Gasification

Woody Biomass to Energy Workshop

March 25, 2010 UC Cooperative Extension Eureka, California

Rob Williams Biological and Agricultural Engineering California Biomass Collaborative University of California, Davis

Contents

- Definition
- Some History
- Gasifier Types
- Status
- Economics
- Conclusions

Thermal Gasification

- Gasification high temperature conversion of (usually solid) carbonaceous fuels into a gaseous fuel
 - 1300 2200 °F (700-1200 °C)
 - Overall process is endothermic
 - Requires burning some of the fuel to provide heat for the process (i.e., partial oxidation)
 - Or heat is supplied to reaction from some external source / (indirect gasification)

Pyrolysis

Usually means "thermal decomposition of solid/liquid fuel without air or oxidant" Can be optimized for liquid production (bio oil), or char (biochar). Also produces combustible gases.

Thermal Gasification **Fuel + Oxidant/Heat**

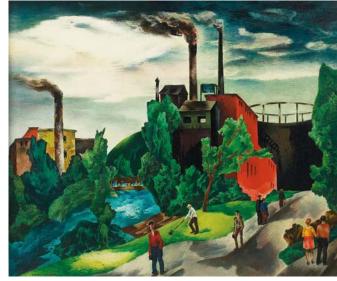
> Partial Oxidation: Air or Oxygen Steam/Indirect Heating

 $CO + H_2 + HC + CO_2 + N_2 + H_2O + Char/Ash + Tar + PM + H_2S + NH_3 + Other + Heat$

Uses of product gas

- Heat/direct use
 - Stoves or burners for space heat, boilers for steam, gas lamps
- Electricity
 - Boiler fuel for steam Rankine cycle
 - Fuel for reciprocating engines (internal combustion or Stirling)
 - Fuel for gas turbine
- Other Fuels
 - Liquids (Biomass to liquids, e.g. via Fischer-Tropsch)
 - Gases (e.g., synthetic natural gas)
- Chemicals

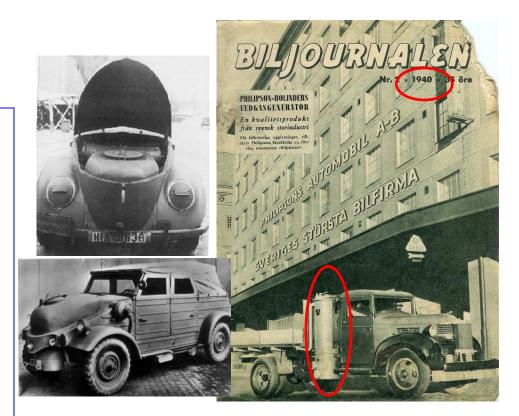
History


- 1790s- Coal gas used for lighting factories in England and Philadelphia
 - Actually external heating vessel of coal w/o air (pyrolysis gas was combustible for heat and lighting purposes
 - Street lighting and 24/7 Factory Ops.
 - Significant environmental impacts Tar/water disposal and air emissions
- 1860 Town gas is prevalent.
 - Lenoir develops reliable 'explosion engine' fueled by town gas to power machinery (3% thermal efficiency)
 - 1876 Otto develops the 4-stroke gaseous fuel engine (1883 Daimler and Benz develop carburetor to enable liquid fuel induction to 4-stroke engine)
- ~1919- Town gas use reaches maximum
- 1920s- Welding techniques allow piping natural gas under pressure--Town gas declines gone by 1960s
- WW II Special case re: gasification

'Town gas' storage in Vienna, Austria.

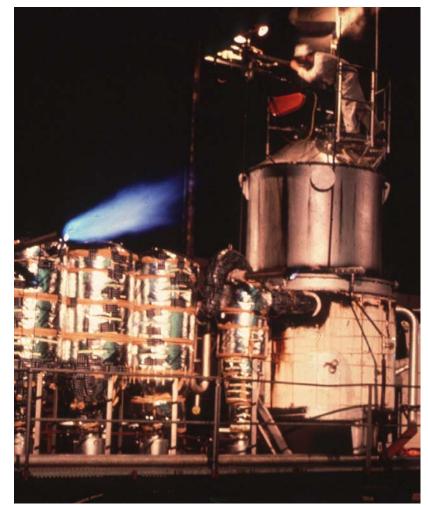
Converted to apartments ~ 2001

William S. Schwartz "Gas Factory" c. 1948 (US)



