INTERMOUNTAIN RESEARCH & EXTENSION CENTER 2013 ANNUAL FIELD DAY

Cooperative Extension

University of California Agriculture and Natural Resources Research and Extension Center System Welcome to our Annual Field Day. This event is a collaborative effort involving all of the Center Staff, visiting researchers and many growers and grower groups in the region. The general purpose of the tour is to allow participants a chance to see research being conducted on our Center and interact with Center researchers. We sincerely appreciate the opportunity to share our research programs with members of the community, many of whom have helped sponsor the research and this event.

During the tour, please ask questions freely. If you would like additional information on any project, please seek out a side conversation with the researcher during breaks or over lunch. Additional information on all our research projects is available at the office.

Please enjoy the tour, the lunch and the conversation.

Thanks for coming!

Sincerely,

The IREC Staff

Table of Contents

IREC Current Staff	3
IREC Current Research Summaries	4-14
Weed Control Research in Potatoes	15-16
Characterizing N Fertilizer Requirements of Wheat Following Alfalfa	17-20
Tulelake Alfalfa Variety Evaluations	21-25
Management Strategies for Suppressing White Rot in Processing Onions	26-29
Spider Mites on Peppermint in California	
Improving IPM for Management of Mint Root Borer on Peppermint Grown in California	34-36
Cutting Schedule Effects on Reduced Lignin & Conventional Alfalfa	
Weed Control Strategies in Processing Onions	
Maggot Control in Processing Onions	41
Management Practices for Improved Thrips Control in Klamath Basin Onions	42-46
Effect of Nitrogen Fertilization Practices on Spring Wheat Protein Content	47-52
2013 Small Grain Variety Trial Maps and 2012 Wheat & Barley Variety Trial Results	53-61
Thanks to all of our Field Day Supporters	62
Field Day Tour Agenda	63

Intermountain Research & Extension Center Current Staff

Rob Wilson	Center Director / Farm Advisor
Shanna Done	Business & Financial Manager
Laurie Askew	Cooperative Extension Coordinator
Kevin Nicholson	Staff Research Associate II
Darrin Culp	Staff Research Associate II
Greg McCulley	Senior Farm Machinery Mechanic
Tom Tappan	Farm Machinery Mechanic
Seferino Salazar	Senior Agricultural Technician
Josefina Vallejo	Seasonal Farm Worker
Leopoldo Pedroza	Seasonal Farm Worker
Robert Carver	Seasonal Farm Worker
Matthew Barber	Seasonal Farm Worker/Student Intern

Intermountain Research & Extension Center Current Research

Project:	132 Potato Variety Selection Evaluation & Development
Project	Rob Wilson, Center Director, UC Intermountain Research & Extension Center
Investigators:	David Holm, Professor of Horticulture, Colorado State University
	Julian Creighton Miller, Professor of Horticulture, Texas A & M University
	Brian Charlton, Cropping Systems Specialist, Oregon State University, Klamath Basin
	Research and Experiment Center
Objectives:	Evaluate new russet, specialty, and chip cultivars developed by public and private
	breeding programs for adaptation and suitability to Tulelake's unique soil, climate
	and marketing conditions.

Project:	133 Management of Potato Early Die in the Tulelake Basin
Project	Rob Wilson, Center Director, UC Intermountain Research & Extension Center
Investigators:	R. Michael Davis, Cooperative Ext. Specialist, Department of Plant Pathology, UC Davis
Objectives:	1. Compare the efficacy and cost-effectiveness of different fumigant application
	rates in fields with a high incidence of early-dying on Tulelake soils.
	2. Evaluate the efficacy of fungicides and biological control of black scurf and
	black dot.
	3. Determine the effectiveness of stem residue management at harvest on the
	incidence of early-dying in subsequent potato crops.
	4. Determine if irrigation scheduling can influence the incidence of early-dying
	disease.

134 Nightshade Control In Potatoes
Rob Wilson, Center Director, UC Intermountain Research & Extension Center
Brian Charlton, Cropping Systems Specialist, Oregon State University, Klamath Basin
Research and Experiment Center
1. Compare weed control efficacy and crop safety of pendeimethalin,
dimethenamid-p, metribuzin, eptam and rimsulfuron tank mixes applied
pre-emergence at different timings.
2. Determine if post-emergence application timing of metribuzin plus
rimsulfuron or rimsulfuron alone influences control of hairy nightshade;
determine if adjuvant choice influences rimsulfuron efficacy.
3. Determine if special local needs permit is justified for sulfentrazone use in
potatoes for nightshade control.
4. If hairy nightshade populations escape rimsulfuron applied at maximum
rate, determine if hairy nightshade and mustard populations are
developing herbicide resistance.

Project:	146 Cultural Management of New Potato Varieties
Project	Rob Wilson, Center Director, UC Intermountain Research & Extension
Investigators:	Center
	David Holm, Professor of Horticulture, Colorado State University
	Julian Creighton Miller, Professor of Horticulture, Texas A & M University
	Brian Charlton, Cropping Systems Specialist, Oregon State University,
	Klamath Basin Research and Experiment Center
Objectives:	Develop cultivar specific cultural management practices appropriate for the
	successful introduction of new cultivars into commercial production.

Project:	238 Wheat Genetic Resources & Mapping Experiments
Project	Calvin O. Qualset, Professor Emeritus, Department of Plant Sciences, UC Davis
Investigators:	Shiaoman Choa, USDA/ARS Research Geneticist, Fargo ND
	Bryce Falk, Department of Plant Pathology, UC Davis
Objectives:	1. To grow and make observations on agronomic and disease resistance on
	advanced breeding and genetic lines,
	2. To make the genetic resources available to any researchers who have
	interest for their breeding or research,
	3. To genetically characterize two populations of recombinant inbred lines for
	morpho-physiologic and agronomic traits,
	4. To host the annual meeting of wheat workers in the Western Region, if the
	group is interested, for discussions of various current research topics and
	to view the field plantings of widely diverse wheat genetic materials.

Project:	239 Improving Spring Barley for Northern Intermountain Areas
Project	Lynn Gallagher, Researcher, Department of Plant Sciences, UC Davis
Investigators:	Dr. Pat Hayes, Barley Breeder, Dept. of Crop & Soil Science, OSU Corvallis,
	Oregon
Objectives:	The project objective is to increase grain yield and disease resistance in
	spring barley adapted to the Klamath Basin.

Project:	253 Seeding Rate & Planting Date Effects on Spring Wheat
Project	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
Investigators:	
Objectives:	 Determine the effect of seeding rate on the yield of four commonly grown hard red and soft white spring wheat. Assess the impact of planting date on productive tiller production, kernel

	number, bushel weight and yield
	3. Quantify the interaction between seeding rate and planting date.
Project:	255 Effect of Nitrogen Fertilization Practices on Spring Wheat Protein Content
Project	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
Investigators:	Steve Wright, Farm Advisor –Tulare/Kings Counties
	Rob Wilson, Center Director, UC Intermountain Research & Extension Center
Objectives:	1. Compare the protein content of the most popular hard red spring wheat
	varieties.
	2. Assess the effectiveness of late-season N applications to increase protein in
	different spring wheat varieties.
	3. Evaluate controlled- and slow-release N fertilizers for improving both grain
	yield and protein.
	4. Evaluate N application practices and soft white wheat varieties to obtain high
	yield with low protein content (approximately 10 percent).

Project:	260 Development of Wheat Varieties for California
Project	Dr. Jorge Dubcovsky, Assistant Professor, Department of Plant Sciences, UC Davis
Investigators:	Oswaldo Chicaiza, Research Assistant, Department of Plant Sciences, UC Davis
	John Heaton, Department of Plant Sciences, UC Davis
	Lee Jackson, Extension Agronomist, Department of Plant Sciences, UC Davis
Objectives:	To produce new varieties & improved germplasm and distribute them to growers,
	breeders and other researchers. A multi-objective project will be conducted which:
	1. Introduces new germplasm for evaluation and breeding.
	2. Develops breeding populations through hybridization, selection and evaluation.
	3. Develops information on the inheritance of characters important to quality and
	yield in California production environments and finds molecular markers to
	assist the introgression of these characters into adapted breeding lines, and
	finally
	4. Produces Breeders Seed for multiplication as new varieties and germplasm for
	distribution to breeders and researchers. Specific goals are to introduce and

maintain disease resistance, maintain or increase grain yield potential and
improve end-use characteristics.

Project:	340 Alfalfa Experimental Germplasm and Cultivar Adaptation and Evaluation
Project	Dan Putnam, Extension Agronomist, Dept. of Plant Science, UC Davis
Investigators:	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
	Craig Giannini, UC SRA, UC Davis
Objective:	1. Evaluate certified cultivar differences in alfalfa forage yield, quality, and persistence, and to communicate these results to clientele.
	2. Develop and provide forage yield and performance data on alfalfa
	experimental germplasm to public and private alfalfa scientists.

