Boating Pollution Economics & Impacts

WHAT HAPPENS WHEN A LITTLE TRASH, some oil, fuel, cleaning agents or sewage go overboard from your boat? Does it matter which hull paint you choose? Can preventing pollution save money? This page will answer your questions on the benefits of preventing boating pollution.

$ Even small amounts of pollution become a problem when they accumulate over time. Manufacturing, using and disposing boating products and equipment all contribute to the environmental impacts and costs of pollutants.

$ Boating pollutants in the water and sediment affect marine life and human health. (see table on page 2 and 3) They may reduce the availability of quality seafood, raise health care & dredging costs and affect industries that need clean water, like tourism, fishing & water sports.

Environmental Health, Human Health and Economics

$ Some pollutants change water chemistry, so sediment contaminants are easily absorbed by marine life. Pollution makes marine animals less able to survive other stresses. This may affect fishing & other water uses.

$ Studies of San Diego Bay & similar bays found fish living in polluted, urban water had more liver tumors and fin rot than fish in clean water. In 2006 California saltwater anglers spent $3 billion on sport fishing goods and services and generated $534 million in federal, state and local tax revenues. Of nearly 3 million fish caught by anglers on ocean charter boats in 1989, five species, or 27%, spend significant time in bays. There are also substantial landings from private boats & fishing piers. A decline in these fish could cost millions of dollars.

$ Quality seafood depends on clean water & sediment. The commercial value of halibut and white seabass for California in 2009 was $3.44 million. These fish live in bays when young.

$ Several viral, bacterial & parasitic diseases are shared between aquatic animals & humans. Sediment contaminants accumulate in some fish that live in bays and may be passed to people who consume them often.

Pollution, Dredging & Haulout Costs

$ Hull paint toxicants accumulate in sediments of some harbors, such as San Diego Bay. Harbors need regular dredging to maintain water depth. Clean sediments are much cheaper to dredge & dispose. Costs may seem modest per cubic yard, but thousands of cubic yards are removed when a typical boat basin is dredged. (see table below)

$ These costs may pass to marina tenants. Santa Cruz Port District calculated in 1994 that if the 10,000 cubic yards dredged per year were disposed as hazardous waste, slip rental rates would rise by $1.50/foot. Because toxicants from hull paints and maintenance products contaminate harbor sediment, preventing pollution can save you money.

$ How fast toxicant leaches from hull paint depends on local conditions, paint chosen & hull cleaning practices. The longer toxicant stays on a hull, the less goes to the sediment and the less you spend on haulouts.

For more information, see our publications at http://ucanr.org/coast

- Alternative Antifouling Strategies Sampler
- Selecting Underwater & Topside Maintenance Services for Your Boat
- Clean Boating Guide
- Clean Boating Tips

(Unless otherwise stated, material is from Connell and Miller 1984)

<table>
<thead>
<tr>
<th>Dredge and Disposal Type</th>
<th>Cost/Cu.Yd.</th>
<th>Cost for 25,000 cu.yd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dredge / dispose on beach or in ocean</td>
<td>$5 - $10</td>
<td>$125,000 - $250,000</td>
</tr>
<tr>
<td>Dredge / dispose as contaminated waste, e.g. construction fill</td>
<td>$17.50 - $35</td>
<td>$437,500 - $875,000</td>
</tr>
<tr>
<td>Dredge / dispose as hazardous waste</td>
<td>$40 - $60</td>
<td>$1,000,000 - $1,500,000</td>
</tr>
</tbody>
</table>
Environmental Impacts of Boating Pollutants

