

Environmental Science Policy and Management, University of California, Berkeley, CA, Earth Sciences, University of California, Riverside, CA,

P94

Oak Species in California: defining "Business as Usual" (BAU)

TAXA (three groups: red, white, and intermediate)	COMMON NAME	NARROW DISTRIBTUION
Quercus kelloggii Newb.	BLACK OAK	NO
Quercus agrifolia agrifolia Nee	COAST LIVE OAK	YES
Quercus agrifolia oxyadenia	(COAST LIVE OAK)	YES
Quercus wislizeni A. DC. var. wislizeni	INTERIOR LIVE OAK	NO
Quercus wislizeni var. frutescens Engelm.	(INTERIOR LIVE OAK)	NO
Quercus peninsularis	PENINSULAR OAK	YES
Quercus parvula Greene var. parvula	SANTA CRUZ ISLAND OA	K YES
Quercus parvula var. shrevei (Muller) Nixon & Muller	SHREVE OAK	YES
Quercus chrysolepis Liebm.	CANYON LIVE OAK	NO
Quercus vaccinifolia Kellogg	HUCKLEBERRY OAK	YES
Quercus tomentella Engelm.	ISLAND OAK	YES
Quercus palmeri (Quercus dunnii).	PALMERS OAK	NO
Quercus cedrosensis	CEDROS ISLAND OAK	YES
Quercus sadleriana R. Brown, Campst.	SADLER OAK	YES
Quercus lobata Noo		TES NO
Quercus Iobala Nee Quercus douglasii H & A		VES
Quercus douglasii II. & A.		NO
Quercus garryana bougi. val. garryana		YES
Quercus garryana var semota		YES
Quercus dumosa Nutt, sensus stricto	COASTAL SCRUB OAK	YES
Quercus berberidifolia Liebm	SCRUB OAK	NO
Quercus iohn-tuckeri Nixon & Muller	TUCKER'S SCRUB OAK	YES
Quercus pacifica Nixon & Muller	PACIFIC OAK	YES
Quercus cornelius-mulleri Nixon & Steele	MULLER OAK	NO
Quercus durata Jeps. var. Durata		YES
Quercus durata var. gabrielensis Nixon & Muller		YES
Quercus turbinella Greene	ARIZONA SCRUB OAK	NO

Oak Growth-form Groups in California

	RED OAKS	INTERMEDIATE OAKS	WHITE OAKS
Single Stem Trees	Black Oak		Engelmann Oak
	Coast Live Oak**		Valley Oak
			Blue Oak
Multi-stem Trees	Interior Live Oak	Canyon Live Oak	
	Shreve Oak	Island oak	
	Peninsular Oak (BC)		
Intermediate			
Arborescent shrubs	Pacific oak	Palmer's Oak (AZ)	Leather
		Huckleberry Oak	Shrub Live Oak
Shrubs		Cedros Isl. Oak (BC)	Sadler oak
			California, Tucker, Muller, Nuttall Scrub Oaks

Tree forms are critical component of biomass allocation and accumulation rates – and impact carbon sequestration

Coast Live Oak <u>Quercus agrifolia</u>

Interior Live Oak <u>Quercus wislizeni</u>

Canyon Live Oak Quercus chrysolepis Oak Distribution overall:

Dominant over about 10 million acres of California wildlands

Oaks and closely related taxa (tan oak, beech, chinquapin)

Oaks Occupy a Transition Zone

Between forest and grass/shrub vegetation areas

Unpredictable (boom and bust) precipitation

Oaks persist because their biomass tracks precipitation

Water balance in the oak ecosystems

Santa Cruz

Right conditions:Standing age distributions suggest that oaks may recruit more often in wet cycles than dry cycles

Years of age based on annual rings

Age class spikes coincide with years, troughs with drought years

Beautiful weeds: red oak's remarkable ability to recover when conditions are right

Delayed growth in oak seedlings: Rates of growth in slowest growing trees in plots at South Coast Field Station

Minimum oak generation time: Mast can occur after 3 to 5 years of growth in white oak (Q. engelmannii): acorns in 4 to 6 years after shoot emergence, masting after 5 to 7 years.

Oaks persistence in transitional landscapes because they can match their biomass to available resources, literally becoming smaller or larger match trends in conditions

Maximizing access to reliable water Accommodate reductions in biomass Resprout and rapidly grow after disturbance Mast acorns

Conifers maximize growth

Oaks maximize persistence

Adjusting to conditions: Oak Biomass is plastic

SAS = Acorn/Seedling stasis RG = Rapid growth CS = Canopy Stasis CD = Canopy decline D = Death PLASTICITY in oak biomass best ways to frame BUSINESS AS USUAL conditions

VARY THE LENGTH OF LIFE STAGE VARY RATE OF BIOMASS CHANGE AT LIFE STAGE

G

COMPRESS OR EXPAND LIMITS OF BIOMASS OR AGE

Trunk diameter is a poor predictor of Coast Live Oak age

Conifers maximize growth

Oaks maximize persistence

Conifer Forests

Living Biomass

Oaks woodlands

Living Biomass

Sum the biomass of a stand of oak trees, the product is a complex curve that may be difficult to describe or model.

Sum of wavelets is (wavelets) lacks the we get a complex (polynomial) curve with peaks and troughs Enough idiosyncrasies among oak growth rates that it's difficult to have confidence in global models. That forces us to create models empirically, at the stand or individual tree level to calculate carbon sequestration.

Table modified from Nick Skowronski, Climate Change Tools, NRS. Questions about the tools, email us?