Project:	343 Characterizing N Fertilizer Requirements of Crops Following Alfalfa
Project	Dan Putnam, Extension Agronomist, Department of Plant Sciences, UC Davis
Investigators:	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
Objective:	To determine the impacts of rotation with alfalfa on the N fertilization needs of
	wheat, to develop an "N Credit" recommendation for management of N fertilizers
	in non-legumes rotated with alfalfa. Since wheat is a highly responsive crop to N
	fertilizers, estimates will be made on wheat that can be extrapolated to other
	crops.

Project:	345 Cutting Schedule Effects on Reduced Lignin & Conventional Alfalfa
Project	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
Investigators:	Dan Putnam, Extension Agronomist, Department of Plant Sciences, UC Davis
Objective:	 Determine the effect of a 3-cut versus 4-cut harvest schedule on rate of forage quality change of genetically engineered low lignin alfalfa compared to the null that does not carry the trait and compared with a commercial

	standard. 2. Determine the appropriate cutting management schedule for low-lignin alfalfa compared with conventional non-genetically engineered alfalfa.
Project:	349 Fall Harvest Management Strategies for Alfalfa
Project	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
Investigators:	Dan Putnam, Extension Agronomist, Department of Plant Sciences, UC Davis
Objective:	Fall harvest management is a critical aspect of alfalfa production in the
	intermountain area. If the alfalfa plants enter the winter with insufficient root
	reserves, reduced alfalfa vigor or even winter kill may result. In recent years
	growers have started harvesting later and later into the fall. The effect of this
	strategy on alfalfa yield and stand life in the Intermountain environment is not well
	understood and deserves further research.

Project:	367 Avoiding Weed Shifts and Weed Resistance in Roundup-Ready Alfalfa Systems
Project	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
1	
investigator:	
Objectives:	The objectives of this project are to evaluate alternative herbicides other than
	glyphosate in a RR system to determine:
	1. The efficacy of alternative herbicides.
	2. The effect of different conventional herbicides on alfalfa yield.
	·
	3 Assess the economics of different weed management systems
	S. Assess the economics of anterent week management systems.
	3. Assess the economics of different weed management systems.

Project:	397 Alfalfa Germplasm Evaluation - Fall Dormancy
Project	Larry Teuber, Professor, Department of Plant Sciences, UC Davis
Investigators:	Carla E. Rivera, SRA, Department of Plant Sciences UC Davis
	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka

Objectives:	1. To determine fall dormancy reaction of cultivars and experimental cultivars
	that have potential for marketing in California
	2. To determine stability of fall dormancy reactions of check cultivars across years
	and locations.
	3. To assess the interregional stability of cultivars and a recently adopted set of
	standard check cultivars.
	4. To evaluate winter injury and follow the relationship between winter injury
	and fall dormancy.
Project:	451 Application of Diallyl Disulfide (DADS) and Fungicides for the Control of White
	Rot on Garlic and Onions
Project	R. Michael Davis, Cooperative Extension Specialist, Dept. of Plant Pathology, UC
Investigators:	Davis
	Allison Ferry, Graduate Student, Plant Pathology Dept, UC Davis
	Rob Wilson. Center Director. UC Intermountain Research & Extension Center
Objectives:	1. Demonstrate the effectiveness of DADS in lowering soil levels of white rot
Objectives:	1. Demonstrate the effectiveness of DADS in lowering soil levels of white rot sclerotia.
Objectives:	 Demonstrate the effectiveness of DADS in lowering soil levels of white rot sclerotia. Demonstrate fungicidal control of white rot in onions and garlic in plots with
Objectives:	 Demonstrate the effectiveness of DADS in lowering soil levels of white rot sclerotia. Demonstrate fungicidal control of white rot in onions and garlic in plots with reduced soil sclerotia levels.

Project:	456 Onion Weed Control
Project	Rob Wilson, Center Director, UC Intermountain Research & Extension Center
Investigators:	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
Objectives:	1. Evaluate crop and weed response to varied rates and timings of pre- and post-
	emergence water-run herbicides.
	2. Use the data collected to form UC recommendations and possible herbicide
	label changes for weed control in onions.

Project:	458 Evaluation of Insecticide Seed Treatments for Seed Corn Maggot Control
Project	Rob Wilson, Center Director, UC Intermountain Research & Extension Center

Investigators:	Larry Godfrey, Cooperative Ext. Specialist, Entomology CAES, UC Davis
Objective:	Evaluate the efficacy and crop safety of insecticides applied as a seed treatment
	and in-furrow at planting for maggot control in onions.

Project:	459 Management Practices for Improved Thrips Control in Klamath Basin Onions
Project	Steve Orloff, County Director/Farm Advisor, Siskiyou County, Yreka
Investigators:	Rob Wilson, Center Director, UC Intermountain Research & Extension Center
	Larry Godfrey, Cooperative Ext. Specialist, Entomology CAES, UC Davis
Objectives:	1. Compare the effectiveness of a range of insecticides for thrips control including
	standard conventional treatments, organic or low risk insecticides, and
	experimental insecticides.
	2. Evaluate the two most popular insecticides for thrips control applied via
	chemigation and a foliar-applied spray application to determine the relative
	efficacy of the different application methods.
	3. Develop methods to improve the efficacy of chemigation applications.
	4. Evaluate different strategies for thrips management over the season to
	compare single insecticides, tank mixes, alternating chemistries and application
	timing.

Project:	474 Fungicide Tank-Mix Combinations for Suppression of White Rot in Onions
Project	Rob Wilson, Center Director, UC Intermountain Research & Extension Center

Investigators:	
Objectives:	1. Evaluate the influence of tank-mixing fungicides for white rot suppression
	2. Determine the crop safety of tank-mixing fungicides
	3. Determine if applying Luna and Vertisan postemergence at the 2-3 leaf
	stage in combination with in-furrow treatments improves white rot
	suppression compared to in-furrow treatment alone.

Project:	561 Development of Cultural Management Recommendations for the Production of Peppermint in the Klamath Basin
Project Investigators:	Rob Wilson, Center Director, UC Intermountain Research and Extension Center
Objective:	Determine irrigation, fertilization, and harvest management strategies that maximize peppermint oil yield and oil quality under Klamath Basin soil and climatic conditions.

Project:	566 Integrated Pest Management of Insect and Mite Pests of Mint
Project	Larry Godfrey, Cooperative Ext. Specialist, Entomology CAES, UC Davis
Investigators:	Kris Tollerup, Post-Doctoral Researcher, Entomology CAES, UC Davis
Objectives:	1. To investigate the relationship between spider mite numbers and mint yield
	and quality.
	2. To determine and compare the cost-effectiveness of registered miticides
	against spider mites in mint. To study the use of releases of predatory mites for
	spider mite management in mint in California.
	3. Investigate the use of reduced risk insecticides for management of mint root
	borer larvae.

Project:	569 Weed Control in Peppermint

Project	Rob Wilson, Center Director, UC Intermountain Research & Extension Center
Investigators:	
Objective:	1. Investigate winter dormant herbicides for control of groundsel in peppermint.
	2. Investigate winter dormant herbicides efficacy for providing pre-emergent
	control of summer annual weeds.
	3. Investigate spring post-emergent herbicides for control of emerged summer
	annual weeds.

Project:	703 Medusahead Management Project
Project	Joseph DiTomaso, UC Davis, Rangeland & Wild Land Weed Specialist
Investigators:	Rob Wilson, Center Director, UC Intermountain Research & Extension Center
Objective:	1. Demonstrate the effectiveness of herbicides for large scale control of downy
	brome and Medusahead.
	2. Determine the utility of using herbicides and reseeding in sage grouse habitat
	restoration of desirable native species.
	3. Consider alternative methods of control with and without re-seeding efforts,
	and to determine the best seeding method when active restoration practices
	are necessary.

Project:	779 Determining Efficacy & Cost of Pocket Gopher Control Practices in Alfalfa
Project	Steve Orloff, Cooperative Extension Director, Siskiyou County
Investigators:	Roger Baldwin, Vertebrate Pest IPM Advisor, Kearny Agricultural Center
Objective:	1. Compare the effectiveness of four different gopher control measures including
	trapping, baiting with strychnine using an artificial burrow builder, fumigation
	with aluminum phosphide, and carbon monoxide injection using the PERC unit.
	2. Quantify the time, labor requirement and material cost associated with each
	control practice.
	3. Estimate the overall cost effectiveness for each control measure.

