Simplified Landscape Irrigation Demand Estimation: A New Paradigm

Dennis Pittenger Area Environmental Horticulturist Los Angeles County/UC Riverside

Presentation © 2013 Dennis Pittenger

University of California

Agriculture and Natural Resources Cooperative Extension • Los Angeles County/UC Riverside

Goals

 Learn simple method to estimate accurate plant factors and landscape coefficients

 Understand plant water demand estimation principles and variables

 Review research-based insights on landscape water needs

Useful Reference Materials

- U.C.C.E. Center for Landscape and Urban Horticulture
 - www.ucanr.edu/cluh
 - click Landscape Water Management tab in left column
- Irrigation Association's Landscape Irrigation Auditor Book, 2nd Ed. 2011. Chapter 7 and Appendix D.
- Landscape Irrigation System Evaluation and Management.
 U.C. Cooperative Extension
 - Shaw and Pittenger, 2009. Available online
- California Dept. of Water Resources
 - CIMIS (California Irrigation Management Information System)
 - http://www.cimis.water.ca.gov/cimis

University of California

Agriculture and Natural Resources Cooperative Extension • Los Angeles County/UC Riverside

Landscape Water Conservation Programs & Approaches

THE SUSTAINABLE SITES INITIATIVE

Demand for Climate-based Landscape Water Need Estimates

Water budgets

- State & local conservation ordinances
- "Green" development standards & codes
- Smart irrigation controllers
- Sustainable landscapes
- U.S. EPA 'Water Sense'
- Save water
- Save money

ETO = Reference Evapotranspiration *An estimate of environmental water demand over a planted area*

- Climate-based reference
- Inches/day
- ETo = estimated water use of well-watered cool-season turf
- Calculated from weather data
 - Sunlight, temperature, RH, wind
 - ASCE Penman-Monteith equation
- Based on field research with agricultural crops

Climate-Based Water Budgets Need reliable plant factor estimates

Water Budget or Water Need Gal. = ETo × PF, K_L, Kc, or ETAF × LA × 0.62 gallons = inches × % × sq. ft. × conversion

- ETo = reference evapotranspiration; climate impact
- PF, K_L, Kc = plant material adjustment factor
- LA = sq. ft. landscape area
- 0.62 = converts depth to volume [gal. ÷ (in. x sq. ft.)]

Typical ETo Adjustment Calculation

Landscape Coefficient (K_L)

 $K_{L} = K_{PLANTS} \times K_{VEG. DENSITY} \times K_{MICROCLIMATE}$

K_{PLANTS} from WUCOLS or list K_{VEG. DENSITY} and K_{MICROCLIMATE} assigned by user

Need Simpler Paradigm for Estimating Landscape Water Need

Most approaches complex with false precision
No Kc's & few PF's for non-turf landscape plants
ETo has limited application in landscapes
Range of % ETo (PF) appropriate for landscape plants

<u>Simplified Landscape Irrigation</u> <u>Demand Estimation</u>

SLIDE


....a new paradigm

for selecting Plant Factors.....

SLIDE Paradigm

Principles:

- Plant factors accurately estimated by broad plant type categories based on science and research
- Landscape water need estimated by weighting sq. ft. of each plant type present

SLIDE Features

Simple to understand & use Replaces need for huge data base Reduces number of factors or variables Accommodates new plants Scientifically & conceptually sound ■ Assimilation and application of ≈20 yrs. of data Scientifically traceable Provides reliable numbers for calculations Wide geographic & climatic application

Current Development Status of SLIDE

- Presenting to key stakeholders and decision makers
- Electronic discussion system among researchers
- Preparing technical manuscript to establish scientific merit

SLIDE Leaders

Roger Kjelgren – Utah State University
 Richard Beeson – University of Florida
 David Shaw – University of California
 Dennis Pittenger – University of California

National Standard Being Developed

S623: Standardized Procedure for
 Determining Landscape Plant Water
 Requirements

 Am. Society of Agricultural & Biological Engineers (ASABE)

SLIDE concepts integrated

WUCOLS

Water Use Classification of Landscape Species

<u>PROS</u>

Source of numbers

- Categories by climate zone and water use
- Includes numerous spp.Hardcopy and on-line

<u>CONS</u>

- Not science based
- Data not reliable
- False sense of precision
- Complex and perplexing to use

Not readily revised

SLIDE Rules

Landscape Coefficient (K_L)

$K_{L} = K_{PLANTS} \times K_{VEL. DENSITY} \times K_{MICROCLIMATE}$

SLIDE Rules

- Landscape plant water USE ≠ NEED
 Plants often use more than they need
 Meet minimum expectations in a range of % ETo
 ETo concept has limited accuracy in landscapes
 Landscape plants tolerate managed drought
- Most non-turf plants need near 50% ETo
 Plant factors accurately estimated by categorizing plant

Estimating Plant Water Needs Through Science

- Define a reference for plant water use that is a function of climate (ETo)
- Compare water needed to maintain given plant with reference amount
- Express plant water need as % of reference
 Plant Factor (PF) *acceptable* appearance, function
 Crop Coefficient (Kc) *optimum* growth or yield

