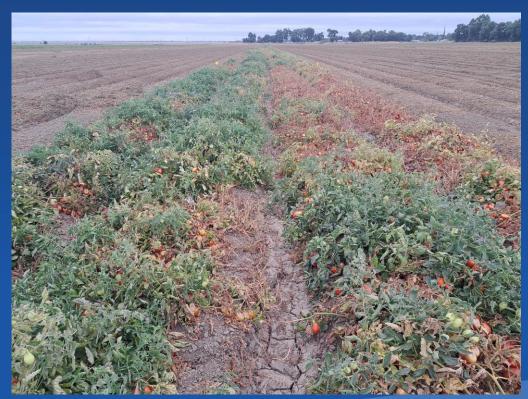
Variety evaluation and chemical control for Fusarium diseases


Brenna Aegerter and Patricia Lazicki, UCCE

in collaboration with

Tom Turini, Zheng Wang, and Amber Vinchesi-Vahl, UCCE

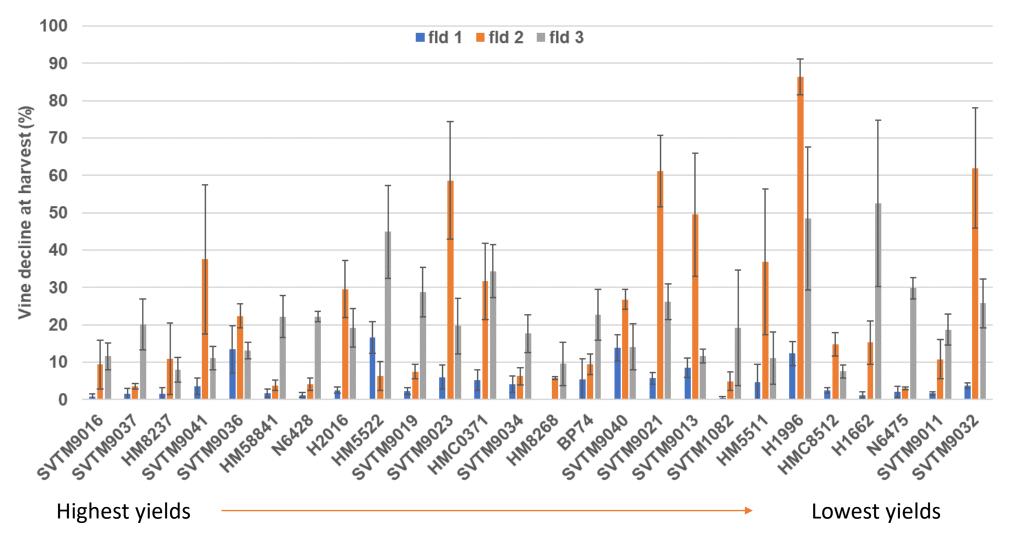
Cassandra Swett, UC Davis

AgSeeds and TS&L

Host resistance or tolerance to Fusarium diseases in processing tomatoes

- Many varieties have resistance to Fusarium wilt race 3 (resistance designated by 'FFF' or F3)
- A few varieties have resistance to Fusarium crown and root rot (resistance designated by 'Fr')
- No resistance yet identified to Fusarium stem rot and vine decline (FRD)

Varietal tolerance



- Trials conducted on the UC Davis campus farm in infested soil
- Trials established by UCCE farm advisers in commercial fields with confirmed laboratory diagnosis of FRD pathogens
- Replicated yield trials established by AgSeeds in fields with vine decline
- Other variety trials we come across (some not replicated, many without yield)