(Unless otherwise stated, material is from Connell and Miller 1984)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Sources and Characteristics</th>
<th>Environmental Activity</th>
<th>Environmental or Human Health Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detergents</td>
<td>- Most cleaning agents, detergents and soaps</td>
<td>- Accumulates in sediments</td>
<td>- Toxic to marine plants and animals</td>
</tr>
<tr>
<td></td>
<td>- Oil spill dispersants</td>
<td>- Broken down by microorganisms</td>
<td>- Impairs breathing in fish</td>
</tr>
<tr>
<td></td>
<td>- Breaks down oils and greases on boats</td>
<td></td>
<td>- Reduces amounts of oxygen in affected waters</td>
</tr>
<tr>
<td></td>
<td>- Dissolves according to water conditions</td>
<td></td>
<td>- Produces unsightly foam on the water surface</td>
</tr>
<tr>
<td>Marine debris</td>
<td>- Commercial and recreational boating</td>
<td>- Persistent in the environment</td>
<td>- Can choke / strangle sea animals</td>
</tr>
<tr>
<td></td>
<td>- Plastics, food wastes, packaging, lines, nets, fish cleaning wastes</td>
<td></td>
<td>- Ghosts nets, and traps endanger divers</td>
</tr>
<tr>
<td></td>
<td>- Plastics degrade very slowly</td>
<td></td>
<td>- Can transport harmful non native species</td>
</tr>
<tr>
<td></td>
<td>- Some wastes become nutrients (see “Nutrients”)</td>
<td></td>
<td>- Snagged by props and engines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Ruins recreational beaches</td>
</tr>
<tr>
<td>Acidic & Alkalis Substances</td>
<td>- Battery acid, lye and other strong acids or bases in vessel cleaning products</td>
<td>- Increases natural acidity or alkalinity of water by decreasing or increasing pH respectively</td>
<td>- Toxic to marine plants and animals</td>
</tr>
<tr>
<td></td>
<td>- Dissolves easily in water</td>
<td></td>
<td>- Increases the toxicity of other toxic substances, metals, other pollutants and chemicals</td>
</tr>
<tr>
<td>Metals</td>
<td>- Paint particles from hydro washing, metal shavings from engine wear, and consumer products containing metals</td>
<td>- Accumulates in sediments, marine plants, and animals</td>
<td>- Can irritate or damage skin</td>
</tr>
<tr>
<td></td>
<td>- Dissolves according to water conditions</td>
<td>- Persistent in the environment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Some metals broken down by microorganisms</td>
<td></td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>- Used as a toxic agent in antifouling paints</td>
<td>- Accumulates in sediments, marine plants, and animals</td>
<td>- Very toxic to fish when combined with zinc sulfates</td>
</tr>
<tr>
<td></td>
<td>- Dissolves according to water conditions</td>
<td>- Persistent in the environment</td>
<td>- Long term toxicity to marine plants and animals</td>
</tr>
<tr>
<td>Tributlytin (TBT)</td>
<td>- Still used as a toxic agent in antifouling paint on aluminum hulls, outboard motors & lower drive units</td>
<td>- Accumulates in sediments, marine plants, and animals</td>
<td>- Toxic even in small amounts to marine plants and animals, especially bottom feeders</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Persistent in the environment</td>
<td>- TBT contaminated shellfish are dangerous to human health</td>
</tr>
</tbody>
</table>
| Zinc (Zn) | Anticorrosive zincs and paint pigments
Dissolves according to water conditions, which can make Zn more available to marine organisms | Accumulates in sediments, marine plants & animals
Persistent in the environment | Toxic to marine plants and animals, even small amounts |
| --- | --- | --- | --- |
| Oil / Fuel | Normal boat operation, fueling, engine maintenance, spills, runoff, and bilge discharge
Dissolves slowly in water, clings to particles and sediments in marine environments | Fuels evaporate in air
Broken down by sediment microorganisms
Accumulates in sediments, marine plants, and animals
High accumulation in estuaries and intertidal areas | Some components toxic to marine plants and animals even at low concentrations
Some components cause cancer, mutations and / or birth defects
Behavioral changes in shellfish and fish
Discoloring and bad taste in flesh of fish |
| Dusts and sediments | Vessel scraping and sanding, erosion during construction and urban runoff
Heavy metals, nutrients, hydrocarbons, etc. adhere to dusts and sediments | Accumulate in sediments near the discharge to water
Sediment bound contaminants released to water if disturbed | May reduce amounts of oxygen in affected waters
General lowering of water quality
Burial of habitat, food and / or organisms
Increased turbidity can clog gills of fish |
| Nutrients | Runoff, sewage, erosion, garbage & detergents containing (P)hosphorous or (N)itrogen
P binds easily to water particles | Used by marine plants and organisms for food (P,N)
Accumulates in sediment (P) | Increase in algae growth which decreases light and oxygen in the water (eutrophication)
(N) can be toxic in higher concentrations |
| Solvents | Vessel maintenance & repair activities
Paints, varnishes, paint removers and lacquers as well as degreasing agents
Does not dissolve in water | Sink in water until they reach an impervious surface
Acetone lingers in air and is transported to sediment & water | Many solvents can cause cancer
Large amounts can cause dizziness, disorientation and unconsciousness in the user |
| Anti-freeze | Used as engine coolant and freeze prevention during winter storage
Improper use & storage creates leaks or spills | Fate similar to solvents | Ethylene glycol is deadly to humans, pets & marine organisms in low doses
Propylene glycol (orange/pink color) is less toxic than ethylene glycol (blue/green color) and is preferred for use in boats |

