ppm)	Manganese (ppm)	and -				
Raw water "near source"	0.0	0.0					
Raw water "far outlet"	3.8	0.0					
ldeal range in raw water	<0.1	<0.1					
			Return				

Water treatment: sodium hypochlorite (bleach)						
Free chlorine (ppm)						
5.5						
0.7						
0.7						
0						
<2.0	Return					
	Free chlorine (ppm) 5.5 0.7 0.7 0.7 0					

What can we learn from this case study?

Problem: Overdosed chlorine (an oxidizer) corroding pipes. Solution: Turn the injector down and monitor!

. Multiple aspects of water quality

- Salts, particles, microbes, agrichemicals
- Don't jump to a solution until you know the problem
- There is a risk and cost in every water treatment system.
 Have a preventative monitoring system in place

 - More isn't always better!

- CleanWateR3.org for tools and resources
- hort.ifas.ufl.edu/training/ for online extension courses - "Water Quality & Treatment" begins November 5

Paul Fisher, Ph.D UF IFAS Extension

SCRI - CLEAN WATER³ REDUCE, REMEDIATE, RECYCLE

.