Table taken from USFS Climate Change Resource Center website, Carbon Estimation Tools: A Primer <u>http://www.fs.usda.gov/ccrc/tools/carbon-primer</u> (Table originally modified from Nick Skowronski, Climate Change Tools, NRS).

Table modified from Nick Skowronski, Climate Change Tools, NRS. Questions about the tools, email us?

Table taken from USFS Climate Change Resource Center website, Carbon Estimation Tools: A Primer <u>http://www.fs.usda.gov/ccrc/tools/carbon-primer</u> (Table originally modified from Nick Skowronski, Climate Change Tools, NRS).

Models avail to calculate carbon sequestration at a project scale

Table modified from Nick Skowronski, Climate Change Tools, NRS. Questions about the tools, email us?

Table taken from USFS Climate Change Resource Center website, Carbon Estimation Tools: A Primer <u>http://www.fs.usda.gov/ccrc/tools/carbon-primer</u> (Table originally modified from Nick Skowronski, Climate Change Tools, NRS).

Carbon Sequestration Estimators for Hardwood Rangelands

Name	Acronym	Website		
Carbon On Line Estimator	COLE	http://www.ncasi2.org/COLE/		
Center for Urban Forestry Research Tree Carbon Calculator	СТСС	http://www.fs.usda.gov/ccrc/tools/cufr-tree-carbon-calculator- ctcc		
Forest Vegetation Simulator	FVS	http://www.fs.fed.us/fmsc/fvs/		
Tools for Assessing and Managing Community Forests	i-TREES	https://www.itreetools.org/eco/overview.php Demonstration with GIS: http://gis.amherstma.gov/data/springnearc2012/Session2/Landscapes/Nearc2012Minnnis.pdf		

Information on models from the USFS Climate Change Resource Center

Acronym	Notes	COLLE CT DATA?	SCALE	OUTPUT	TIME needed
i-TREE	State-of-the-art software suite that provides urban forestry analysis and benefits assessment tools. Only uses DBH	no	TREE to (Multiple Trees) Community scale	ecosystem services; including carbon	<day< td=""></day<>
стсс	Tree Carbon Calculator is the only tool approved by the Climate Action Reserve's Urban Forest Project Protocol for quantifying carbon dioxide sequestration from GHG tree planting projects. Only uses DBH, limited number of native species	minima I	TREE to (Multiple Trees) Community scale	carbon sequestered /avoided; CO ₂	<day< td=""></day<>
FVS	FVS is a stand-level vegetation growth simulator - many variants for U.S. regions and applications. FVS includes ecosystem and wood products carbon calculator. Forest model that wasn't developed for oak woodlands; some data for black oak, but synonymizes other oak species across subgenera and growth forms	yes	STAND (and groups of trees = implies sampling)	growth & yield; carbon	<week< td=""></week<>
COLE	Retrieves Forest Inventory and Analysis data for user-selected domain and converts it to ecosystem carbon and produces carbon yield tables. Designed to calculate regional estimates; too few FIA data points in oak woodlands; given the variance among plots	no	REGIONAL (groups of FIA sites = implies sampling)	carbon; stocking	<day< td=""></day<>

Individual-tree based models; estimating/ sampling biomass accumulation, And measuring/sampling oaks

If you can't group by

site conditions or age since management or disturbance because of individual variation

You still may be able to group by size classes and use stage-based models of oak demography, carbon calculation based on how many individuals will survive to the next age class, or persist in an age class:

A = Acorn S = Seedling RG = Rapid growth CS = Canopy Stasis CD = Canopy decline IRD = Irreparable decline Individual-tree based models; estimating/ sampling biomass accumulation, And measuring/sampling oaks

Business as usual (red line): oak planting in areas without oaks, or where oak have been removed/lost

SAS = Acorn/Seedling stasis CD = Canopy decline RG = Rapid growth D = Death CS = Canopy Stasis

Business as usual (red line): oak planting in areas without oaks or where oak have been removed/lost

How can you estimate rate of carbon sequestration in reforestation/ aforestation projects?

- 1. Use CTCC Model for Coast Live Oak (Q. agrifolia) in some areas (eg., Inland Empire) and get an estimate based on the number of trees planted and the hypothetical growth rates. Also use if ree model for similar purpose. Justify deviations from model rules
- 2. Look to literature for:
 - (a) Oak growth rates in California (Standiford, DeLasaux, Pilsbury) also Scott unpublished;
 - (b) Carbon sequestration rates for oaks (USFS, California ARB, etc.); estimates of carbon content by wood, bark, branches roots, etc.
 - (c) Climate and site factors affecting growth rates and sequestration rates

Business as usual: stopping insect and pathogen damage

SAS = Acorn/Seedling stasisCD = Canopy declineRG = Rapid growthD = DeathCS = Canopy StasisD = Death

Business as usual: insect and pathogen damage

Business as usual: insect and pathogen damage

CONTAGION AND AMPLIFICATION:

Lower these may change the rate or extent of biomass lost to insect and pathogen damage

Fall of 2012: GSOB isn't adept at dispersal

DEATH IN OAK SPECIES

Business as usual: reducing biomass loss to fire

SAS = Acorn/Seedling stasis RG = Rapid growth CS = Canopy Stasis CD = Canopy decline D = Death

Business as usual: reducing biomass loss to fire

SAS = Acorn/Seedling stasis RG = Rapid growth CS = Canopy Stasis CD = Canopy decline D = Death

Biogeography of Red Oaks (Quercus section Lobatae)

Possibly 5 to 10 millions years of isolation

California is like no other place on earth

Example: San Jacinto Mt has the greatest scarp in North America

Red-breasted Nuthatch (North to Yukon)

Vermillion Flycatcher (South to Equator)

Photo by Greg Lasley