Project:	988 Oilseed as Alternative Crops for California									
Project	Stephen Kaffka, Extension Agronomist, Dept. of Plant Sciences, UC Davis									
Investigators:	Nicholas Alexander George, Visiting Assistant Project Scientist, UC Davis									
Objective:	1. Identify the best oilseed species and varieties for California in diverse locations									
	and cropping systems;									
	2. Conduct agronomic experiments to determine regionally-specific best									
	management practices;									
	3. Use trial data and eco-physiological measurements to validate the crop model									
	APSIM and use the model to estimate the productivity, water and nitrogen use									
	of the oilseeds under different rainfall and irrigation regimes, locations									
	throughout the state, and alternative future climate scenarios;									
	4. Use variety performance and agronomic data to parameterize a previously-									
	developed whole farm economic model to evaluate the potential for increased									
	oilseed production in California. The model will help identify price and yield									
	goals for new oilseed crops in diverse regions in the state;									
	5. Use yield and agronomic data to create California oilseed production guides;									
	6. Carry out extension and outreach activities at the county and regional level to									
	support adoption of new crops, and;									
	7. Create publications for California Agriculture.									

Weed Control Research in Potatoes

Rob Wilson, IREC Farm Advisor

Several growers indicated having trouble achieving acceptable control of hairy nightshade, cutleaf nightshade, and mustards over the last two years. Given the large number of weed control failures in 2011-12, Tulelake producers requested a research study comparing the efficacy of different applications timings of pendimethalin, dimethenamid-p, metribuzin, and rimsulfuron applied on potatoes. Growers also requested research evaluating tank-mix combinations of preemergence herbicides to determine if tank-mixes improve weed control.

A weed control trial was established in 2013 at IREC. The trial was located in a field with a history of high populations of hairy nightshade, purslane, and lambsquarter. Treatments were applied with a CO2 backpack sprayer at 30 GPA. Treatment evaluations include visual weed control ratings, weed density, and potato yield.

2013 weed density and potato stand results are presented in the Table on page 16. No herbicide treatment caused visual injury or a reduction in potato stand compared to the untreated control. Herbicide treatments highlighted in green in the table (trts 2, 3, 4, 5, 7, 8, 9, 13, 15, and 16) provided greater than 92% control of hairy nightshade, lambsquarter, purslane, and redroot pigweed by potato row closure. Most top-performing herbicide treatments combined a preemergence herbicide(s) treatment with Matrix plus methylated seed oil (MSO) applied postemergence. Another effective weed control strategy was to apply Matrix + MSO early and then again late postemergence. One postemergence application of Matrix + MSO early or late postemergence failed to provide greater than 90% control of all weed species. All preemergence herbicide failed to provide greater than 90% control of all weed species at potato emergence, thus a postemergence application of Matrix is likely needed in combination with any preemergence herbicide program. Yield data will be collected this fall.

Herbicides Influence on Potato Stand and Weed Density at Various Potato Growth Stages at IREC in 2013.

				Potato	Hairy Nig Potato	htshade Den Potato	sity	Lambsqu Potato F	uarter Dens otato	ity otato	Potato F	ane Densit Potato	y Potato	Pigweed De Potato	nsity Potato
¥ ۲	Herbicide Product	Andiration Traine	Product Bate / A	Stand e	mergence	L0 " tall row	dosure er	mergence 1	0 " tall row	r closure er	nergence 1	0" tall rov	v closure e	mergence 1	0 " tall
	Untreated	N/A		60	526	334	334	51	53	23	166	145	145	4.5	2
2 2	Eptam Matrix + MSO*	Pre-plant incorporated w/2 row tiller within 1 hr of application Postemergence (Potatoes were 2-4 inches tall)	7 pt 1.5 oz	61	401	00	9	31	4	e	62	26	1	1.25	0
ოო	Outlook Matrix + MSO	Immediately after planting/hilling (0.5 inches of water to incorporate) Postemergence (Potatoes were 2-4 inches tall)	21 fl. oz 1.5 oz	59	253	∞	2	26	6	4	1	1	0	0.25	0
4 4	Outlook + Prowl H2O	Immediately after planting/hilling (0.5 inches of water to incorporate) Immediately after planting/hilling (0.5 inches of water to incorporate)	21 fl. oz 3 pt	61	246	4	2	16	7	2	2	0	0	1	0
4 u	Matrix + MSO	Postemergence (Potatoes were 2-4 inches tall)	1.5 oz 7 ot												
ли	eptam Matrix + MSO	immediately arter planting/ niiling (U.S. inches of water to incorporate) Postemergence (Potatoes were 2-4 inches tall)	/ pt 1.5 oz	58	451	4	æ	16	2	2	4	2	0	2	0
9 9	Matrix Matrix + MSO	Immediately after planting/hilling (0.5 inches of water to incorporate) Postemergence	1.5 oz 1.0 oz	60	405	76	10	10	4	9	0	0	0	0	0
4	Matrix +	Immediately after planting/hilling (0.5 inches of water to incorporate)	1.5 oz												
~ ~	Eptam Matrix + MSO	Immediately after planting/hilling (0.5 inches of water to incorporate) Postemergence (Potatoes were 2-4 inches tall)	5 pt 1.0 oz	60	239	22	2	5	S	ε	1	0	1	1.25	0
∞	Metribuzin 75DF	Immediately after planting/hilling (0.5 inches of water to incorporate)	0.67 Ib												
∞	Matrix	Immediately after planting/hilling (0.5 inches of water to incorporate)	1.5 oz	57	228	25	5	ŝ	2	1	1	1	0	0	0
∞	Matrix + MSO	Postemergence (Potatoes were 2-4 inches tall)	1.0 oz												
ი	Metribuzin 75DF	Immediately after planting/hilling (0.5 inches of water to incorporate)	0.67 Ib												
ი	Matrix +	Immediately after planting/hilling (0.5 inches of water to incorporate)	1.5 oz	60	177	20	2	4	2	1	Ļ	0	0	0.25	0
б с	Eptam	Immediately after planting/hilling (0.5 inches of water to incorporate)	4 pt												
9	Matrix + MSO	Postemergence (Potatoes were 2-4 inches tall)	1.0 oz												
10	Matrix + Metribuzin 75DF	Postemergence (Potatoes were 2-4 inches tail) Postemergence (Potatoes were 2-4 inches tail)	1.5 oz 0.671b	60	635	63	51	38	2	ε	41	0	1	7.25	0
10	NIS	Postemergence (Potatoes were 2-4 inches tall)	.25% v/v												
11	Matrix +	Late postemergence (Potatoes were 8 inches tall)	1.5 oz												
1 1	Metribuzin 75DF NIS	Late postemergence (Potatoes were 8 inches tall) Late nostemergence (Potatoes were 8 inches tall)	0.67 lb .25% v/v	09	394	297	82	43	69	ъ	112	106	0	9.5	×
12	Matrix + MSO	Postemergence (Potatoes were 2-4 inches tall)	1.5 oz	59	461	16	13	23	13	13	105	35	10	16.5	2
13	Matrix + MSO	Postemergence (Potatoes were 2-4 inches tall)	1.5 oz												
13	Matrix + MSO	Late postemergence (Potatoes were 8 inches tall)	1.0 oz	59	673	15	2	49	ø	4	48	18	0	9.25	0
14	Matrix + MSO	Late postemergence (shortly before canopy cover of furrow)	1.5 oz	59	348	255	41	40	57	13	63	52	4	12.5	1
15	Dual +	Immediately after planting/hilling (before potatoes emerge)	1.33 pt												
15	Reflex	Immediately after planting/hilling (before potatoes emerge)	1 pt	60	372	80	4	∞	1	m	0	1	0	0	0
15	Matrix + MSO	Postemergence (Potatoes were 2-4 inches tall)	1.5 oz				1			1			Ī		
16 16	Boundary Reflex	Immediately after planting/hilling (before potatoes emerge) Immediately after planting/hilling (before potatoes emerge)	2 pt 1 pt	60	136	ŝ	1	4	ε	2	0	0	0	0	0
16	Matrix + MSO	Postemergence (Potatoes were 2-4 inches tall)	1.5 oz												
		LSD P-value < 0.05		NS	187	79	68	15	12	9	65	46	40	7	2
	T	tion of the second s	-												

Treatments highlighted in green provided greater than 92% control of hairy nightshade, common lambsquarter, purslane, and redroot pigweed by the time of row dosure. * Herbicides were broadcast applied at 30 gallons per acre. Methylated Seed Oil (MSO) was applied at 1% v/v. Hasten was used for MSO. Non-ionic surfactant (NIS) was applied at 0.25% v/v. Induce was used for NIS . **Plot size was 6ft by 25ft. Treatments were replicated four times in a randomized complete block design.

