Development of a Selective Enzyme-Linked Immunosorbent Assay for 1-Naphthol—the Major Metabolite of Carbaryl (1-Naphthyl N-Methylcarbamate)

Petra M. Krämer,† Maria-Pilar Marco,‡ and Bruce D. Hammock*†

Departments of Entomology and Environmental Toxicology, University of California, Davis, California 95616

INTRODUCTION

1-Naphthol (MW 144.17) is the major hydrolysis product of carbaryl (SEVIN; 1-naphthyl N-methylcarbamate). Carbaryl is a broad-spectrum insecticide, which is widely applied on fruits, food crops, forests, and livestock against a wide variety of insects (over 100 species, Extension Toxicology Network, 1989). After it was invented in 1953, it became a great success, and by the year 1971 there was an annual production of 55 million pounds in the United States alone (Marshall, 1985). Carbaryl is a cholinesterase inhibitor. It is commonly judged to have moderate to low mammalian toxicity, because carbamylated esterases reactivate with a very short half-time of the inhibitor–enzyme complex (Hayes, 1982; Kaloyanova and El Batawi, 1991). On the other hand, more recent data show that, for example, in green algae and cyanobacteria a combination of carbaryl and 1-naphthol can show more toxicological effects than either substance alone (Megharaj et al., 1990).

Different methods are applied for the analysis of carbaryl and 1-naphthol, with high-pressure liquid chromatography (HPLC), gas chromatography (GC), spectrophotometry, and spectrofluorometry being the most common (Shafik et al., 1971; Nagasawa et al., 1977; DeBerardinis and Wargin, 1982; Hargreaves and Melksham, 1983; Nakamoto and Page, 1986; Garcia Sánchez and Cruces Blanco, 1987; Sastry et al., 1987; Ward et al., 1987; Yanez-Sedeno et al., 1988; Sancenón et al., 1989; Strait et al., 1991). In general, these methods are quite time-consuming and expensive, and sometimes derivatization is required. For the determination by GC, for example, Nagasawa et al. (1977) used the heptafluorobutyryl derivatives of carbaryl and 1-naphthol. The monitoring of large sample numbers for exposure studies of workers and for environmental and food control, though, asks for more cost-effective screening methods with the least amount of sample pretreatment. Immunological methods offer such a good screening method, because they are very sensitive, often need little or no sample cleanup or preparation, and can be applied to numerous samples simultaneously (Hammock and Mumma, 1980; Cheung et al., 1988; Haberer and Krämer, 1988; Jung et al., 1989; Hammock et al., 1990). Because of the metabolic and environmental instability of carbaryl, an analytical method for carbaryl should incorporate the determination of 1-naphthol. After the development of a sensitive immunoassay against carbaryl, which does not interfere with 1-naphthol (Marco et al., 1993a), the need for an assay for 1-naphthol became apparent. The synthetic strategy, the subsequent development, and the main characteristics of the assay for 1-naphthol are shown in this paper.

MATERIALS AND METHODS

Chemicals. Carbaryl and naphthaleneacetamide were purchased from Chem Service (Media, PA). Carbonates 12, 13, and 15, thiocarbonate 14, and ethylcarbamate 16 derivative, used for cross-reactivity studies, were synthesized and described by Huang et al. (1993). The synthesis of compounds 26 [N-(1-naphthyl)-6-aminohexanoic acid], 27 [N-(2-naphthyl)-6-aminohexanoic acid], 28 [N-(2-naphthylsulfonyl)-6-aminohexanoic acid], 29 [N-(1-naphthylacetyl)-6-aminohexanoic acid], and 30 [1-(5-carboxypentyl)-3-(1-naphthyl)urea], used during screening of coating antigens, is described by Marco et al. (1993a). Immunochemicals were purchased from Sigma Chemical Co. (St. Louis, MO). Other chemical reagents were from Aldrich Chemical Co. (Milwaukee, WI). Analytical stock solutions were prepared in either methanol, acetone, dimethyl sulfoxide, or dimethylformamide (DMF) and stored at –20 °C.

Instruments. Thin-layer chromatography (TLC) was performed on 0.25-mm precoated silica gel 60 F254 aluminum sheets from Merck (Gibbstown, NJ). 1H and 13C nuclear magnetic resonance (NMR) spectra were obtained with a QE-300 spectrometer (General Electric, 300 MHz for 1H and 75 MHz for 13C nuclei). Chemical shifts (δ) are given relative to tetramethylsilane (TMS) as an internal reference. Electron impact mass spectra (EI-MS) were recorded on a Trio-2 (VG Masslab, Altrincham, U.K.) apparatus at 70 eV, and data are reported as m/z (relative intensity). A Hewlett-Packard 5890 gas chromatograph equipped with 15 m × 0.25 mm (i.d.) DB-5 column was interfaced to this mass spectrometer for GC-MS analyses. Fast atom bombardment mass spectra (FAB-MS) were obtained on a ZAB-HS-2F instrument (VG Analytical, Wythenahaue, U.K.). Melting points were determined with a Haake capillary melting point apparatus (A. H. Thomas Co., PA) and are uncorrected. UV spectra were...
obtained with an UV–vis spectrophotometer 8450 A (Hewlett-Packard) and recorded with a Hewlett-Packard 7225B plotter. Clear sera were obtained by centrifugation either in a micro-centrifuge (Eppendorf 5415C) for small volumes (≤1 mL) or in a Beckman centrifuge (GPR or J2-21M/E) for larger volumes (2–10 mL). Soil was extracted in a Gyratory water bath shaker (Model 47, 60,000 rpm, 50°C). Polyurethane microtiter plates were purchased from Nunc (Mas-sor, Roskilde, Denmark). The absorbances were read with a Vmax microplate reader (Molecular Devices, Menlo Park, CA) in dual-wavelength mode (450 or 405–650 nm). The inhibition curves were analyzed with a commercial software package (Softmax, Molecular Devices) using a four-parameter logistic equation. Unless otherwise mentioned, all data presented from ELISA experiments correspond to the average of at least three well replicates on one plate.