Estimating Plant Water Needs Through Science

Estimating Landscape Water Needs Using ETo

Assumptions:

- Landscapes need/use water like ag. crops
- Plant water needs change in lockstep with changes in ETo
- Plant canopy is uniform
- Same or similar plants across landscape
- Ability to irrigate the landscape plants uniformly

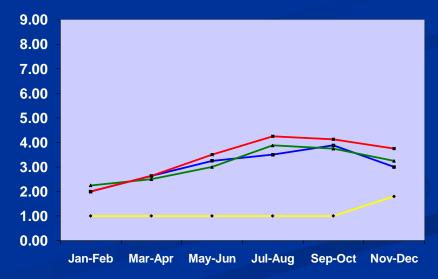
ETo Approach OK With Turf

Turfgrass Irrigation Needs

Cool-season Kc: *80% ETo* annual avg. (60% ETo minimum)

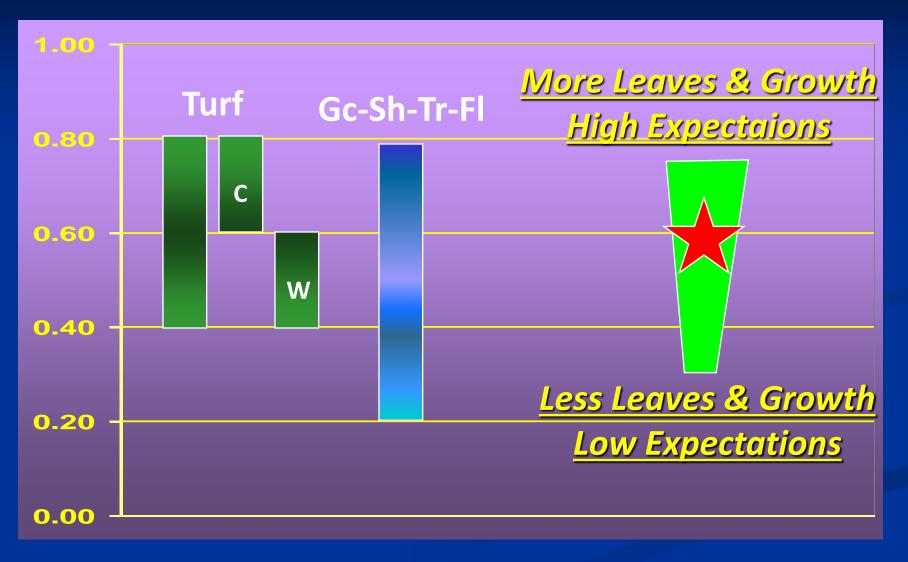
Warm-season Kc:
 60% ETo annual avg.
 (40% ETo minimum)

Visual courtesy of R. Kjelgren, Utah St. Univ.


Cassia (Senna) 2007

Star Jasmine 2007 9.00 8.00 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec

Lantana 2007



Groundcovers, Trees, Shrubs

ETo × PF model cannot precisely estimate non-turf water need Narrow range of % ETo per species Typically acceptable 30-60% ETo Use more water than they need Traditional landscape plants perform acceptably with range of low water Less water often limits growth, not quality **Discrepancies with WUCOLS**

Using & Adjusting PF & Kc Values

Copyright © 2010 -201312 D. Shaw and D. Pittenger

Center for Landscape & Urban Horticulture University of California Cooperative Extension

SLIDE Rules (DRAFT)

Categories of Water Need

Turfgrass = 40-60% ETo (w-s) / 60-80% ETo (c-s)

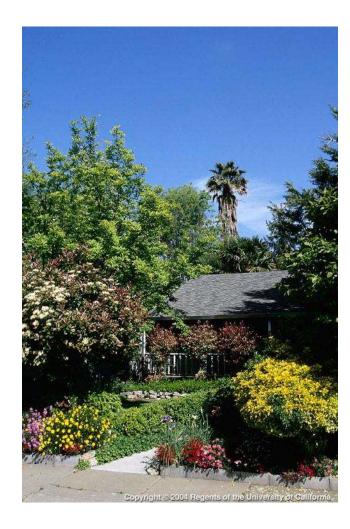
Tree/Shrub/Groundcover/Vine = 50-60% ETo

Low Expectations/Desert Adapted = 30-40% ETo

Annual-Perennial Flowers/Foliage = 70-80% ETo

WUCOLS Analysis

WUCOLS ZONE	1	2	3	4	5	6	AVG.
# of species appropriate to zone	1602	1088	1969	1185	529	820	1199
% High Water Needs 0.7 – 0.9 ETo	5	6	5	9	7	8	7 (84)
% Medium Water Needs 0.4 - 0.6 ETo	51	52	57	57	66	68	59 (707)
% Low Water Needs 0.1 – 0.3 ETo	38	36	31	32	25	24	
% Very Low Water Needs < 0.1 ETo	7	5	7	3	2	0.5	4 (48)
Control Total	101	99	100	101	100	100.5	


(WUCOLS III, 2000)