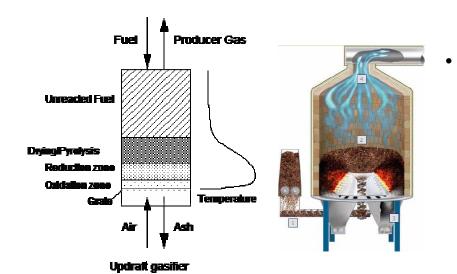
"Wood Gas" Vehicles

- Acute shortage of liquid fuels for civilian use during WW II
- Cars, trucks, fishing boats fueled by gasifiers Europe, Japan, China, Brazil, Australia
- Gas producers built by Volvo, Saab, Daimler-Benz, Peugeot, Renault, Fiat, Isuzu
- More than 1 million vehicles operated on producer gas during the war (350,000 in Germany)


http://www.gengas.nu/kuriosa/biljournalen/01.shtml http://www.greencarcongress.com/2006/09/everything_old_.html http://ww2.whidbey.net/jameslux/woodgas.htm

History

- Resurgence of interest and research due to Arab oil embargo (1973)
- Led to fuels and power research at UCD and elsewhere
- Mid 1990s saw numerous advanced biopower gasification demo projects in Europe and US
- Energy prices, GHG policies, use of district heat, all contribute to many biomass gasification for combined heat and power (CHP) installations in Europe



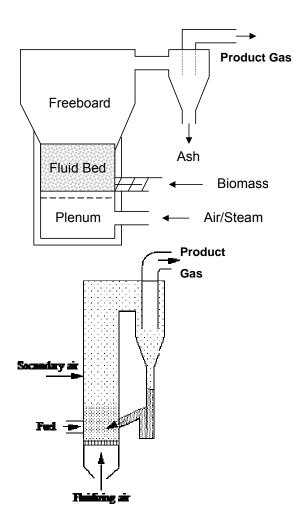
UC Davis (late 1970s)

Classification by Reactor Type: Fixed/Moving Beds

Updraft

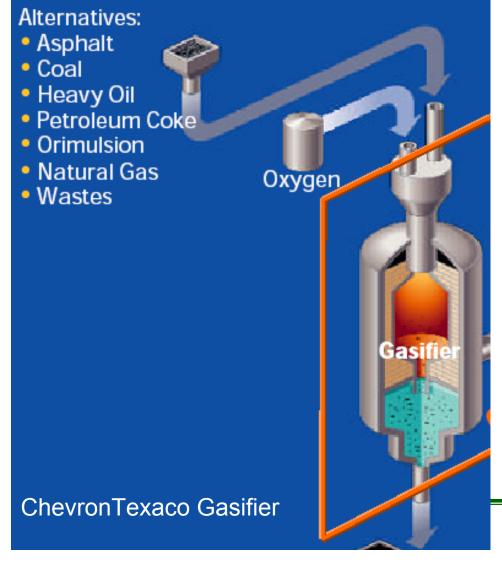
- Countercurrent
- Simplest
- High moisture fuel (<60% wet basis)
- High tar production except with post-reactor tar cracking/removal or dual stage air injection
- Low carbon ash
- Good for direct heat applications
- Small to Medium Scale
- Cigarettes are updraft gasifiers