Hapten Synthesis. Compounds 2a, 2b, 4, and 7 were synthesized as follows and were used for the preparation of immunogens or costant antigens.

[(6-Hydroxy-1-naphthoxy)acetic Acid Methyl Ester (1a) and [(6-Hydroxy-1-naphthoxy)acetic Acid Methyl Ester (1b). Methyl bromoacetate (1.91 g, 12.5 mmol) was added dropwise to a solution of 1,6-dihydroxynaphthalene (2.00 g, 12.6 mmol) in anhydrous acetone (100 mL) containing KO2CO3 (4.15 g, 30 mmol). After refluxing for 4 h [TLC analysis CHCl3/CH3OH (98/2)], the reaction mixture was poured into 1 N HCl (40 mL) and extracted with ethyl ether (3 × 60 mL). The combined organic fractions were washed with saturated NaCl solution (2 × 60 mL), dried with MgSO4, filtered, and evaporated to give 2.5 g of a mixture that was repeatedly chromatographed in a silica gel column [CHCl3/CH3OH (98/2)] to isolate the mixture of the following pure compounds in this order. 2H NMR (CDCl3-DMSO-d6) δ 2.53 (s, 3H, OCH3), 4.81 (s, 2H, CH2COOCH3), 6.72 (d, J = 8.6 Hz, 1H, H-6), 6.84 (d, J = 8.7 Hz, 1H, H-2), 7.18-7.36 (ca. 3H, H-3 and H-7), 7.79 (d, J = 8.7 Hz, 1H, H-4 or H-8), 7.90 (d, J = 8.5 Hz, 1H, H-4 or H-8); 13C NMR (CDCl3-DMSO-d6) δ 52.9, 65.4, 114.6, 115.6, 123.9, 124.2, 125.3, 125.4, 126.2, 152.0, 153.2, 155.4, 169.2; FAB-MS (m/z) 304, 273, 231, 201, 189, 127, 122, 116, 115, 98, 85, 77, 69, 57, 45, 39, 30, 28, 25, 21, 19, 15, 13, 11, 9, 7, 5, 3.

[(5-Hydroxy-2-naphthoxy)acetic Acid Methyl Ester (3a). Similarly, as described before for the preparation of 1a and 1b, 570 g of a mixture of 3a and [(5-(methoxycarbonyl)-methoxy)-1-naphthoxy]acetic acid methyl ester (3b) was obtained by reacting 1,5-dihydroxynaphthalene (400 mg, 2.5 mmol) with methyl bromoacetate (382.4 mg, 2.5 mmol) in anhydrous acetone (60 mL) containing K2CO3 (829 mg, 6 mmol, 1.2 equiv). Separation of 3a as a brown oil (220 mg, 38%) from the yellow crystalized 3b as a brown oil (350 mg, 46%) was accomplished by chromatography of the mixture in a silica gel column (50 g, eluent CHCl3 to CHCl3-CH3OH (98/2)]. 3a: 1H NMR (CDCl3-DMSO-d6) δ 3.83 (s, 3H, OCH3), 4.81 (s, 2H, CH2COOCH3), 6.72 (d, J = 8.6 Hz, 1H, H-6), 6.84 (d, J = 8.7 Hz, 1H, H-2), 7.18-7.36 (ca. 3H, H-3 and H-7), 7.79 (d, J = 8.7 Hz, 1H, H-4 or H-8), 7.90 (d, J = 8.5 Hz, 1H, H-4 or H-8); 13C NMR (CDCl3-DMSO-d6) δ 52.9, 65.4, 105.2, 108.7, 112.3, 115.6, 123.9, 124.2, 125.3, 125.4, 126.2, 152.0, 153.2, 155.4, 169.2; FAB-MS (m/z) 304, 273, 231, 201, 189, 127, 122, 116, 115, 98, 85, 77, 69, 57, 45, 39, 30, 28, 25, 21, 19, 15, 13, 11, 9, 7, 5, 3.

([(5-Hydroxy-1-naphthoxy)acetic Acid (4). As described before for the preparation of 2a, from the methyl ester 3a (220 mg, 0.9 mmol) the carboxylic acid 4 was obtained as brown solid (190 mg, 29%): 1H NMR (CDCl3-DMSO-d6) δ 4.68 (s, 3H, OCH3), 6.72 (d, J = 8.5 Hz, 1H, H-6), 7.18-7.36 (ca. 3H, H-3 and H-7), 7.79 (d, J = 8.5 Hz, 1H, H-4 or H-8); 13C NMR (CDCl3-DMSO-d6) δ 48.0, 105.7, 112.6, 115.7, 124.0, 125.4, 125.6, 126.3, 152.1, 158.0, 160.6; FAB-MS (m/z) 218, 173, 160, 131.

5-Hydroxy-2-naphthoic Acid (7). The dibromooester 5 (Marco et al., 1993b) (100 mg, 0.26 mmol) in anhydrous THF (4 mL) was added, under N2 atmosphere, to a suspension of Na2CO3 (210 mg, 2.5 mmol) in the same solvent (1 mL) and stirred overnight at 4 °C. The day after, the reaction mixture was added to an aqueous solution of H2SO4 (5%), stirred for 30 min at RT, and extracted with ethyl acetate (3 × 30 mL). The joined organic fractions were washed with saturated NaCl solution, dried over MgSO4, filtered, and evaporated to dryness to obtain 7 as a brown solid (35 mg, 74%) after purification by preparative TLC [CHCl3-CH3OH (98/2): mp 162–165 °C; 1H NMR (CDCl3-DMSO-d6) δ 8.19 (d, J = 8.9 Hz, 1H, H-8); 13C NMR (CDCl3-DMSO-d6) δ 115.7, 121.9, 124.6, 125.4, 125.8, 126.0, 126.2, 152.5, 155.5, 170.6; FAB-MS (m/z) 218, 173, 160, 131.