SLIDE Rules

Leaf area influences landscape water demand
 Canopy size & Projected Canopy Area Issues
 Crown projection area × ETo × PF
 Guidelines for new or sparsely planted landscapes

Applying SLIDE Rules in Design

- Design sq. ft. of turf desired
 Kc 0.6 or 0.8 for optimum growth
- Kp 0.5 0.6 woody & non-turf plants in remaining area
 - Reduce to 0.2 0.4 for desert adapted or reduced expectations
 - Increase to 0.7 0.8 for flowers
 - Reduce with persistent shade
- ETo × Kp × sq. ft. per zone
 - Sum zones' water needs
- Compare to budget or allocation

Applying SLIDE Rules *Established Landscapes*

Landscape Water Budget or Water Need Gallons = ETo $\times \Sigma(PF \times LA)_{1-x} \times 0.62$

$\sum = (PF_1 \times LA_1) + (PF_2 \times LA_2) + (PF_3 \times LA_3)....$ Divide each zone by DU

- ETo = reference evapotranspiration, CIMIS, etc.; climate impact
- PF = plant material factor (turf, shrub-tree-vine-gc, flowers, etc.)
- LA = sq. ft. landscape area
- 0.62 = converts depth to volume [gal. ÷ (in. x sq. ft.)]

Applying SLIDE Rules *New Plantings or Widely Spaced Plants*

Landscape Water Budget or Water Need Gallons = ETo $\times \Sigma(PF \times CA)_{1-x} \times 0.62$

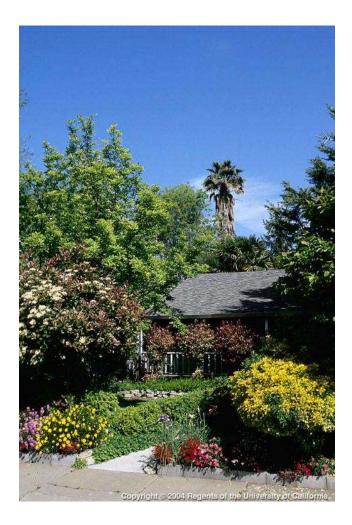
$\sum = (PF_1 \times CA_1) + (PF_2 \times CA_2) + (PF_3 \times CA_3)....$ Divide each zone by DU

- ETo = reference evapotranspiration, CIMIS, etc.; climate impact
- PF = plant material factor (turf, shrub-tree-vine-gc, flowers, etc.)
- CA = sq. ft. of canopy projection ($\pi \times r^2$)
- 0.62 = converts depth to volume [gal. ÷ (in. x sq. ft.)]

Useful Equations

Inches = Gallons \div (Sq. Ft. \times 0.623)

Gallons = Inches \times Sq. Ft. \times 0.623

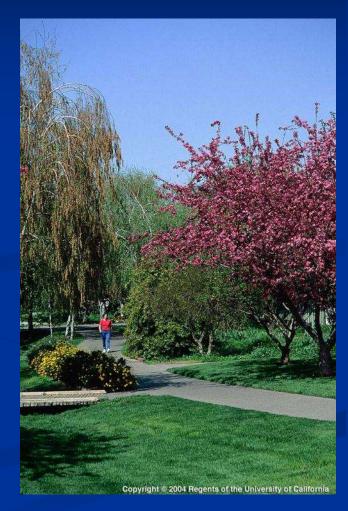

Applying SLIDE Rules

10,000 sq. ft. landscape with 500 sq. ft. patio + 250 sq. ft. walkway

- Allocation or Budget (MAWA) = $ETo \times AF \times Sq. Ft. \times 0.62$
- Gal. = 44 in. × 0.7 × 9,250 sq. ft. × 0.62 = <u>176,638 gallons = 31 in.</u>
- Demand = ETo $\times \sum [(PF \times LA \div DU)_1 + (PF \times LA \div DU)_2 \dots] \times 0.62$ (= tall fescue + mixed trees, shrubs, groundcovers + color beds) (= 25% + 70% + 5%) = 44 in. $\times \sum [(0.8 \times 2,300) + (0.5 \times 6,450) + (0.7 \times 500)] \times 0.62$ = 44 in. $\times \sum [(1,840 \div 0.7) + (3,225 \div 0.85) + (350 \div 0.75)] \times 0.62$ = 44 in. $\times [2,629 + 3,794 + 467] \times 0.62$ = 187,959 gallons = 34 inches
- About 11,000 gallons or 3 inches Over Budget!!!

Options to Reduce Water Needs

- Improve DU
- Adjust plant spp. mix
 Turf = 31 gal./sq. ft.
 - -G-S-T = 16 gal./sq. ft.
 - Color = 25 gal./sq. ft.
- Reduce planted area
- Lower expectations


Expectations Met & Water Conserved

SLIDE Paradigm

Principles:

Based on science - plant factors accurately estimated by broad plant type categories
Landscape water need estimated by weighting sq. ft. of each plant type

Dennis Pittenger Area Environmental Horticulturist

dennis.pittenger@ucr.edu Phone: 951.827.3320

Center for Landscape & Urban Horticulture <www.ucanr.edu/cluh>