Challenges of variety evaluation

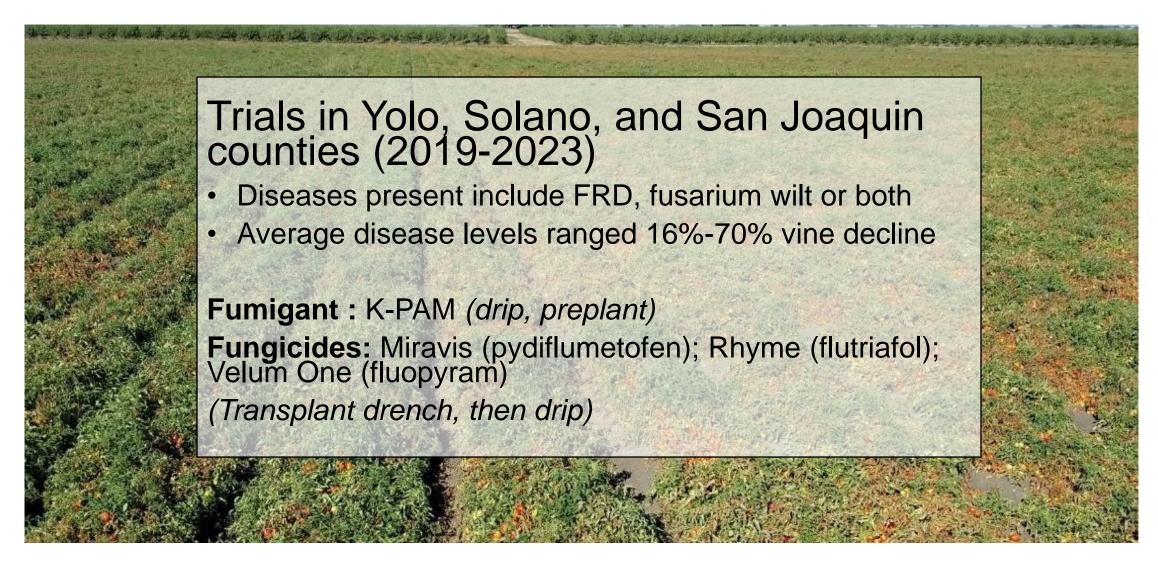
- Variation from site to site and year to year → need lots of data
- Foliar symptoms and rot not that indicative?
- We have focused on advanced vine decline and yield
- Yield performance is complex
- Current turnover in varieties is fast!

Varietal trials: 2023 collaborations with AgSeeds (Sutter & San Joaquin Counties)

Planting date	1-May		17-Apr		20-Apr		31-May		8-Jun	3-May	8-Jun	19-	-Mav
Location (county)		olo		tter		tter		oaquin	San Joaquin	San Joaquin	Fresno		nislaus
replicates	3		3		3		3		1	3	4	4	
FRD pathogens	3		F. noneumartii SB, tent. Forl		F. noneumartii F. martii SB, tent. Forl		F. martii tent. Forl		F. noneumartii	F. noneumartii F. martii	F. noneumartii	not sampled tent. Forl	
other soil pests													
trial means	36%	73.8 tons	5%	68.9 tons	24%	47.7 tons	22%	47.6 tons	27%	47%	19%	21%	42.6 tons
Variety	disease	yield	disease	yield	disease	yield	disease	yield	disease	disease	disease	disease	yield
BOS0811	0.83	1.07									1.73	0.6	0.97
BP74	1.69	0.54	1.16	0.96	0.398	1.02	1.04	0.98	0.88		0.37	0.48	0.90
BP88										0.42			
BP101												1.86	0.81
BQ391	0.12	1.46											
H1662	1.35	0.89	0.27	0.93	0.64	0.91	2.39	0.97	3.54		1.04	2.58	0.90
H1996			2.63	1.01	3.63	0.76	2.21	1.06	3.65				
H2016			0.54	1.02	1.24	0.90	0.87	1.15	0.44				
HM5511	1.69	0.47	1.02	0.99	1.55	0.99	0.51	0.85	0.29		0.69	1.44	0.97
HM5522	0.86	1.10	3.53	1.02	0.27	1.03	2.05	1.02	1.59		1.59	2.16	0.92
HM58841			0.36	1.04	0.16	1.12	1.01	1.02	1.22			0.18	1.29
HM8237			0.34	1.05	0.46	1.02	0.37	1.23	0.06	0.5			
HM8268	0.37	1.21	0	1.04	0.24	1.00	0.44	0.92	0.38	0.3	1.43	0.48	1.1
HMC0371			1.12	0.97	1.33	1.08	1.57	0.97	0.36				
HMC8512			0.53	0.97	0.62	0.92	0.35	0.94	0.24				
N6428	0.22	1.61	0.27	1.03	0.17	1.08	1.01	1.01	0.24		0.6	0.54	0.83
N6475			0.44	0.96	0.13	1.05	1.36	0.76	0.35				
N6494										1.44			
N6495										1.89			
N6485										1.98			
SVTM1082			0.09	0.92	0.21	1.04	0.87	0.92	0.29				
SVTM9011	0.83	1.06	0.36	0.89	0.46	0.98	0.85	0.89	2.26		1.52	0.54	0.89
SVTM9013			1.81	0.94	2.08	0.86	0.53	1.08	0.24				
SVTM9016	0.52	1.36	0.17	1.01	0.40	1.23	0.53	1.23	0.11	0.43	1.11	1.86	0.76
SVTM9019			0.49	1.04	0.31	1.18	1.31	0.84	0.23				
SVTM9021			1.21	0.99	2.57	0.89	1.20	1.01	0.24				
SVTM9023			1.28	1.09	2.47	0.89	0.90	1.04	3.17				
SVTM9032			0.80	0.95	2.61	0.8	1.18	0.86	1.21				
SVTM9034			0.89	0.99	0.26	1.13	0.81	0.88	0.61				
SVTM9036	2.03	0.51	2.86	1.09	0.94	0.99	0.60	1.09	1.82		0.71	0.6	0.96
SVTM9037	0.92	0.98	0.32	1.04	0.15	1.19	0.92	1.09	0.57		0.76	0.48	1.07
SVTM9040	1.57	0.74	2.97	0.95	1.13	0.91	0.64	1.10	1.88	1.83	0.45	0.9	1.08
SVTM9041			0.76	1.10	1.58	1.03	0.51	1.11	0.12	0.75			
SVTM9042										1.23			
SVTM9043										0.24			