Preparation of Hapten–Protein Conjugates. Haptenas 2a, 2b, and 4 were conjugated to bovine serum albumin (BSA), conalbumin (CONA), ovalbumin (OVA), and keyhole limpet hemocyanin (KLH). Haptens 7 was conjugated to KLH only. Conjugates 2-25 and 1- and 2-naphthyl acetic acid conjugates were conjugated to CONA and OVA. All haptenas were conjugated via the mixed anhydride method (Rajkowski et al., 1977, modified after Erlanger et al. (1957, 1969)). Here, the carboxylic acid haptenas (0.08 mmol) dissolved in anhydrous dimethylformamide, and tri-n-butylamine (0.0968 mmol) was added followed by isobutyl isocyanate (0.088 mmol). The mixture was stirred for 30 min at RT and then added slowly to the corresponding protein solution (50–100 mg) in borate buffer (0.2 M borate–boric, pH 8.7). This was stirred overnight at 4 °C. The following day the solutions were transferred into dialysis bags (Spectra/Por, MW cutoff 12 000-14 000, Spectra Medical Industries,TN) and dialyzed extensively against 0.01 M phosphate-buffered saline (pH 7.5), with a last exchange in water, lyophilized, and stored dry at -70 °C. Stock solutions of 1 mg/mL were prepared in 0.5 M carbonate buffer, pH 9.8, and stored at 4 or -20 °C.

Determination of Hapten Density of Conjugates. The conjugation of the most important hapten–protein conjugates used for this study was proved spectrophotometrically by...
Labeled goat anti-rabbit IgG was added (1:10000 in 0.2 M PBST, pH 7.5; Sigma) to a final volume of 900–1000 μL/well. For all boost immunizations the immunogens were prepared in the same way but with Freund’s incomplete adjuvants (Sigma). The boosting was started 1 month after the initial immunization and was repeated every 4 weeks (6 times); animals were bled 10 days after each boost (2–5 mL) from the marginal ear vein under light anesthesia. Ten days after the sixth boost the rabbits were exsanguinated under deep anesthesia by heart puncture. All procedures, except the preparation of the immunogens, were carried out by LAHC (Laboratory Animal Health Clinic, UCD) personnel. The blood sat in tubes overnight at 4 °C to allow it to clot. After removal of the clot and centrifugation of the serum (1000 rpm, 10 min), the clear serum was carefully drawn out with a Pasteur pipet, aliquotted, and stored in cryovials at -70 °C.

Screening of Antisera with Two-Dimensional Titration. For the determination of the initial titers, for each serum one microtiter plate (Nunc) was divided into three equal parts (one part: 4 columns, 8 rows) and coated with 100 μL/well of three different coating antigens (2b-, 2b-, and 4-CONA), respectively, at 8 concentrations (0.08–10 μg/mL) in 0.5 M carbonate-bicarbonate buffer (pH 9.6). Plates were sealed with adhesive plate sealers and incubated overnight at 4 °C. The following day, the coated plates were washed (10 times, 0.2 M phosphate-buffered saline with 0.5% Tween 20 (PBST)) and 100 μL/well of diluted serum was incubated for 2 h at RT. The sera were checked in a two-dimensional titration with four different dilutions (4 columns: 1:500, 1:2000, 1:4000, and 1:10000 in 0.2 M PBST, pH 7.5) against the coating antigens. After another washing step, 100 μL/well of goat anti-rabbit IgG, conjugated with diethanolamine buffer (Sigma), was added and incubated overnight at 4 °C. The following day, the coated plates were washed (10 times, 0.2 M phosphate-buffered saline with 0.5% Tween 20 (PBST)) and 100 μL/well of diluted serum was incubated for 2 h at RT. The sera were checked in a two-dimensional titration with four different dilutions (4 columns: 1:500, 1:2000, 1:4000, and 1:10000 in 0.2 M PBST, pH 7.5) against the coating antigens. After another washing step, 100 μL/well of goat anti-rabbit IgG, conjugated with diethanolamine buffer (Sigma), was added and incubated for 2 h at RT. Then plates were washed again, and the substrate p-nitrophenyl phosphate (tablets, 1 mg/mL, Sigma) for the enzyme reaction was added (100 μL/well) in 10% diethanolamine buffer, pH 9.8. After incubation for 30 min at RT, the absorbance values were read at 405/650 nm, and the data were collected with the PC-EIA program (Softmax).

ELISA—Coating Antigen Format. Competitive Inhibition. To shorten incubation times, the ELISA for the competitive inhibition was slightly varied as follows. Microtiter plates were coated with the optimized concentration (1–2 μg/mL; 100 μL/well) of the corresponding hapten–protein conjugate overnight at 4 °C. The next day, plates were washed (10 times, 0.2 M PBST, pH 7.5), and the analyte (0.001–100,000 μg/mL in 0.2 M phosphate-buffered saline (PBS), pH 7.5; 50 μL/well) and the antisera (optimized dilution from 1:4000 to 1:12000, depending upon the assay, in 0.2 M PBST, pH 7.5) were added and incubated for 35 min at RT. After another washing step, 100 μL/well HRP-labeled goat anti-rabbit IgG was added (1:10000 in 0.2 M PBST, pH 7.5; Sigma) and incubated for 90 min at RT. Plates were washed again, 100 μL of substrate/well was added (tetramethylbenzidine (TMB)/1% H₂O₂; 6 mg of TMB/mL DMSO; 400 μL of TMB, and 100 μL of 1% H₂O₂ in 25 mL of 0.1 M sodium acetate, pH 5.5), and, after 10–20 min, the enzyme reaction was stopped with 50 μL/well 4 M H₂SO₄. The absorbance was read at 450/650 nm. With this assay format the color development measuring absorbance of haptens and hapten–protein conjugates at wavelengths where the protein did not absorb. Haptens (10 μg/mL) were diluted in 0.5 M carbonate buffer, pH 9.6 (1% methanol), and hapten–protein conjugates (100 μg/mL) and proteins in the same buffer, respectively. The hapten density was determined via Lambert Beer’s law, assuming that ε for the unconjugated and ε for the conjugated hapten are the same.