UC Research and Extension Center - Tulelake Field Day, August, 2013

Characterizing N Fertilizer Requirements of

Wheat Following Alfalfa

Dan Putnam, Stu Pettygrove, Steve Orloff, Rob Wilson, and Eric Lin¹

For more alfalfa information, see: http://alfalfa.ucdavis.edu

Description: This study began in 2012, and is being conducted at three locations in California (Tulelake, Davis, and Fresno County), funded by the Fertilizer Research and Education Program (CDFA-FREP). Since N fertilizers are a major cost of production for wheat, corn and other crops, it's very important to accurately match the needs of the crop with fertilizer applications. It is

well known that perennial legumes such as alfalfa contribute substantial quantities of residual soil N from N₂ fixation that can be absorbed by the following crop. Alfalfa can produce between 250 and almost 1,000 lbs. of N per acre per year (above ground), greater than 90%

Table 1. Cro Shaded are	Table 1. Crop removal of Nitrogen at different alfalfa yield and protein levels. Shaded area indicates most likely range for California Central Valley locations.									
		Cru	de Protein (of Alfalfa Fo	orage)				
	16	18	20	22	24	26				
		%Nitrogen in Forage								
Tonnage	2.56%	2.88%	3.20%	3.52%	3.84%	4.16%				
(t/a)	Crop Removal of N									
	lbs N/acre									
5	256	288	320	352	384	416				
6	307	346	384	422	461	499				
7	358	403	448	493	538	582				
8	410	461	512	563	614	666				
9	461	518	576	634	691	749				
10	512	576	640	704	768	832				
11	563	634	704	774	845	915				
12	614	691	768	845	922	998				
Shaded are	a ronrosont	tae moet lik	alv outcom							

Shaded area representas most likely outcome

originating from the atmosphere through N_2 fixation. The actual amount depends upon yield and protein concentration (Table 1). Although most of this N is removed in the crop, some

¹ Dan Putnam, Cooperative Extension Forage Specialist, University of California Department of Plant Sciences, One Shields Ave., 530-752-8982 <u>dhputnam@ucdavis.edu</u>; Stu Pettygrove, CE Soils Specialist, Department of Land Air and Water Resources, University of California, Davis, One Shields Ave. 530-752-2533 <u>gspettygrove@ucdavis.edu</u>; Eric Lin, Graduate Student, UC Davis.

portion remains to benefit the following crop. Our objective is to determine the impacts of rotation with alfalfa on the N fertilization needs of the following wheat crop, to develop an 'N credit' recommendation for management of N fertilizers in non-legumes rotated with alfalfa. In this experiment, we have removed portions of an existing vigorous alfalfa field, and established wheat-sudangrass as a rotation at least 1 year in advance, with the objectives of removing any of the residual N. In the fall, we plow up both the alfalfa and the grains and establish wheat again. N fertilizers are applied at different rates to the wheat crop, and yield and quality response to N measured. Thus we have wheat following grains and wheat following alfalfa as treatments, along with N rates to estimate the N credit. Soil samples will characterize N profile prior to planting the test wheat crop. The 'difference method' will be used to estimate N credits ascribed to the legume (see graph)—this includes non-N rotation benefits (such as soil tilth, diseases, or other benefits) which may be present. This study will enable farmers to use N

fertilizers more efficient and save money on N fertilizers, and to reduce the possible effects unnecessary N applications on groundwater quality.

Table 1. Crop Seque	nce for the alfalfa-wh	eat rotation studies.		
	Year 1 (2012)	Year 1 (2013)	Year 2 (2014)	Year 3 (2015)
Tulelake Phase 1	Establish sudan	Continue Rotation	Measure N	
	strips	Strips - Fall Wheat	response in wheat	
		Establishment		
Tulelake Phase 2	Continuous alfalfa	Establish non-	Continue Rotation	Measure N
		legume rotation	Strips - Fall Wheat	Response in wheat
			Establishment	
Davis Phase 1	Establish Sudan	Continue Rotation	Measure N	
	strips	Strips - Fall Wheat	response in wheat	
		Establishment		
Davis Phase 2	Continuous alfalfa	Establish non-	Continue Rotation	Measure N
		legume rotation	Strips - Fall Wheat	Response in wheat
			Establishment	
Kearney Phase 1	Establish sudan	Continue Rotation	Measure N	
	strips	Strips - Fall Wheat	response	
		Establishment		
Kearney Phase 2	Continuous alfalfa	Establish non-	Continue Rotation	Measure N
		legume rotation	Strips - Fall Wheat	Response
			Establishment	

Tulelake Field Day, August, 2013 UC ALFALFA VARIETY TRIALS

Dan Putnam, Steve Orloff, Rob Wilson, and Craig Giannini, UC Davis and UCCE2.

We have had several alfalfa trials at the UC Intermountain Research and Extension Center:

- 2007 Trial (5 year dataset, completed 2012) 56 lines.
- 2010 Trial (3 year dataset, to be completed 2013) 32 lines.
 - 2013 Trial (to be planted August, 2013)

How to Choose? Growers often choose cultivars based upon promotion, price or habit. Ah, those hats! However, the choice of a variety can make a large long-term difference in

profitability. Carefully consider your choice of variety, since 1) cultivars can have a large impact upon yield, 2) Varieties can help cope with diseases or insects, and 3) Growers are 'stuck' with their choice for many years.

Almost Like getting Married! Although some marriages don't last too long, most would at least like their marriages to last more than just a few months. Just like a spouse, why not take a little time to determine whether an alfalfa variety is a good one?

UC Variety Testing Program The University of California provides an independent source of variety information that can be used to judge performance of alfalfa varieties. We have plots ranging from Tulelake and Scott Valley (Intermountain), to Davis and Kearney (Central Valley), and El Centro (Desert).

Yields are important, but are not the only criteria for variety selection. Take a look at fall dormancy, disease resistance, and the quality characteristics, too. Research is continually underway to improve the performance of alfalfa varieties.

Many thanks to CA Crop Improvement Association and alfalfa seed companies for supporting the UC alfalfa trials For Variety Information, see: http://alfalfa.ucdavis.edu

² D.H. Putnam, Forage Specialist, Department of Plant Sciences, University of California, Davis. <u>dhputnam@ucdavis.edu</u>. Steve Orloff (<u>sborloff@ucanr.edu</u>, Rob Wilson (<u>rgwilson@ucanr.edu</u>) are UC Cooperative Extension Farm Advisors, and C. Giannini (<u>glgiannini@ucdavis.edu</u>) is Staff Research Associate, UC Davis.

Variety Choice – Does it pay?

You bet. Although sometimes varieties don't <u>appear</u> to be very different, economically, they are. Growers don't always see these differences in the field: one must plant the varieties side-by-side and carefully measure them. The maximum difference between the highest and lowest yielding variety at Tulelake has been close to 2 tons/acre/year, but even among the better varieties, there are some important (but smaller) yield differences. Here, we've calculated the gross economic return (below) based <u>only</u> upon the <u>differences</u> between the varieties (e.g. a 2 ton difference is about \$400/year or 2000/5 years), Even if an improved alfalfa seed were \$2/lb more than a 'run-of-the-mill' variety, it would still be worth it if that variety yielded more, since only \$50/acre is required for the cost of that seed. Growers often pay too much attention to seed price, and should instead pay more attention to how that variety performs.

Steps for Choosing Alfalfa Varieties:

- 1) Choose group of high yielding certified varieties
- 2) Determine Fall Dormancy requirements
- 3) Determine <u>pest resistance</u> requirements for your area (emphasize those you expect).
- 4) Consider Biotech Traits (e.g. RR)
- 5) Look for evidence of better persistence
- 6) Consider Forage quality
- 7) Price/availability, and of course, hats

Suggested minimum alfalfa cultivar pest resistance and fall dormancy ratings¹ for alfalfa pests found in six California climate zones².

Zone ²	FD	SAA	PA	BAA	PRR	BW	FW	San	Stn	RKN	VW
Intermountain	24	S	R	MR	R	R	HR	R	HR	R	R
Sacramento Valley	48	MR	HR	HR	HR	MR	HR	R	R	R	R
San Joaquin Valley	79	R	HR	HR	HR	MR	HR	R	HR	HR	R
Coastal	57	MR	HR	HR	HR	MR	HR	R	HR	HR	R
High Desert	47	R	R	R	R	MR	HR	MR	HR	HR	R
Low Desert	89	HR	HR	HR	HR	S	HR	HR	R	HR	S

¹ Pest Resistance abbreviations described below.

NOTE: These pest Resistance Ratings were originally developed by Dr. Vern Marble, Extension Agronomist, UC Davis, based upon decades of experience with alfalfa variety response in various locations in California.

² Zones correspond to the principle regions of alfalfa Production in California.