Variety selection for fields with known FRD

 Newer varieties that exhibit tolerance in many/most FRD sites: HM8237, HM8268


SVTM9016, SVTM9019, SVTM9037

Older varieties with good tolerance:

N6428 HM58841

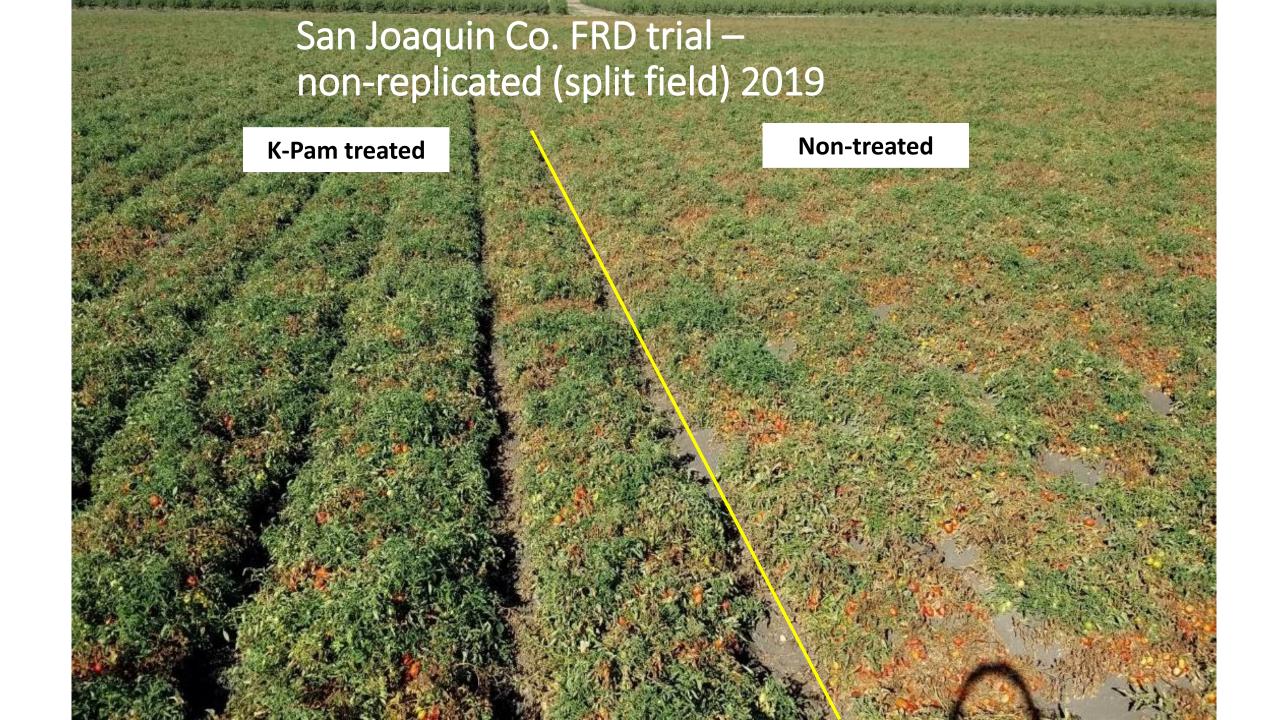
- Consult with seed retailers or UC advisors about your particular situation
- Study continuing in 2024

Chemical approaches to FRD management

Chemical effectiveness in product trials, 2019-2023

- 9 trials
- Location, pathogen and disease pressure didn't have a clear relation to effectiveness