Immunization of Rabbits. Rabbits (female New Zealand, white, 3–5 kg) 3897 and 3898 were immunized with 2b-BSA, rabbits 3904, 3905, and 3906 were immunized with 4-BSA, and rabbits 3907, 3908, and 3909 were immunized with 7-KLH. The immunization was done as follows. Rabbits were injected intradermally (5–20 sites per animal) with 100 μg of the corresponding hapten–protein conjugate. For the initial injection, the corresponding hapten–protein conjugates (immunogens) were dissolved in 1.7% NaCl (w/v) and mixed 1:2 with Freund’s complete adjuvants (Sigma) to a final volume of 900–1000 μL/injection. For all boost immunizations the immunogens were prepared in the same way but with Freund’s incomplete adjuvants (Sigma). The boosting was started 1 month after the initial immunization and was repeated every 4 weeks (6 times); animals were bled 10 days after each boost (2–5 mL) from the marginal ear vein under light anesthesia. Ten days after the sixth boost the rabbits were exsanguinated under deep anesthesia by heart puncture. All procedures, except the preparation of the immunogens, were carried out by LAHC (Laboratory Animal Health Clinic, UCD) personnel. The blood sat in tubes overnight at 4 °C to allow it to clot. After removal of the clot and centrifugation of the serum (1000 rpm, 10 min), the clear serum was carefully drawn out with a Pasteur pipet, aliquotted, and stored in cryovials at -70 °C.

For more extensive screening of additional coating antigens (see Table 1) all sera were checked again in two-dimensional titrations.
is inversely proportional to the amount of analyte. For better comparison of standard curves, the absorbance values \(A \) were converted to percent control values, according to the formula

\[
\% \text{ control} = \frac{A - A_{\text{background}}}{A_{\text{max}} - A_{\text{background}}} \times 100
\]

where \(A_{\text{background}} \) is the absorbance without addition of antiserum and \(A_{\text{max}} \) is the absorbance without analyte.

pH Effect. The influence of pH on the assay was studied with 0.2 M phosphate buffer (KH₂PO₄-Na₂HPO₄ in various proportions) in the pH range from pH 5 to pH 8 in steps of 0.5 pH unit (for example, for pH 7, 41 mL of 0.2 M KH₂PO₄-59 mL of 0.2 M Na₂HPO₄). For this study, standards were determined in quadruplicate, set up either in 0.2 M phosphate buffer at one pH or in the usual buffer (0.2 M PBS, pH 7.5).

Solvent Tolerance. The most commonly used solvents for conventional LC methods were tested in the assay: acetone, acetonitrile, and methanol (0-50% or 100%, respectively, in 0.2 M PBS). Standards of 1-naphthol in solvent were determined in triplicate and compared to standards in 0.2 M PBS (duplicate determination) on the same plate. Diluted antiserum (50 µL/well) was added in 0.2 M PBST, pH 7.5. The assay was performed as described under ELISA Coating Antigen Format. Competitive Inhibition.

Matrix Effects in Human Urine and in Soil Extract. For the effect of different matrices in the assay, the standard curves were run in one spiked human urine sample of different dilutions (0%, 1%, 2%, 5%, 10%, 25%, 50%, and 100%, diluted in water). This antiserum was added in 0.4 M PBST, pH 7.5, and the assay was performed as described formerly for the competitive inhibition format.

Yolo silt loam (fine-silty, mixed, nonacid thermic, typic xerorthent, 1.3% organic carbon) was used as one example to investigate the possible matrix effect of soil. Two grams of soil in 100 mL of a chloroform-methanol mixture (90:10) was shaken for 20 h at RT. The extract was filtered through Whatman filter paper No. 1 and then evaporated. The residue was redissolved in 200 µL of methanol and diluted with 0.2 M PBS to a final volume of 2 mL. This solution was spiked with 1-naphthol (100 000 µg/L, serially diluted to 0.001 µg/L) and compared to the standard curve in 0.2 M PBS. The assay was performed as described earlier.

RESULTS AND DISCUSSION

Hapten Synthesis. Since hapten antibody recognition is higher towards the portion of the hapten molecule which is furthest from the carrier protein, the selected synthetic strategy was directed toward the introduction of a carboxylic group on the opposite side of the hydroxyl group on the 1-naphthol molecule. We introduced a carboxylic acid terminated handle by formation of an ether prepared from the phenoxylate anion, generated with potassium carbonate, and methyl bromoacetate (see Figure 1). When 1,6-diol was the starting material, a mixture of the dialkylated compound 1a and the two monoalkylated compounds 2a and 2b was obtained. For 1,5-diol, only two compounds are possible due to the symmetry of the molecule, the monoalkylated 3a and the dialkylated 3b. Unfortunately, dialkylated compounds 1c and 3b were the main reaction products for 1,6- and 1,5-diol, respectively. Repeated purification by silica gel column chromatography resulted in the isolation of the methyl esters 1a, 1b, and 3a. Subsequently, the methyl esters were hydrolyzed with aqueous NaOH to give the corresponding carboxylic acids 2a, 2b, and 4. Structural differentiation of positional isomers 2a and 2b was accomplished by spectroscopic data and X-ray structural analysis of the crystals obtained for 2b. Carboxylic acid derivatives 2b and 4 were meant to produce antibodies recognizing preferentially 1-naphthol, whereas 2a was designed as a possible coating antigen.

In addition, the hapten 5-hydroxy-2-naphthoic acid (7) was considered to be an interesting hapten for immunization, because of the short "handle". As starting material 5-acetyl-6-bromo-5,6,7,8-tetrahydronaphthalene-2-carboxylic acid (5) was used (Figure 2), because this compound was available from a previous study (Marco et al., 1993b).
Figure 3. Confirmation of the conjugation via UV spectroscopy with the example of two conjugates used in the assay development for 1-naphthol. Haptens were used in a concentration of 10 µg/mL, whereas the hapten–protein conjugate and the protein concentrations were 100 µg/mL, respectively. (A) 2b-BSA; absorbance at 329/330 nm was used to determine the hapten density. (B) 23-CONA; absorbance at 325/326 nm was used to determine hapten density.