Resistance Abbreviations		Percent resistance ¹
HR Highly Resistant		>51%
R	Resistant	31-50%
MR	Moderately Resistant	15-30%
LR	Low Resistant	6-14%
S	Susceptible	<5%
<u>т</u>	Tolerance	(see definition)

¹ Percent of plants in a population resistant to a given pest

2008-2012 DATASET

TABLE 2. 2008-2012 YIELDS, TULELAKE ALFALFA CULTIVAR TRIAL. TRIAL PLANTED 07/27/07

		2008	2009	2010	2011	2012			% of
		Yield	Yield	Yield	Yield	Yield	Average		VERNAL
Delegand Variation	FD			Dry	/t/a				%
Archer III	5 5	86 (1) 83 (2)	75 (3)	9.8 (1)	87 (2)	86 (1)	۵	120 /
PGI 459	4	8.5 (2) 83 (4)	7.3 (3)	9.3 (9)	90 (1)	86 (2)	A	129.3
DKA50-18	5	8.3 (1	1) 8.5 (1)	7.6 (2)	9.3 (10)	8.6 (3)	8.5 (3)	AB	127.6
WL 357HQ	5	8.3 (1	2) 8.1 (6)	7.2 (8)	9.2 (12)	8.4 (5)	8.2 (4)	BC	124.3
GrandStand	4	8.2 (2	0) 8.0 (10)	7.3 (6)	9.3 (5)	8.3 (10)	8.2 (5)	BCD	123.9
AmeriStand407TQ	4	8.1 (3	0) 8.0 (9)	7.2 (12)	9.3 (8)	8.4 (4)	8.2 (6)	BCD	123.9
Integra 8400	4	8.0 (3	4) 8.3 (3)	7.5 (4)	8.9 (22)	8.3 (8)	8.2 (7)	BCD	123.8
Integra 8300	3	8.3 (1	5) 8.1 (7)	7.2 (9)	9.1 (14)	8.2 (16)	8.2 (8)	BCDE	123.3
Legendairy	3	8.0 (3	3) 8.1 (5)	7.2 (11)	9.1 (13)	8.4 (7)	8.2 (9)	BCDE	123.1
Genoa	4	8.4 (6) 7.7 (27)	7.3 (5)	9.1 (16)	8.2 (12)	8.1 (10)	BCDE	122.9
MilkMaker ML	5	8.4 (3) 7.6 (37)	6.9 (31)	9.4 (4)	8.4 (6)	8.1 (11)	CDEF	122.7
AmeriStand444NT	4	8.4 (4) 7.7 (31) 9) 7.0 (14)	7.2 (14)	9.2 (11)	8.1 (24)	8.1 (14)	CDEF	122.5
CW 500	5 1	8.2 (1	6) 7.9 (14) 0) 7.0 (13)	0.8 (38) 7.0 (24)	9.1 (15)	8.3 (9) 70 (22)	8.1 (15)	CDEFG	121.0
Rebound 5	4	79 (3	0) 7.9 (13) 8) 80 (8)	7.0 (24)	86 (33)	82 (13)	8.0 (18)	CDEEGHLJ	120.7
FSG 528SF	5	8.4 (7) 7.7 (26)	6.9 (35)	8.9 (21)	7.9 (35)	8.0 (24)	CDEFGHIJK	120.0
FSG 505	5	7.8 (4	6) 7.7 (25)	7.2 (7)	8.7 (29)	8.2 (18)	7.9 (25)	CDEFGHIJKL	119.5
Xtra-3	4	8.4 (5) 7.5 (45)	6.8 (41)	8.6 (31)	8.1 (20)	7.9 (30)	EFGHIJKLMN	119.0
WL 343HQ	4	7.6 (5	2) 7.7 (34)	6.9 (29)	8.6 (34)	8.0 (26)	7.8 (36)	GHIJKLMNOPQR	117.4
Magnum VI	4	7.8 (4	7) 7.8 (18)	6.8 (44)	8.7 (30)	7.8 (45)	7.8 (38)	GHIJKLMNOPQR	117.0
Dura 512	5	8.1 (2	4) 7.8 (21)	6.6 (48)	8.2 (49)	7.9 (38)	7.7 (41)	I J K L MNO PQR	116.4
WL 325 HQ	4	7.8 (4	8) 7.7 (32)	6.8 (42)	8.1 (52)	7.8 (40)	7.6 (45)	LMNOPQR	115.2
54V09	4	8.1 (2	9) 7.6 (39)	6.7 (46)	8.2 (45)	7.5 (54)	7.6 (47)	LMNOPQR	115.0
Mountaineer 2	5	7.9 (3	9) 7.3 (50)	6.6 (51)	8.3 (44)	7.8 (39)	7.6 (48)	MNOPQR	114.6
MasterPiece		8.1 (2	6) 7.2 (53) 7) 7.4 (49)	6.3 (54) 6.7 (45)	8.2 (48) 7.9 (55)	0.1 (∠1) 7.9 (42)	7.6 (49)		114.2
Everlast II	4	77 (5	7) 7.4 $(43)1)$ 7.5 (43)	6.8 (43)	82 (50)	7.6 (43)	7.6 (51)		113.8
FSG 408DP	4	7.6 (5	3) 7.3 (52)	6.8 (40)	8.0 (53)	7.8 (42)	7.5 (53)	R	113.1
Whitney	4	7.9 (4	1) 6.9 (54)	6.3 (53)	8.8 (26)	7.5 (53)	7.5 (54)	R	112.9
Vernal	2	6.7 (5	6) 6.5 (56)	5.6 (56)	7.3 (56)	7.0 (56)	6.6 (56)		100.0
Experimental Vari	eties								
R56Bx214	4	8.3 (9) 7.6 (38)	7.1 (19)	9.5 (2)	8.2 (15)	8.1 (12)	CDEF	122.6
R46Bx164	6	8.1 (2	6) 8.0 (11)	7.0 (23)	9.4 (3)	8.1 (22)	8.1 (13)	CDEF	122.6
R46BX197	8	8.3 (8) 7.8 (17)	7.2 (16)	8.9 (24)	8.0 (29)	8.0 (16)	CDEFGH	121.3
R56BD190		0.2 (1	9) 7.8 (24) 3) 7.8 (16)	7.2 (15)	0.9 (23) 9.1 (17)	0.1 (23) 77 (48)	8.0 (17)	CDEFGHIL	121.0
R46Bx218	6	81 (3	1) 7.8 (15)	6.8 (39)	9.3 (6)	7.8 (41)	80 (21)	CDEEGHLJK	120.0
R56BD188	ND	8.2 (2	2) 8.0 (12)	7.2 (10)	8.5 (36)	8.0 (31)	8.0 (22)	CDEFGHIJK	120.3
R46Bx165	8.5	8.0 (3	6) 7.8 (20)	6.9 (32)	9.0 (19)	8.2 (17)	8.0 (23)	CDEFGHIJK	120.3
R46Bx160	5	7.9 (4	0) 7.8 (22)	7.1 (20)	9.0 (18)	7.8 (44)	7.9 (26)	CDEFGHIJKL	119.5
R46BD201	ND	8.2 (1	7) 7.8 (19)	7.0 (22)	8.5 (38)	8.0 (27)	7.9 (27)	DEFGHIJKL	119.5
R46Bx777	ND	8.1 (3	2) 7.8 (23)	7.1 (18)	8.4 (42)	8.2 (11)	7.9 (28)	DEFGHIJKLM	119.3
R46Bx163	4	8.1 (2	5) 7.4 (48)	6.9 (30)	8.8 (25)	8.2 (14)	7.9 (29)	DEFGHIJKLM	119.2
R46Bx162	8	8.2 (1	6) 7.7 (28)	7.0 (28)	8.4 (40)	8.0 (28)	7.9 (31)	EFGHIJKLMNO	118.8
R40BX211	4.1	7.9 (4	4) 7.3 (51) 2) 7.7 (20)	7.0 (25)	9.3 (7)	7.9 (37)	7.9 (32)	EFGHIJKLMNOP	118.7
R40BX107 R46BD203		0.2 (2	3) 7.7 (29) A) 7.4 (47)	69 (33)	86 (32)	7.9 (34)	7.9 (33)	EGHLIKIMNOPQ	118.0
R56By212	6	79 (4	(-7) (-7) (-7) (-7)	6.8 (37)	8.6 (35)	81 (23)	7.8 (35)	GHLIKIMNOPOR	117.5
R46Bx778	ND	8.2 (2	1) 7.5 (41)	6.6 (50)	8.7 (27)	7.7 (47)	7.8 (37)	GHIJKLMNOPOR	117.1
R46Bx173	5	7.7 (5	0) 7.5 (44)	6.9 (36)	8.5 (39)	8.2 (19)	7.7 (39)	HIJKLMNOPQR	116.8
TS 4028	4	7.9 (4	3) 7.5 (40)	7.0 (26)	8.2 (47)	8.0 (30)	7.7 (40)	IJKLMNOPQR	116.5
R46Bx775	ND	8.1 (2	7) 7.7 (30)	7.0 (21)	8.1 (51)	7.5 (52)	7.7 (42)	I J K L MNO PQR	116.3
R46Bx161	6	7.5 (5	5) 7.7 (33)	6.9 (34)	8.4 (41)	7.9 (32)	7.7 (43)	J K L MN O P Q R	116.0
R56BD202	ND	7.8 (4	5) 7.6 (35)	6.5 (52)	8.7 (28)	7.6 (49)	7.7 (44)	KLMNOPQR	115.7
R46Bx217	8	8.0 (3	5) 7.4 (46)	6.6 (47)	8.3 (43)	7.7 (46)	7.6 (46)	LMNOPQR	115.0
K40BX//0	ND	1.7 (4	9) 7.6 (36)	6.6 (49)	8.2 (46)	7.6 (50)	7.6 (50)	UPQR	114.1
R00BU108	ND	7.6 (5	4) 6.8 (55)	5.9 (55)	7.9 (54)	7.1 (55)	7.1 (55)		S 106.7
MEAN		8.05	7.69	6.93	8.71	7.99	7.87		
CV		5.8	4.5	4.5	8.7	4.9	3.8		
LSD (0.1)		0.49	0.37	0.33	0.81	0.42	0.32		

Trial seeded at 25 lb/acre viable seed at Intermountain Research and Extension Center, Tulelake, CA.