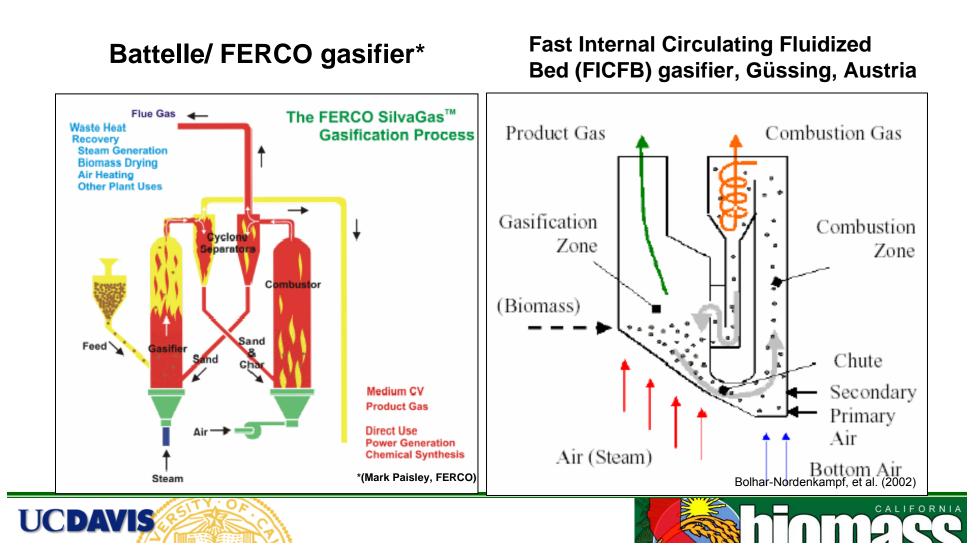
Downdraft


- Cocurrent
- Moisture < 30% (preferred <15)
- Lower tar than uncontrolled updraft
- Carbonaceous char
- 'Wood gas' Vehicles
- ~ 200 500 kW (electric) maximum

Classification by Reactor Type: Fluidized Beds

–"Fluidize" bed of hot sand – inject fuel – well mixed – speedy reactions


- Bubbling beds
 - Lower velocity
 - Low entrainment/elutriation
 - Simple design
 - Moderate tar production
 - Medium to high capacity
- Circulating beds
 - Higher velocity
 - Solids are recirculated
 - More complex design
 - Moderate tar production
 - Higher conversion rates and efficiencies
 - Medium to high capacity


Classification by Reactor Type: Entrained Beds

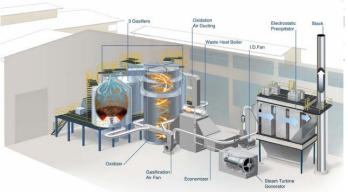
- Solids or slurry entrained on gas flow
 - Small particle size
 - Very low tar production
 - Often pure oxygen rather than air (yields higher temperature)
 - Economics favor very large capacity (>100 MW thermal input)
 - Likely biomass application is for syngas-to-liquids
 - "Slagging gasifier" design
 - Melt the ash for easy removal as liquid

Classification by Reactor Type: Indirect Heat

Relative characteristics, scale, tar production, energy in gas

		Downdraft	Updraft	Bubbling FB	Circulating FB	Entrained Flow
Fuel Particle Size (in.)		0.5 - 4	0.25 - 4	0.5 - 3	0.5 - 3	Small < 0.1
Moisture Content (%)		<30 (prefer<15)	< 60	< 40	< 40	< 15
Relative Tar Production		low	high	moderate	moderate	very low
Scale (Fuel input)	(MM Btu/hr)	< 34	< 70	34 - 340	34 - ??	> 340
	(Dry tons wood/hr)	< 2	< 4	2 - 20	2 - ??	> 20

• Air	Air gasification (partial oxidation in air)	Energy Content (Btu/ft ³)
	- Generates Producer Gas with high N_2 dilution low heating value.	~ 100-200
•	Oxygen gasification (partial oxidation using pure O_2) – Generates synthesis gas (Syngas) with low N_2 in gas and medium heating value	~ 300-400
•	 Indirect heat w/ Steam gasification Generates high H₂ concentration, low N₂ in gas and medium heating value. Can also use catalytic steam gasification with alkali carbonate or hydroxide 	~300-450
	Natural G	$as \rightarrow \sim 1000 (Btu/ft^3)$


Knoef, H.A.M., ed. (2005). Handbook of Biomass Gasification. BTG biomass technology group: Enschede, The Netherlands.

Status of Gasification

- Gasifiers for Heat, Power, and CHP are not new and are considered commercial in many places
 - India, China, some developing nations
 - Low labor rates allow simple manual operation
 - Emissions (air and liquid) regulations may not be as strict as here
 - Examples in Europe where economics allow (high feed-in tariffs, \$ for RECs or carbon credits)
 - Examples in US where economic (direct heat applications, some steam power systems)
- In California and much of US, economics are marginal
 - Air Emissions (especially NOx) are difficult to meet in large areas of California (San Joaquin Valley, LA basin)- NOx control adds expense, and may not even be achievable
 - Labor costs (and emissions/discharge requirements) lead to more automation and sophistication increasing capital costs

Gasifiers – An incomplete List

Name	Location	Туре	Application	References
Bioneer	Finland	Updraft	Heat or Steam	About a dozen - mid 1980s- 1990s
PRM Energy Systems	Hot Springs, AR	Updraft	Heat or Steam	~a dozen rice hull , straw for heat / steam (overseas, some Gulf States, US) ~ 4 steam CHP (2 in the US?)
Nexterra	Vancouver, BC	Updraft	Heat or Steam	Recent installations
Energy Products of Idaho	Idaho	Bubbling Fluidized Bed	Heat or Steam	Several in North America (since mid 1980s)