Table 2. Different Combinations and Standard Curve Characteristics for Different Assays for 1-Naphthol

<table>
<thead>
<tr>
<th>antiserum</th>
<th>dilution</th>
<th>coating antigen</th>
<th>N</th>
<th>IgG (C) (µg/L)</th>
<th>SD (µg/L)</th>
<th>A</th>
<th>B</th>
<th>D</th>
<th>corr coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>3909 1:4000</td>
<td>23-CONA, 2 µg/mL</td>
<td>6</td>
<td>288</td>
<td>144</td>
<td>0.323 ± 0.028</td>
<td>0.478 ± 0.079</td>
<td>0.0274 ± 0.013</td>
<td>0.982 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>1:4000</td>
<td>22-CONA, 1 µg/mL</td>
<td>6</td>
<td>96.7</td>
<td>12.5</td>
<td>0.285 ± 0.016</td>
<td>1.017 ± 0.120</td>
<td>0.0320 ± 0.006</td>
<td>0.969 ± 0.022</td>
<td></td>
</tr>
<tr>
<td>1:5000</td>
<td>4-BSA, 1.5 µg/mL</td>
<td>5</td>
<td>46.7</td>
<td>16.3</td>
<td>0.197 ± 0.033</td>
<td>0.723 ± 0.343</td>
<td>0.0110 ± 0.023</td>
<td>0.917 ± 0.076</td>
<td></td>
</tr>
<tr>
<td>1:9000</td>
<td>2b-BSA, 1.5 µg/mL</td>
<td>6</td>
<td>66.9</td>
<td>5.0</td>
<td>0.256 ± 0.018</td>
<td>0.910 ± 0.141</td>
<td>0.0103 ± 0.008</td>
<td>0.979 ± 0.019</td>
<td></td>
</tr>
</tbody>
</table>

a N, number of plates that were taken for the determination of the average and standard deviation values. On each plate the standard curve was run with standards from 0.001 to 100 000 µg/L; each standard was run at least in duplicates. Maximal absorbance (A), slope (B), IgG (C), minimal absorbance (D), and correlation coefficient (corr coeff) are values from the four-parameter curve fit given by the equation y = (A - D)/(1 + (x/C)^B) + D (SOFTmax).

moieties can be predicted according to the pKₐ values (pKₐ 1-naphthol = 9.35, pKₐ 2-naphthol = 9.51, pKₐ lysine = 10.53).
ELISA for 1-Naphthol

Other coating antigens with different handle structure and position such as compound 2a, 1- (22) and 2-naphthoxyacetic acid (23), 1- and 2-naphthylacetic acid, and 1- (24) and 2-napthoic acid (25), conjugated to CONA and OVA, respectively, were successfully prepared by the same method. All of these coating antigens were well recognized by the 7-KLH antisera, but only the coating antigens using compounds 22 and 23 could be used in the inhibition assay against 1-naphthol. Compounds 22-25 were subsequently tested also as competitors in the optimized assay (antiserum 3907 1:9000 and coating antigen 2b-BSA 1.5 μg/mL, Table 3) but did not show any substantial cross-reactivity (≤0.3% CR).

Confirmation of Conjugation. The determination of the hapten density of the main hapten–protein conjugates for the assay development was based on UV spectroscopy (Figure 3). The molecular weights of the proteins used for these determinations were 68 000 for BSA, 76 000 for CONA, and 45 000 for OVA. Hapten 2b showed one characteristic peak at 329/330 nm, that was observed in both, the hapten-protein-conjugate and the free hapten, but not in the protein (BSA) alone (Figure 3A). The hapten density was determined by using the absorbances at this wavelength for both compound 2b and the 2b-BSA conjugate, respectively. The hapten density for the 2b-BSA conjugate was determined as 24 haptns/BSA. Hapten 4 showed distinct absorbance maxima at 227, 284, 298, 313, 327, and 337 nm (spectrum not shown). After conjugation to BSA or CONA, respectively, the main peak was broader at 230–233 nm, where the maxima of the other hapten peaks were at 285, 298/9, 310, and 323/4 nm, respectively. Because the main peak at 227 nm interfered with the main protein peak at 226 nm, the determination of hapten density was performed at 327 nm for the hapten and at 323, 324 nm for the 4–BSA conjugate and 4–CONA conjugate, respectively. The density was 30 for the 4–BSA conjugate and 47 for the 4–CONA conjugate. The hapten 2-naphthoxyacetic acid (23) showed distinct absorbances at 261, 271, 281, 312, and 325 nm that were seen also in the corresponding hapten–protein conjugates. Only absorbance maxima at 312 and 325 nm did not show interference with the protein absorbance after conjugation; therefore, 325 nm was chosen for hapten density determination (Figure 3B). Hapten density was 41 for the 23–CONA conjugate and 24 for the 23–OVA conjugate. The latter estimate of hapten load for the OVA conjugate seems too high, because recent studies of the sequence of OVA show only 20 free lysines.

Screening of the Sera against 1-Naphthol. To obtain the most sensitive and reliable assay that also showed the least interference with other related structures, all sera were tested against 14 different coating antigens (Table 1). Although almost all antisera showed good recognition for numerous coating antigens (Table 1), only the 7–KLH sera could be inhibited by 1-naphthol. In general, all coating antigens using CONA as the protein (Table 1) gave higher absorbances but were less sensitive when used in the assays for inhibition.