Entries follow ed by the same letter are not significantly different at the 10% probability level according to Fisher's (protected) LSD.

FD = Fall Dormancy reported by seed companies.

2011-2012 DATASET

20	2012				% of
Yie	eld Yield	Average			VERNAL
FD	Dry t/a				%
	,				
Integra 8400 4 8.2	(8) 8.9 (1) 8.6 (1)	A		110.9
R57M130 FG 5 8.3	(4) 8.8 (4) 8.5 (2)	АВ		110.5
MS Sunstra 803 4 8.8	(1) 8.2 (2	3) 8.5 (3)	АВС		110.0
HybriForce 2400 4 8.3	(3) 8.6 (1	2) 8.5 (4)	АВСД		109.5
WL 357 HQ 4 8.2	(7) 8.7 (7) 8.5 (5)	АВСД		109.5
Archer III 5 8.0	(14) 8.9 (2) 8.4 (6)	ABCDE		109.2
R57M129 FG 5 8.3	(2) 8.5 (1	7) 8.4 (7)	ABCDE		108.9
WL 363 HQ 5 8.2	(10) 8.7 (8) 8.4 (8)	ABCDE		108.9
PGI 459 4 8.2	(9) 8.5 (1	6) 8.4 (9)	ABCDE		108.4
AmeriStand407TQ 4 8.1	(12) 8.6 (1	3) 8.3 (10)	ABCDEF		108.0
Syngenta 6422Q 4 8.0	(17) 8.7 (5) 8.3 (11)	ABCDEF		108.0
R46Bx162 4 8.0	(13) 8.6 (1	1) 8.3 (12)	ABCDEF		107.9
DG4210 4 8.2	(5) 8.4 (2	0) 8.3 (13)	ABCDEF		107.8
R46Bx163 4 7.9	(20) 8.7 (6) 8.3 (14)	BCDEF		107.5
GrandStand 4 8.2	(6) 8.3 (2	2) 8.3 (15)	BCDEF		107.4
Lightening IV 4 7.7	(25) 8.8 (3) 8.3 (16)	BCDEF		107.4
R47M312 FG 4 8.0	(15) 8.5 (1	5) 8.3 (17)	CDEFG		107.0
Syngenta 6422Q-EMD 4 7.8	(23) 8.7 (9) 8.2 (18)	DEFG		106.6
R47M120 FG 4 7.8	(24) 8.6 (1	0) 8.2 (19)	DEFGH		106.4
Rebound 6.0 4 7.9	(19) 8.5 (1	8) 8.2 (20)	EFGHI		106.2
MasterPiece II 4 7.9	(21) 8.5 (1	9) 8.2 (21)	EFGHI		106.1
Integra 8300 3 7.8	(22) 8.4 (2	1) 8.1 (22)	FGHIJ		104.9
R48M153 FG 4 7.6	(29) 8.6 (1	4) 8.1 (23)	FGHIJ		104.8
R56Bx212 5 7.9	(18) 8.2 (2	5) 8.0 (24)	GHIJ		104.1
Dura 512 5 8.1	(11) 7.9 (2	9) 8.0 (25)	GHIJ		103.9
Xtra-3 4 7.7	(26) 8.2 (2	4) 8.0 (26)	ніјк		103.2
Mountaneer II 5 8.0	(16) 8.0 (2	8) 8.0 (27)	IJK	L	103.1
R48W224 FG 4 7.7	(27) 8.2 (2	6) 7.9 (28)	JK	L	102.7
Minerva 5 7.4	(31) 8.1 (2	7) 7.8 (29)	К	L	100.4
Vernal 2 7.6	(28) 7.8 (3	0) 7.7 (30)		L	100.0
Rugged 3 7.4	(32) 7.4 (3	1) 7.4 (31)		М	95.9
R65BD278 6 7.4	(30) 7.2 (3	2) 7.3 (32)		М	94.6
MEAN 7.	96 8.41	8.18			
CV 4	.0 4.1	2.8			
LSD (0.1) 0.1	34 0.37	0.25			

|--|

Trial seeded at 25 lb/acre viable seed at Intermountain Research and Extension Center, Tulelake, CA.

Entries follow ed by the same letter are not significantly different at the 10% probability level according to Fisher's (protected) LSD. FD = Fall Dormancy reported by seed companies.

Management Strategies for Suppressing White Rot in Processing Onions

Mike Davis and Allison Ferry, UC Davis Plant Pathology

INTRODUCTION

White rot, caused by the soil inhabiting fungus *Sclerotium cepivorum*, is the most devastating (and arguably most important) disease of onion and garlic worldwide. There are several factors in what makes the disease so severe. The first is that a very small amount of the fungus present in the soil can cause significant disease losses. The disease overwinters by small, hardened, black spores called sclerotia. There only needs to be 2-3 sclerotia per kilogram of soil to cause a significant number of plants to be diseased. It is very difficult to reduce the number of the sclerotia in the soil because they can remain viable for more than 30 years in the soil, even when no onion or garlic has been planted. The best way to reduce numbers of sclerotia in the soil is by the application of a germination stimulant (SGS). When an SGS is sprayed onto a fallow (or non white rot host plant) and incorporated, it induces sclerotia to germinate. Once they start to grow, they cannot find a suitable host, so they die. Sclerotia germination stimulants can reduce numbers of sclerotia in the soil up to 98%, which would be more than adequate to control most diseases; however, a very small number of sclerotia can cause significant disease. In most situations, SGS applications must be combined with a fungicide application for adequate disease control.

Currently Labeled Fungicides

- O Orius/ Folicur (tebuconazole): Group 3, DMI
- O Cannonball (fludioxonil): Group 12, MAPHK osmotic signal transduction
- O Endura (boscalid): Group 7, SDHI, complex II

New Fungicides (not currently labeled)

- O Luna Privilege (fluopyram): Group 7, SDHI, complex II
- **O** Luna Experience (fluopyram plus tebuconazole)
- O Fontelis (penthiopyrad): Group 7, SDHI, complex II
- **O** Mervion (fluxapyroxad and pyraclostrobin): SDHI and strobilurin

Results: Disease pressure was extremely high, there were no significant differences between treatments.

2013 TRIALS

Fungicides and Biological Controls, 2013

#	Treatment	Active Ingredient	application at planting	application 1 month after planting	application 2 months after planting	application 3 months after planting
1	Control	n/a	n/a			
2	tebuconazole	tebuconazole	tebuconazole: 20.5 fl oz/A			
3	Cannonball	fludioxonil	Cannonball: 7 oz/A			
4	Fontelis	penthiopyrad	Fontelis: 20 fl/A			
5	Serenade, single application	Bacillus subtilus QST713	Serenade: 4 qts/A			
6	tebuconazole plus Cannonball	tebuconazole plus fludioxonil	tebuconazole: 20.5 fl oz/A, Cannonball: 7 oz/A			
7	Mervion	xemium and pyraclostrobin	Mervion: 11 fl oz/A			
8	Serenade soil, monthly applications	Bacillus subtilus QST713	Serenade: 2 qts/A	Serenade: 2 quarts/A	Serenade: 2 quarts/A	Serenade: 2 quarts/A
9	Serenade soil and Luna Experience, single application	Serenade: <i>B.</i> subtilis QST713 Luna Experience: fluopyram and tebuconazole	Serenade: 4 qts/A, Luna Experience: 17 fl oz/A			
10	Luna Experience, single app and Serenade, monthly apps	Serenade: <i>B.</i> subtilis QST713 Luna Experience: fluopyram and tebuconazole	Serenade: 2 qts/A, Luna Experience: 17 fl oz/A	Serenade: 2 quarts/A	Serenade: 2 quarts/A	Serenade: 2 quarts/A
11	tebuconazole plus Fontelis	tebuconazole plus penthiopyrad	tebuconazole: 20.5 fl oz/A Fontelis: 20 fl oz/A			
12	tebuconazole plus Fontelis plus Cannonball	tebuconazole plus penthiopyrad plus fludioxonil	tebuconazole: 20.5 fl oz/A Fontelis: 20 fl oz/A Cannonball: 7 oz/A			