Energy Products of Idaho	Idaho	Bubbling Fluidized Bed	Electricity (Steam Turbine)	~ 6 MW (one or two in US)	
PRM Energy Systems	Hot Springs, AR	Updraft	Electricity (Engine)	~ 3 projects producing electricity (engines)	
Nexterra	Vancouver, BC	Updraft	Electricity (Engine)	Marketing	
Biomass Engineering, Ltd	UK	Downdraft	Electricity (Engine)	A dozen or so units reported in Europe (~ 100 - 400 kW)	
Aruna	India	Downdraft	Electricity (Engine)	Many small scale - rural electrification India (10-1 kw)	
Ankur Scientific	India	Downdraft	Electricity (Engine)	Many in India (25 - 400 kW)	
Ankur Scientific	US	Downdraft	Electricity (Engine)	Demos/Research at Humboldt State and EERC, North Dakota. Phoenix Energy using Ankur design	
Community Power Corp.	Colorado	Downdraft	Electricity (Engine)	Perhaps a dozen demonstration units (25 -75 kW) throughout US (no known commercial units). Grant and Investor supported	

Gasifiers – Some Projects in California

Name	Location	Туре	Application	Comments
Phoenix Energy	Proposed Modesto area	Downdraft	Electricity (Engine)	Ankur design gasifier. ~ 500 kW (3300 \$/kW estimated capital cost) Loan from CA Waste Board
Community Power Corp.	Winters, CA	Downdraft	Electricity (Engine)	Demo at Dixon Ridge Farms (walnut shell fuel) Several thousand hours of operation
Pro-Grow Nursery, Tom Jopson Owner	Etna, CA	Downdraft	Burner fuel (+ engine generator)	Built - beginning final testing stages. Replace propane for greenhouse heating. Fluidyne gasifier (Doug Williams, New Zealand) ~ 100 kWe, TR Miles Consulting, UC Davis Bio.&Agr. Engr.
West Biofuels	Woodland, CA	Dual Fluidized Bed (indirect gasifier)	Syngas to liquid + engine generator	5 ton/day, Research and Demo (UC San Diego, Davis, Berkeley). Several Grants supporting work
Humboldt State, UC Davis, Riverside, Berkeley, San Diego, Merced	Throughout CA	various	Fundamental & applied science, heat, power, liquids	Various research efforts underway

Air permit examples

Phoenix Energy Authority to Construct (SJVAPCD)

Emission Limits

NOx	CO	VOC	PM10	SOx
(ppm)	(ppm)	(ppm)	(g/hp-hr)	(g/hp-hr)
9	75	25	0.05	0.03

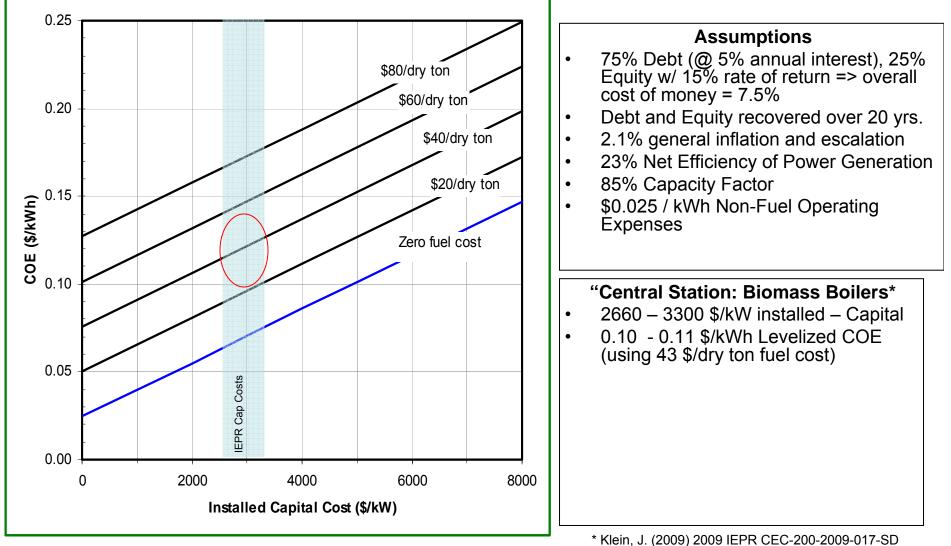
Ankur derivative downdraft gasifier, gas scrubbing/filtering, recip. engine-generator (~500 kWe)