From the screening procedure, five assays that showed standard curves for 1-naphthol (Table 2) could be made out. In addition, there were two more assays, using antiserum 3907 (1:6000) with coating antigen 4–BSA (1 μg/mL) and antiserum 3909 (1:4000) with coating antigen 2a–BSA (2 μg/mL), which showed inhibition curves for 1-naphthol with ISO values in the lower micrograms per liter range (Table 1). They were not taken into further consideration, because they either showed a too high background (about 40%) or were less specific for 1-naphthol (about 25% cross-reactivity for 2-naphthol).

The ELISA (competitive inhibition) with the most reliable data (lowest standard deviation) and with the least interference with other cross-reactants used the 7–KLH antiserum 3907 and the coating antigen 2b–BSA (Tables 2 and 3). For these reasons it was taken for further characterizations, although it was not the most sensitive assay.

Assay Characteristics. Under optimized conditions (7–KLH antiserum 3907 dilution 1:9000 end dilution in the well, 2b–BSA 1.5 μg/mL), the ELISA for 1-naphthol showed a standard curve that allowed the measurement of the analyte from 10 ng/L to 10 μg/L. The average ISO value of 72 ± 22 μg/L (Table 3; Figure 4). The analyte concentrations in this study are the original concentrations pipetted into the wells of the microtitration plates. This was preferred because of better comparison with conventional methods, which also refer to the original concentration in the sample. Other ELISA studies, though, give often the final concentration in the well, which means that the values shown here would have to be divided by 2 (50 μL of antiserum and 50 μL of analyte), for example, for the comparison with the ELISA for carbaryl (Marco et al., 1993a).

Cross-Reactivities. A study of nearly 30 compounds as cross-reactants in this ELISA system showed that the 7–KLH antiserum 3907 recognized mainly compounds that have substitutes in the 1- and/or 6-position on the naphthalene ring system. The best recognized compound tested for cross-reactivity was [(5-hydroxy-2-naphthyl)oxy]acetic acid methyl ester (1b, ISO is about 7 μg/L), which is the methyl ester of the hapten 2b used as coating antigen (conjugated to BSA) in this assay (Figure 1). Compound 2b itself showed also a very high cross-reactivity (96%). Compounds 1b and 2b will probably not interfere with the analysis of 1-naphthol in environmental samples, because they are not very likely to appear. The only compound that might occur in the matrix, together with 1-naphthol, is 1,6-dihydroxynaphthalene, which shows a cross-reactivity of 66%. 5-Hydroxy-2-naphthoic acid (7), which was the hapten for the immunogen, showed about 25% cross-reactivity. All other tested combinations of substitutions did not show crucial interferences with this assay. 1-Naphthaleneacetamide, 1-naphtholic acid, naphthalene, and pentachlorophenol did not show cross-reactivity up to 100 mg/L. 1- and 2-naphthoxyacetic acid also did not cross-react, although these compounds (22, 23) were used in the screening procedure (Table 1) as haptens for coating antigens and could be used for the development of three assays, respectively (Table 2). A similar result was obtained with 1- and 2-naphthoic acid (24, 25). Both compounds gave negligible inhibition in the assay, but they were recognized when they were conjugated to a protein and used for screening of the sera (Table 1). They were not useful, though, for the development of an assay. Both results show that the hydroxy group in the 1-position is essential for the inhibition in this assay. By varying the structure of the coating antigen, it is likely that this library of antisera will yield selective assays for a variety of phenolic compounds.

A very important feature is that this assay did not show cross-reactivity with carbaryl (Table 3), from which 1-naphthol is most likely derived. In a very brief study this was already investigated, when carbaryl standards were stored for more than 1 month. Up to 25% cross-reactivity with these "aged" carbaryl standards was observed in the 1-naphthol assay (freshly prepared standards: ≤0.5%). The same tendency was observed
Table 3. Cross-Reactivities for the ELISA for 1-Naphthola