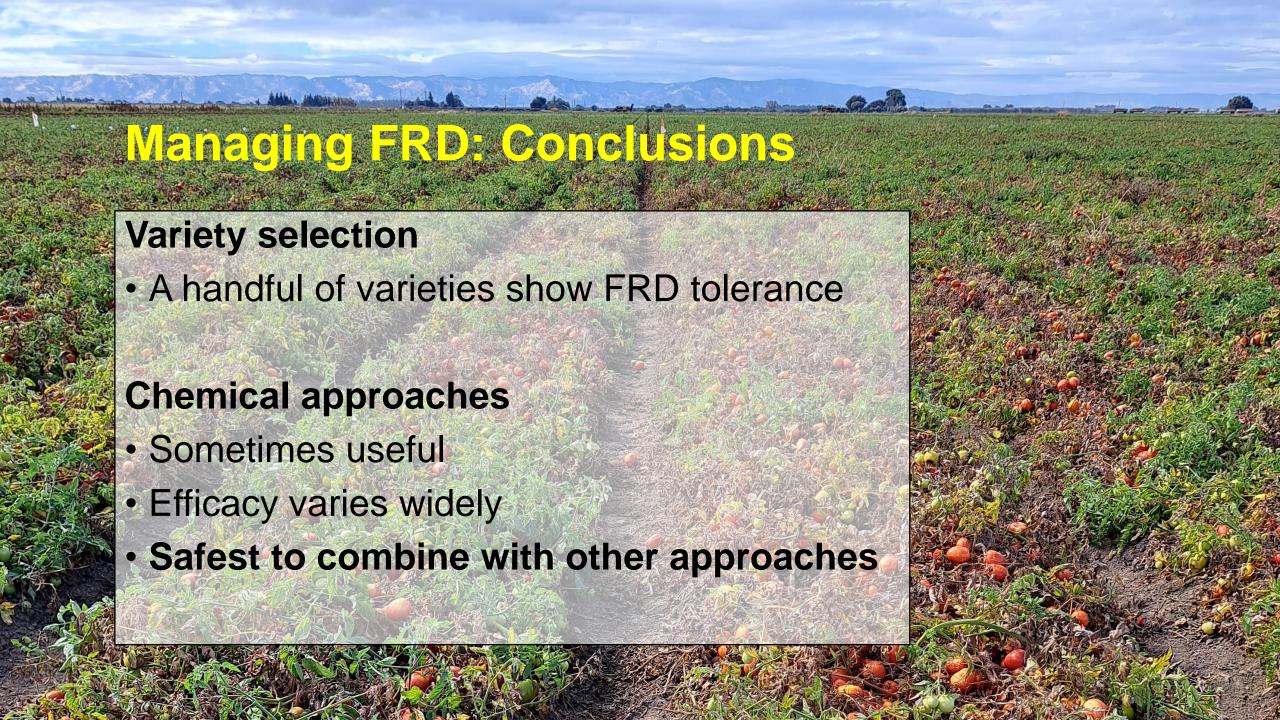
Product (active ingredient)	Sig. disease effect?	Sig. yield effect?	Range in average yield boost (where sig.)
K-PAM (metam potassium) ~30 gal/acre	4 (of 6 trials)	4 (of 7 trials)	3.5 – 26 t/a
K-PAM (metam potassium) ~15 gal/acre	2 (of 4)	2 (of 4)	11.9 – 13.6 t/a
Miravis (pydiflumetofen)	2 (of 4)	1 (of 4)	9.2 t/a
Rhyme (flutriafol)	1 (of 4)	1 (of 4)	10 t/a
Velum One (fluopyram)	1* (of 3)	0 (of 3)	


K-PAM @ ~30 gal/acre

			San Joaquin	San Joaquin	San Joaquin	San Joaquin		
	Site	UC Davis	co.	co.	co.	co.	Yolo co.	Solano co.
	Year	2019	2019	2019	2020	2021	2023	2023
							Fol, Ff,	
	Disease	Fol	Fol	Ff	Fol & Ff	Fol & Ff	southern blight	Ff
	Vine							
	decline	68%	37%	20%	31%	30%	55%	16%
	Decline?	++	++		+	++	NS	++
	Yield							
iı	ncrease?	NS	NS	7.2 t/a (++)	NS	26 t/a (++)	~4.7 t/a (+)	3.5 t/a (++)

+=statistically weak positive effects ++=statistically strong positive effect; NS=not significant

- @ \$138/ton, 2-3 t/acre yield boost needed to offset 30-40 gal/acre K-PAM
- To break even for 3.5 t/acre yield difference, price needs to be ~\$85-\$114/ton



Fumigation

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

Acknowledgements

California Tomato Research Institute

AgSeeds, TS&L

Robben Ranch, Harlan Family Ranches, RDC Farms, Richter Bros, Inc., R & J Sanguinetti Ranch, Coit Farms, Dresick Farms, Perez Farms

Bill Vignolo, Simplot Stockton

AMVAC, Syngenta, Bayer and FMC