SGS 2012, Fungicides 2013

2012 Treatments

Treatment		Rate
1	DADS	1 gallon per acre
2	Garlic oil	1 gallon per acre
3	Untreated	n/a

2013 Treatments

	Treatment		Rate (at planting)
1	tebuconazole	tebuconazole	20.5 fl oz/acre
2	Cannonball	fludioxonil	7 oz/acre
3	Fontelis	penthiopyrad	20 fl oz/acre
		Bacillus subtilis	
4	Serenade	QST713	4 qts/acre
			tebuconazole: 20.5 fl
	Folicur plus	tebuconazole and	oz/acre, fludioxonil: 7
5	Cannonball	fludioxonil	oz/acre
6	Untreated	n/a	n/a

SGS 2013, Fungicides 2014

#	Treatment	Rate
1	Control	n/a
2	Garlic Juice formulation 1, full rate	1 gallon/acre
3	Garlic Juice formulation 2, full rate	1 gallon/acre
4	Garlic Juice formulation 1, half rate	0.5 gallon/acre
5	Garlic Juice formulation 2, half rate	0.5 gallon/acre
6	DADS	1 gallon/acre

Preliminary Recommendations

To Prevent New Infected Fields:

- Use clean, disease free garlic seeds and onion transplants
- Clean tractor equipment, shoes, etc. between infected and uninfected fields
- Don't let irrigation water in infected fields to spread to clean fields

When You Find a New Infected Field:

- Reduce further spread of the disease to new areas
 - Wash equipment between healthy and infected fields
 - o If possible, prevent the spread of irrigation water between healthy and infected fields
 - o After harvest, do not compost or till under infected bulbs; dispose of them
- Reduce irrigation, which may slow disease progress
- Once infected plants are found, there are NO chemical controls which will stop or reduce disease during the current season.
- Note the field location and disease severity, and report it to Bob Ehn. This is very important for providing funding and justification for new control research.

When You Want to Plant Alliums in a Field that is Known to have White Rot:

- Apply a sclerotia germination stimulant (such as garlic oil/juice), 1 year before planting any Allium crop. Shank apply 1 gallon of product per acre in moist soil under moderate temperature conditions (50-70F). There cannot be any garlic or onion plant debris in the field during application, or the fungus can complete another life cycle and produce more sclerotia. After application, other crops can be grown in the treated area (such as wheat, etc.) but not Allium crops. After at least 1 year, Alliums can be planted in the treated area.
- At planting, apply a fungicide in furrow. Apply chemical in a 4-6" bandwidth. Options include:
 - tebuconazole (Folicur, Orius, Tebuzole)-20.5 fl oz/A
 - o fludioxonil (Cannonball)- 8 oz/A
 - boscalid (Endura)-6.8 oz/A
- Tebuconazole is the most effective fungicide for white rot control. Please note that tebuconazole is phytotoxic on onions if it is applied at a higher concentration than the recommended 20.5 fl oz/acre. Phytotoxicity can also occur if the bandwidth is narrowed, even at the recommended rate per acre. If a narrower bandwidth is applied, then the tebuconazole concentration per acre must also be reduced.
- Fludioxonil and boscalid are also effective in reducing white rot.
- It is not effective to apply fungicides multiple times throughout the season, and once white rot symptoms are visible, no controls are available

Spider Mites on Peppermint in California Project researchers: Kris Tollerup, Rob Wilson, Dan Marcum, and Larry Godfrey Presenter: Kris Tollerup

http://uspest.org/mint/two spotmanagement.htm

The twospotted spider mite, *Tetranychus urticae* Koch, commonly attacks mint. Feeding damage can have a negative impact on oil yield and quality, however, this impact is not fully understood. Effectively managing spider mites requires that pest control advisors and growers have a monitoring method to efficiently and accurately determine when and if treatment is necessary. Spider mite monitoring techniques and treatment thresholds were developed at Oregon State University in the mid-1980s for mint grown in the Pacific Northwest. During 2010 and 2011 we investigated spider mite management methods for California conditions.

<u>Miticides and Yield Loss due to Mite Infestation.</u> At the Intermountain Research and Extension Center (IREC) in Tulelake, we conducted an experiment in a research mint field using 18' x 40' plots. We evaluated 12 treatments: an untreated control, Omite 6E at 44fl oz/A, Onager at 20 fl oz/A, Agri-Mek 0.15EC at 12 fl oz/A, Fujimite 5EC at 2 pts/A, Zeal at 3 oz/A, Acramite 4SC at 24 fl oz/A, and Oberon 2SC at 16, 12, 8, and 2 oz/A, and Requiem at 1 qt/A. We assessed mite populations by sampling 45 leaves per plot for the presence or absence of mites then washed the leaves to obtain the average number of mites per leaf.

With the exception of Acramite, Requiem and Zeal, a decreasing trend in mite populations occurred between 9 and 36 days after treatment (DAT) (Fig. 1). All miticide treatments, except Requiem, reduced populations of TSM below five mites up to 36 DAT (Fig. 1).

<u>Biopesticides against Twospotted Spider Mite.</u> In 2013 and 2014, we will evaluate the biopesticide, PFR-97 (Certis USA) against twospotted spider mite. During 2011, our miticide trial included the botanical insecticide, Requiem. The product did not perform well under the condition of a heavy mite infestation. In the current trials, Requiem will be applied when populations reach ~3 mites per leaf. In early September of 2010, 2011, and 2012, we harvested and distilled mint from each plot to estimate oil yield and quality. We found a negative relationship between spider mite density and yield loss in 2011(Fig. 2), although not in 2012 (Fig. 3). Winter-kill, or stand loss, was negatively associated with spider mite density (Fig. 4). Results from analyses of oil quality data suggest that there is no relationship between mite density and oil quality.

<u>Sampling of Mite Populations for Management Decisions.</u> Analyses indicate that mite populations tend to aggregate within fields. Within-plant distribution of mites i.e. the percentage of mite-infested leaves in the top, middle and bottom strata of mint plants, during the growing season was not aggregated. Our presence / absence and enumerative sampling models indicate that at a mean of 5 mites / leaf, ~20 or 23 leaves respectively per seven locations per 30 acres, provides a sufficient sample number to estimate mite density. Our findings are an improvement to the Pacific Northwest sampling model which recommends 45 leaves per 14 locations per 30 acres (Table 1).

Fig. 1. The average number of mites per leaf for miticide treatments applied in 2011.

Fig. 2. Relationship between oil yield and mite-days in 2011.

Fig. 3. Relationship between oil yield and mite-days in 2012.

Fig. 4. Relationship between winter kill (stand loss), and mitedays in 2011.

Table 1.	Characteri	stics of	binomia	l sampl	ing pl	ans
develope	d in the Pac	ific Nor	rthwest a	nd Cal	iforni	ia

	Plan				
	Pacific Northwest	California			
Locations	14 per field	7 locations			
Number of leaf	45 leaves per location	20 leaves per			
samples		location			
Stem strata	15 leaves each in top,	Random			
	middle, and bottom				
Tally threshold	5 ≥ mites per leaf	1 ≥ mites per leaf			
Precision	D = 0.50	D = 0.25			

Improving IPM for Management of Mint Root Borer on Peppermint Grown in California.

Project researchers: Kris Tollerup, Rob Wilson, Dan Marcum, and Larry Godfrey

Presenter: Kris Tollerup

In California, mint production occurs in the northeast counties of Shasta, Lassen, Modoc, and Siskiyou. The Lepidoptera pest, mint root borer (MRB), *Fumibotys fumalis* Hodges, commonly attacks mint and has a negative impact on oil yield and quality. This pest poses a significant management challenge and is the target of considerable pesticide use. Adults emerge from the soil beginning in mid-June through September. Newly emerged females mate and lay disc-shaped eggs on the upper or lower leaf surface and eggs hatch in approximately 3-5 days. Larvae feed on the foliage for a short time then drop to the soil surface, burrow in and begin feeding on the plant rhizomes. This moth has a single generation per year. Developmental models and treatment thresholds for MRB were developed at Oregon State University in the late 1980s for mint grown in the Pacific Northwest. During 2010 and 2011 we investigated MRB development and management methods for California conditions.