<table>
<thead>
<tr>
<th>compound</th>
<th>no.</th>
<th>chemical structure</th>
<th>av (µg/L)</th>
<th>SD (µg/L)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-naphthol</td>
<td></td>
<td></td>
<td>72a</td>
<td>22a</td>
<td>100</td>
</tr>
<tr>
<td>(5-hydroxy-2-naphthyl)oxyacetic acid methyl ester</td>
<td>1b</td>
<td></td>
<td>6.5b</td>
<td>0.8b</td>
<td>1103</td>
</tr>
<tr>
<td>(5-hydroxy-2-naphthyl)oxyacetic acid</td>
<td>2b</td>
<td></td>
<td>75c</td>
<td>20c</td>
<td>96</td>
</tr>
<tr>
<td>1,6-dihydroxynaphthalene</td>
<td></td>
<td></td>
<td>109d</td>
<td>29d</td>
<td>66</td>
</tr>
<tr>
<td>5-hydroxy-2-naphthoic acid</td>
<td>7</td>
<td></td>
<td>291e</td>
<td>113e</td>
<td>25</td>
</tr>
<tr>
<td>(6-hydroxy-1-naphthyl)oxyacetic acid</td>
<td>2a</td>
<td></td>
<td>13910f</td>
<td>11036f</td>
<td>0.5*</td>
</tr>
<tr>
<td>2-naphthol</td>
<td></td>
<td></td>
<td>6225g</td>
<td>1895g</td>
<td>1.1</td>
</tr>
<tr>
<td>2-naphthyl ethyl carbonate</td>
<td>13</td>
<td></td>
<td>12900h</td>
<td>1700h</td>
<td>0.6*</td>
</tr>
<tr>
<td>O-2-naphthyl S-ethyl carbonate</td>
<td>14</td>
<td></td>
<td>18100i</td>
<td>0.4*</td>
<td></td>
</tr>
<tr>
<td>2-naphthoxyacetic acid</td>
<td>23</td>
<td></td>
<td>37700j</td>
<td>0.2*</td>
<td></td>
</tr>
<tr>
<td>2-naphthoic acid</td>
<td>25</td>
<td></td>
<td>25200k</td>
<td>8061</td>
<td>0.3*</td>
</tr>
<tr>
<td>1,5-dihydroxynaphthalene</td>
<td></td>
<td></td>
<td>2205l</td>
<td>690l</td>
<td>3.2</td>
</tr>
<tr>
<td>(6-hydroxy-1-naphthyl)oxyacetic acid</td>
<td>4</td>
<td></td>
<td>12100m</td>
<td>3500m</td>
<td>0.6*</td>
</tr>
<tr>
<td>1-naphthaleneacetamide</td>
<td>11</td>
<td></td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-naphthyl ethyl carbonate</td>
<td>12</td>
<td></td>
<td>8815n</td>
<td>4385n</td>
<td>0.8</td>
</tr>
<tr>
<td>1-naphthyl methyl carbonate</td>
<td>15</td>
<td></td>
<td>1128o</td>
<td>385o</td>
<td>6.3</td>
</tr>
<tr>
<td>1-naphthyl N-ethylcarbamate</td>
<td>16</td>
<td></td>
<td>856p</td>
<td>75p</td>
<td>0.8*</td>
</tr>
<tr>
<td>carbaryl (1-naphthyl N-methylcarbamate)</td>
<td>17</td>
<td></td>
<td>13563q</td>
<td>5308q</td>
<td>0.5</td>
</tr>
<tr>
<td>1-naphthoxyacetic acid</td>
<td>22</td>
<td></td>
<td>23100r</td>
<td></td>
<td>0.3*</td>
</tr>
<tr>
<td>1-naphthoic acid</td>
<td>24</td>
<td></td>
<td>23700s</td>
<td></td>
<td>0.3*</td>
</tr>
<tr>
<td>naphthalene</td>
<td></td>
<td></td>
<td>nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-hydroxycarbaryl</td>
<td>8</td>
<td></td>
<td>2793t</td>
<td>785t</td>
<td>2.6</td>
</tr>
<tr>
<td>4-hydroxycarbaryl</td>
<td>9</td>
<td></td>
<td>1610u</td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>5-hydroxycarbaryl</td>
<td>10</td>
<td></td>
<td>451v</td>
<td>1345v</td>
<td>1.6</td>
</tr>
<tr>
<td>phenol</td>
<td>18</td>
<td></td>
<td>15200w</td>
<td></td>
<td>0.5*</td>
</tr>
<tr>
<td>4-nitrophenol</td>
<td>19</td>
<td></td>
<td>10600x</td>
<td></td>
<td>0.7*</td>
</tr>
<tr>
<td>isopropyl N-(3-chlorophenyl)carbamate</td>
<td>21</td>
<td></td>
<td>4050y</td>
<td></td>
<td>1.8*</td>
</tr>
</tbody>
</table>
ELISA for 1-Naphthol

Table 3 (Continued)

<table>
<thead>
<tr>
<th>compound</th>
<th>no.</th>
<th>chemical structure</th>
<th>av (μg/L)</th>
<th>SD (μg/L)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentachlorophenol</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>nc</td>
</tr>
</tbody>
</table>

* Average and standard deviation from 27 plates, determined with 5 independent experiments over a period of 3 months; values on one plate were either an average of double or quadruplicate determination. Values were the average and standard deviation of 5 plates, 27 plates, 46 plates, 3 plates, 2 plates, triplicate determination on each plate. * Value was determined on one plate (triplicate determination). * 3 plates were determined, but only one plate showed I_{50} value, basically nc. * 2 plates were determined, but only one plate showed I_{50} value, basically nc. nc, no cross-reactivity. Microtiter plates were coated with plates, e3 plates, 2b-BSA. The serum from rabbit 3907 was used with a 1:9000 dilution. CR (%), % cross-reactivity; values were obtained by four-parameter curve fit of standard curves with the equation $y = \frac{(A - D)}{(1 + (x/C)^b)} + D$ (SOFmax). * standard curves were only obtained with log-logit curve fit.

Figure 4. Standard curve (+ standard deviation) for 1-naphthol using antiserum 3907 (diluted 1:9000, final dilution in the well) and coating antigen 2b-BSA (1.5 μg/mL). The absorbance (450-650 nm) was converted to percent control values (see Materials and Methods). The standard curve was linear from 10 to 1000 μg/L with an I_{50} of about 70 μg/L. This standard curve represents an average of 12 plates. On each plate every standard (0.001-100 000 μg/L, serial dilution) was determined in duplicate.

Figure 5. Effect of pH on the ELISA for 1-naphthol. Phosphate buffer (0.2 M) was used from pH 5 to pH 8 and compared to the usually used buffer (0.2 M PBS, pH 7.5). Each standard was determined in quadruplicate. The standard curve for PBS represents an average of seven plates, with quadruplicate determination on each plate. All absorbances with the 0.2 M phosphate buffers were about 30% lower than with PBS, which might have been caused by the different salt concentrations of the two buffer systems. In addition, the absorbance of the assay with 0.2 M phosphate buffer dropped about 49% from pH 5 to pH 8.

with 1-naphthyl N-ethylcarbamate (Schneider et al., 1994). For future studies, the selectivity of the assay will most likely allow its usage for the monitoring of the degradation of carbaryl or for the monitoring of 1-naphthol from other sources.

pH Effect Studies. To determine the potential influence of pH, 0.2 M phosphate buffer was used in the range from pH 5 to pH 8 and compared with 0.2 M PBS, pH 7.5. In the range tested, the pH had only a minor influence on the assay. At pH 5 and 5.5, the assay lost sensitivity, and the standard curve shifted from an average I_{50} value of 75 μg/L (0.2 M PBS, pH 7.5) to an I_{50} value of 101 μg/L (pH 5; Figure 5). In the range from pH 6 to pH 8 the assay gained in sensitivity, compared to the standard PBS buffer, which might be an effect of the lower salt concentration of the 0.2 M phosphate buffer. The I_{50} values (averages of quadruplicate determination) were 69 μg/L (pH 6), 55 μg/L (pH 6.5), 30 μg/L (pH 7), 41 μg/L (pH 7.5), and 45 μg/L (pH 8).