CPC 50 kW at Dixon Ridge Farms (Winters, CA) [Yolo-Solano AQMD]

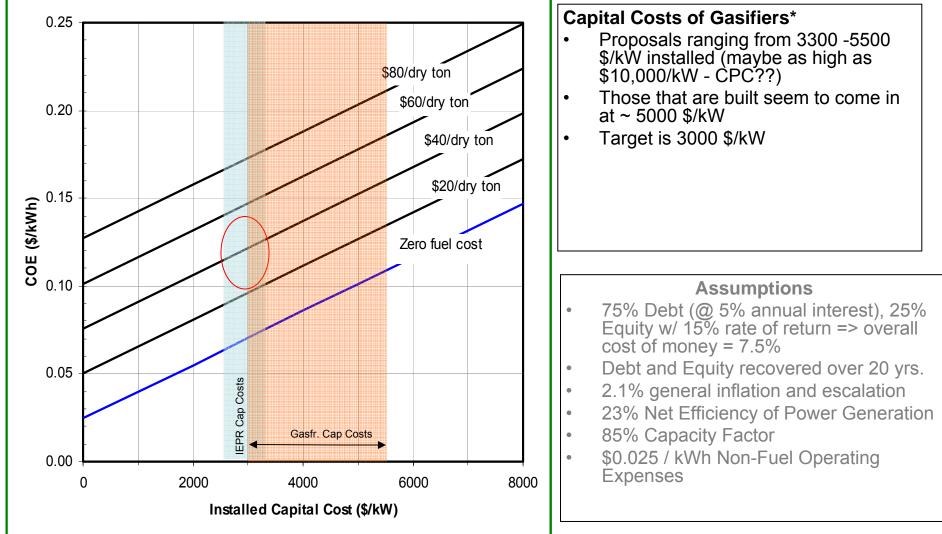
	NOx (ppm)	CO (ppm)	VOC (ppm)	PM10 (gr/dscf)	SO2 (ppm)			
Permit	98.8	2823	14.1	0.012	28.2			
Source Test	98.8 58	362	ND	0.012	<0.4			

Emission Limits and Test Results

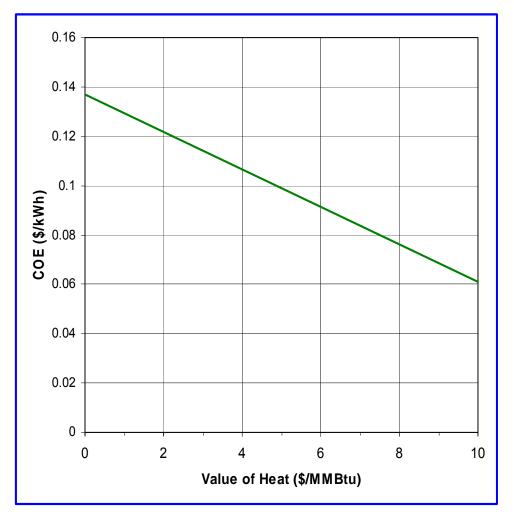
New 3-way Catalytic converter just prior to source test



Downdraft gasifier, gas filtering, automotive V-8 engine-generator (~50 kWe)


Levelized Cost of Electricity-Biomass Power

Levelized Cost of Electricity-Biomass Power



* Tom Miles, TR Miles Consulting

Levelized Cost of Electricity-Influence of Heat sales on COE

- Same Financial Assumptions as above
- \$4000/kW cap. Fuel cost ~\$40/dry ton
- 23% fuel-to-electricity efficiency
- 47% fuel-to-heat recovery efficiency
- Which gives 70% overall energy efficiency

Advantages of Gasification

- Produces fuel gas for more versatile application in heat and power generation and chemical synthesis.
- Smaller scale power generation than direct combustion systems although gas cleaning is primary concern and expense.
- Potential for higher efficiency conversion using gas-turbine combined cycle at larger scale (compared to combustion-steam systems).
 - Biomass-Integrated-Gasifier-Gas-Turbine-Combined-Cycle (BIGGCC) is Emerging Technology ; Demonstrated but not commercial – no known currently operating