We wish to thank Clay Clifton and Scott Parker for editorial assistance. We also wish to thank Bill Lewis (Recreational Boaters of California), Steve Scheiblauer (Monterey Harbor District), Eileen Maher (San Diego Unified Port District), Dana Austin (Southwest Marine), Bob Reed (California Department of Fish & Game), Rosemary Kosaka (National Marine Fisheries Service), Libby Lucas (Environmental Health Coalition) and the many others who provided data, advice and review.

This work is sponsored in part by NOAA, National Sea Grant College Program, Department of Commerce, under grant number NA36RG0537, project number A/EA-1, through the California Sea Grant Program, in part by United States Environmental Protection Agency, under grant number NW009982-01-0, in part by the California State Resources Agency, in part by the University of California Division of Agriculture and Natural Resources and in part by the County of San Diego. The views expressed herein are those of the authors and do not necessarily reflect those of the sponsors or any of their sub-agencies. The U.S. government may reproduce and distribute for governmental purposes. The University of California, in accordance with applicable Federal and State law and University policy, does not discriminate on the basis of race, color, national origin, religion, sex, disability, age, medical condition (cancer-related), ancestry, marital status, citizenship, sexual orientation, or status as a Vietnam-era veteran or special disabled veteran. The University also prohibits sexual harassment. Inquiries regarding the University’s nondiscrimination policies may be directed to the Affirmative Action Director, University of California, Agriculture and Natural Resources, 1111 Franklin Street, 6th Floor, Oakland, CA 94607-5200. (510) 867-0096.
University of California, United States Department of Agriculture, United States Department of Commerce and County of San Diego cooperating.
References

3. Augerot, Xanthippe (1988) "Plastics in the ocean: What are we doing to clean it up?" Washington Sea Grant.
4. Barclays California Code of Regulations (1993), Register 93, Number 2, 1-8-93, Sections 6488, 6489 & 6674.
6. California Department of Fish & Game (2010), "Table 15: Poundage and Value of Landings of Commercial Fish into California by Area, 2009." Bulletin Tables.
10. Environmental Health Services (1990), San Diego Bay Health Risk Study, San Diego County Department of Health Services, San Diego, CA.
27. Santa Cruz Port District, (1994) "Three ways you can save yourself money," Anchor Watch, Santa Cruz, CA.
29. Waddell, Dave (1992) "Detergent and Soap Toxicity Assessment" Municipality of Metropolitan Seattle (Metro)

Authors:
Erika J. A. McCoy, Program Representative
Leigh T. Johnson, Coastal Resources Advisor
University of California Cooperative Extension
5555 Overland Avenue, Building 4
San Diego, CA 92123 (858) 694-2845

UNIVERSITY OF CALIFORNIA COOPERATIVE EXTENSION
COUNTY OF SAN DIEGO
FARM & HOME ADVISOR OFFICE
COASTAL RESOURCES PROGRAM
UCSCEP-SD 95-8, August 1995
UCCE-SD Fact Sheet 2010-2, October 2010

Educational Use, Only
This information is provided for general educational purposes. Consult cited references for details. If you plan to dredge, consult government & contractors on permits, restrictions, prices, etc.