Matrix Effects. (a) Solvent Tolerance. A solvent content up to about 10% was tolerated with all three solvents tested: acetone, methanol, and acetonitrile (Figure 6). These solvents were chosen because they are most commonly used in conventional LC methods for 1-naphthol. Both acetonitrile and methanol showed no inhibition curves at 100% solvent. The assay can tolerate 50% of solvent, but the sensitivity of the assay decreases (acetone, about 10-fold; acetonitrile, about 14-fold; and methanol, about 20-fold decrease in sensitivity).

(b) Human Urine. 1-Naphthol was determined as a metabolite of carbaryl in urine in a study done by Shafik et al. (1971). The method (electron capture GC) required derivatization and cleanup steps for the increase in sensitivity (limit of detection 0.02 ppm). Shafik et al. (1971) measured concentrations of 1-naphthol ranging from 6.2 to 78.8 ppm in the urine of workers who worked as formulators of technical carbaryl at a manufacturing plant. In the urine of agricultural workers who used carbaryl for pest control, they measured 1-naphthol in the range from 0.07 to 1.7 ppm. In our preliminary study, we spiked undiluted and diluted human urine and ran it in the ELISA. The urine used did not show a significant matrix effect (Figure 7A). This indicates that the assay could be used in future studies as a screening method to measure 1-naphthol in human urine directly without derivatization or sample cleanup. At analyte concentrations above 1000 μg/L, urine would have to be diluted to measure in the linear range of the standard curve.

(c) Soil. In a recent study, Dikshith et al. (1990) analyzed 1-naphthol in environmental samples taken in and around Bhopal, India, where carbaryl was produced for more than a decade. Among other matrices, they collected soil samples from ponds. The data showed, as they pointed out, “alarming levels”, ranging between 0.153 and 0.656 ppm. On the basis of this background information, preliminary studies of the potential behavior of the ELISA for 1-naphthol in soil extracts were carried out, using Yolo silt loam as an example. The I_{50} value of the standard curve in the soil extract shifted to the right compared to the one in 0.2 M PBS (95 μg/L in PBS vs 158 μg/L in soil extract, Figure 7B), and the absorbance values in the assay with soil extract were about 20% lower than with PBS.
Conc. 1 -Naphthol [ug/L]

Figure 6. Solvent tolerance of the ELISA for 1-naphthol. (A) Acetone. The absorbance started to drop slowly (5%) with about 6% acetone in the assay. With 50% acetone, the absorbance dropped to 50% that of the standard assay. (B) Methanol. The absorbance of the assay increased slowly compared to the performance with 0.2 M PBS, pH 7.5 (about 20% increase in absorbance with 50% methanol). (C) Acetonitrile. The absorbance dropped only about 25% with 50% acetonitrile; with all other solvent contents the absorbance remained the same as with 0.2 M PBS, pH 7.5.

Besides these matrix effects, the assay could be performed in this soil extract without any further cleanup steps. For future studies, similar to the one carried out in Bhopal, this assay might provide a fast, easy, and therefore very useful tool for the screening of residues of 1-naphthol.

Conclusion. The moderate to low mammalian toxicity of carbaryl (U.S. EPA, 1984) together with its effectiveness against many agricultural pests has led to an extensive use of this insecticide on a wide variety of crops. The specific monitoring, however, reveals difficulties, because of the fast hydrolysis of carbaryl to 1-naphthol, especially under basic conditions (pH >9). Therefore, the development of this selective ELISA for 1-naphthol might provide a good screening tool for the monitoring of the degradation of carbaryl or for the monitoring of 1-naphthol, deriving from other sources. On the basis of the solvent tolerance of the assay, the ELISA will be suitable to use as a tool for possible integrations with other analytical methods, for example, as a detector for the HPLC (Krämer et al., 1994). For potential future studies, preliminary tests were carried out in one sample of human urine and in one soil extract, which indicate that this assay might be utilized for human exposure studies and for environmental control, respectively.

ABBREVIATIONS USED

BSA, bovine serum albumin; CONA, conalbumin A; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; ELISA, enzyme-linked immunosorbent assay; GC, gas chromatography; HPLC, high-pressure liquid chromatography; HRP, horseradish peroxidase; IgG, immunoglobulin G; KLH, keyhole limpet hemocyanin; OD, optical density; OVA, ovalbumin; PBS, phosphate-buffered saline; PBST, phosphate-buffered saline with 0.5% Tween 20 (polyoxyethylene sorbitan monolaurate); RT, room temperature (21–23 °C); TLC, thin-layer chromatography.
ACKNOWLEDGMENT

This work was supported in part by NIEHS Superfund 2P42 ES04699, U.S. Environmental Protection Agency CR 81 9047-01-0, EPA Center for Ecological Health Research CR 81 9658, U.S. Forest Service / NAPIAP R8-27, and NIEHS Center for Environmental Health Sciences (at UCD) 1P30 ES05707. B.D.H. is a Burroughs Wellcome Scholar in Toxicology. P.M.K. was supported by a scholarship from the DFG (Deutsche Forschungsgemeinschaft, Germany). M.-P.M. was funded by a Doctores y Investigador program, Ministerio de Educacion y Ciencia, Spain. The mass spectra were provided by A. Daniel Jones and Marilyn Olmstead (Department of Chemistry, UCD). We are very thankful for the helpful discussion with Don Stoutamire, Dan Bender, and Marvin Goodrow.

LITERATURE CITED

Extension Toxicology Network (EXTOXNET). A Pesticide Information Project of Cooperative Extension Offices of Cornell University, The University of California, Michigan State University, and Oregon State University. Michigan State University, Jan 1989.

Hayes, W. J., Jr. Pesticides Studied in Man; Williams & Wilkins: Baltimore, MD, 1982.

Krämer, P. M.; Li, Q. X.; Hammock, B. D. Integration of LC with Immunoassay: An Approach Combining the Potential of Two Methods. J. AOAC Int. 1994, in press.