Gasification Challenges

- Fuel particle size and moisture are critical for downdraft gasifiers (which are most often used for small scale power using reciprocating engines)
- Gas cleaning required for use of fuel gas in engines, turbines, and fuel cells
 - For reciprocating engines, tar and particulate matter removal are primary concerns,
 - Tar removal difficult to achieve. Reactor designs influence tar production
 - Need for cool gas to maintain engine volumetric efficiency leads to tar condensation and waste water production (from wet scrubbing systems).
 - Engine derating for gas from air-blown reactors (low Btu gas).
 - Gas needs to be cleaner for gas turbines, and cleaner still for fuel cells and chemical or fuels synthesis
- In some air districts in California, meeting air emissions requirements is challenging
- Costs

Conclusions

- Gasifiers for heat, power, and CHP are employed in many parts of the world
- Some in the US, but fewer examples.
- For those contemplating biomass heat or power systems, need to understand the issues (real cost, risks, operational effort and potential problems).
- Accurate information about existing projects and demonstrations is needed
 - Need long-term operational data: [monitor mass and energy flows, emissions over time, document operating costs, etc.]

Acknowledgments, References and Information Sources

- TR Miles Consulting www.trmiles.com
- Gasifier page http://gasifiers.bioenergylists.org
- Gasification Discussion List Gasifiers.bioenergylists.org
- Biomass Energy Foundation www.woodgas.com
- Doug Williams FluidyneLtd. www.fluidynenz.250x.com
- IEA Task 33 Gasification of Biomass www.gastechnology.org/iea

Thank You

Rob Williams

Development Engineer Biological and Agricultural Engineering California Biomass Collaborative University of California, Davis

Email: <u>rbwilliams@ucdavis.edu</u> Phone: 530-752-6623 Web: biomass.ucdavis.edu

Thermochemical Conversion

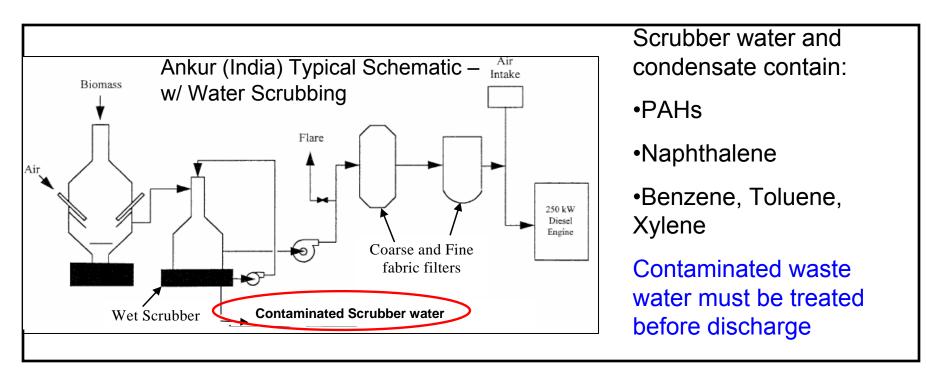
(combustion, gasification, pyrolysis / indirect gasification)

Combustion

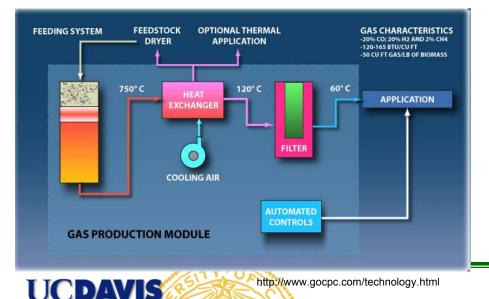
Fuel + Excess Air \rightarrow Heat + Hot Exhaust Gas + Ash

Direct Gasification

Fuel + Limited Air $(N_2 \& O_2) \rightarrow$ "Producer Gas" + Heat + Char/Ash + Tar("Air Blown")Fuel + Limited Oxygen \rightarrow "Syngas" + Heat + Char/Ash + Tar("Oxygen Blown")


Indirect Gasification and Pyrolysis

Fuel + Heat \rightarrow "Syngas" or "Pyrolysis Gas" + Heat + Char/Ash + Tar (+ pyrolysis liquids)


Adapted from Paskach. (2010). Frontline Bioenergy

Community Power Corporation 'Biomax' – no liquid scrubbing of gas

- Fixed bed downdraft gasifier
- 12,15 & 50 (75?) kWe systems demonstrated
- Automotive spark ignition engine –generator
- Gas cooled to ~ 120 F & filtered to reduce tar and particulate matter for engine (no liquid scrubber- this is positive feature)
- 3-way automotive catalytic converter for emissions control