Sampling Mint Root Borer Populations. In 2011, a total of thirty-nine traps baited with MRB sex pheromone were distributed at three commercial mint fields in Shasta, one in Lassen, and two in Siskiyou counties. Dates at which biofix (beginning date of first sustained seasonal flight), peak flight, and 90% flight completed were determine for each county (Table 1). Observed dates were compared against dates predicted by the MRB development model (Table 1). We are working to develop an improved method for sampling MRB that assess the amount of feeding damage on rhizomes. Also, we are working to better understand the amount of damage peppermint plants can sustain without a significant decrease in oil yield.

<u>Effectiveness of Reduced Risk Insecticides.</u> In the McArthur and Tulelake areas we have set up experimental sites to collect data on the efficacy of five recently-registered reduced risk insecticides (Table 1): Avaunt (DuPont), Coragen (DuPont), Intrepid (Dow AgroSciences), Radiant (Dow AgroSciences), and Voliam flexi (Syngenta). Theses RR insecticides were compared against the industry standards, Lorsban (Gowan) and Mocap (Bayer CropSciences). We assessed MRB populations in the soil prior to harvest using Berlese funnels. In both 2010 and 2011 too few MRB larvae were extracted from soil samples to assess the treatments.

<u>Biopesticides to Manage Mint Root Borer Populations.</u> In 2013 we will evaluate the biopesticides, Agree (*Bacillus thuringiensis* subs aizawai strain GC-91), to manage mint root borer populations.

Table 1. Reduced risk insecticides registered in California on peppermint.

Insecticide Trade name	Active ingredient	Mode of action	Route	Labeled against MRB
Avaunt	Indoxacarb	Voltage-dependent sodium channel blockers	Contact	-
Coragen	Chlorantraniliprole	Ryanodine receptors	Some contact/primarily ingestion	+
Intrepid 2F	Methoxyfenozide	Ecdysone agonists / molting disruptors	Ingestion	-
Radiant	Spinetoram	Nicotinic Acetylcholine receptor agonists (allosteric) (not group 4)	Contact/ingestion	-
Voliam Flexi Various	Chlorantraniliprole Thiamethoxam	Ryanodine receptors. Nicotinic Acetylcholine receptor agonists /antagonists	Some contact/primarily ingestion	+
	Azadirechtin	Octopaminergic agonists	Ingestion	-
	Bt	Microbial disruptors of insect midgut membranes (includes transgenic crops expressing Bacillus thuringiensis toxins)	Ingestion	-
	Spinosad	Nicotinic Acetylcholine receptor agonists (allosteric)	Contact/ingestion	-

Table 2. Observed and predicted dates of mint root borer flight at three critical periods.

Flight/year	Shasta Co		Lassen Co		Siskiyou Co	
	observed	predicted	observed	predicted	observed	predicted
Biofix						
2010	17-Jun	24-Jun	17-Jun	4-Jul	24-Jun	4-Jul
2011	28-Jun	22-Jun	28-Jun	3-Jul	7-Jul	3-Jul
Peak						
2010	20-Jul	19-Jul	14-Jul	31-Jul	20-Jul	31-Jul
2011	14-Jul	24-Jul	26-Jul	8-Aug	14-Jul	8-Aug
90%						
2010	29-Jul	13-Aug	5-Aug	4-Sep	5-Aug	4-Sep
2011	2-Aug	19-Aug	8-Aug	8-Sep	10-Aug	8-Sep

Cutting Schedule Effects on Reduced Lignin and Conventional Alfalfa

Steve Orloff, Steve Orloff, UCCE Siskiyou County and

Dan Putnam, Forage Specialist, UC Davis

Cutting frequency, or more precisely the maturity of the alfalfa when it is cut, has a more profound effect on forage quality and yield than any other single factor under growers' control. As the alfalfa plant matures, yield increases but forage quality decreases. This dilemma is often referred to as the Yield/Quality Tradeoff and is the scourge of every alfalfa grower. This inverse relationship between yield and forage quality has been well documented over the years in trials conducted in the Intermountain area as well as other areas of California and the US. As the alfalfa crop matures and yield climbs, the increase in forage yield is primarily stems over leaves—thus lowering the leaf:stem ratio. In addition to the increase in the stem fraction, the digestibility of the stem declines more rapidly than the leaves due to the high cell wall concentration and lignification of the stem.

An idealized relationship between alfalfa yield and quality and the relative proportion of leaf and stem yield with advancing maturity is shown in the figure below. Much of the yield increase and quality decrease with advancing maturity is attributed to increased stem yields, which increases the concentration of lignified cell wall material in the whole plant greatly reducing digestibility.

Figure 1. Idealized relationship between yield and quality at different alfalfa growth stages

The Effect of Lignin

Lignin is a structural component of the cell wall. It has been compared to the rebar in a concrete building. It strengthens the plant and allows the vascular system of the plant to transport water without leakage. The amount of lignin increases greatly with advancing alfalfa maturity. The drawback with lignin is that it is indigestible and reduces the ability of ruminant animals to digest fiber. This is because lignin molecules fill the spaces between the cellulose, hemicellulose and pectins in the cell wall and as the plant matures it binds to the cellulose. This then reduces digestion of the cellulose in the rumen.

In general, legumes tend to have higher lignin content than grasses so it is possible to reduce the lignin content of alfalfa while still maintaining desired agronomic characteristics (i.e., standability or a plant that doesn't lodge severely). So, if we could somehow reduce the lignin content of alfalfa plants, the fiber digestibility should improve and we could still have a plant that stands up and can be harvested. This goal has now been accomplished with biotechnology.

Previous Research with Reduced Lignin Alfalfa

In previous research conducted at IREC and other locations in the US we evaluated two reduced lignin transgenic alfalfa lines and compared them with their nulls (same varieties without the reduced lignin trait) and a conventional control variety (LegenDairy 5.0). Unfortunately, the trails in IREC and Davis had to be discontinued to due stand problems. However, the trials in the Midwest continued and they determined the change in yield and forage quality for all the varieties. Harvests began at late vegetative stage and continued at 5 day intervals for 5 total harvests. Forage samples were analyzed for crude protein (CP), neutral detergent fiber (NDF), acid detergent lignin (ADL), and neutral detergent fiber digestibility (NDFD).

The low lignin lines had consistently higher fiber digestibility at each harvest date—both lines had lower acid detergent lignin and significantly higher NDFD. This indicates that if the varieties are harvested on the same harvest schedule, the low lignin varieties would have higher quality than the conventional varieties. An alternative way to consider these results is that the low lignin varieties had the same NDFD as the nulls or commercial check variety when they were harvested 8 to 12 days earlier. The potential practical ramifications of these results are that when these varieties become available, producers may be able to delay harvest and maintain forage quality. Delaying harvest will increase the yield for that cutting and potentially it may be feasible to reduce the number of cuttings per year from 4 to 3, improving yield while still producing dairy-quality alfalfa. A longer interval between cuttings may also increase the level of carbohydrate root reserves improving plant vigor and stand persistence.

Current Research Effort

The breeding effort to develop alfalfa varieties with the reduced lignin trait has continued and commercial varieties should be available in the not too distant future. Research is needed to evaluate the latest germplasm and compare these low lignin varieties with their conventional counterparts to determine if growers in the Intermountain Region could utilize a 3-cut schedule rather than a 4-cut schedule and still produce dairy quality alfalfa hay.

A cutting schedule trial was established in August 2012 at IREC with similar trials at UC Davis with Forage Specialist Dan Putnam and in Wisconsin with Forage Specialist Dan Undersander. Four high yielding well adapted conventional varieties were selected to compare with four recently developed low-lignin lines. Each variety is being evaluated under 3-cut and 4-cut harvest management regimes. The experimental design is a factorial with a split plot arrangement with the harvest schedule as the main plot and alfalfa cultivar as the subplot. Each variety/harvest schedule treatment is replicated four times.

Low-lignin alfalfa varieties could have a dramatic effect on alfalfa harvest management and transform our understanding of the yield quality tradeoff as it currently exists. Data on yield and quality changes with advancing maturity for new GE low-lignin alfalfa cultivar is needed to understand the impact this technology might have on alfalfa production as well as animal nutrition. The development of low lignin varieties should result in a greater and faster improvement in forage quality than what has occurred in previous breeding efforts using conventional plant breeding methods.

Weed Control Strategies in Processing Onions

Rob Wilson and Steve Orloff

IREC Director/Farm Advisor and Siskiyou County Director/Farm Advisor

High weed populations in processing onions dramatically decrease yield, reduce onion stand density, and cause problems with harvest. In 2013, a weed control study was conducted at IREC to test if low rates of sulfentrazone (unregistered product) have a fit for weed control in onions. The trial also tested the appropriate rate range for Dacthal on silty clay loam soil when used alone and in combination with Prowl H_20 at loop stage.

Results are presented in the Table on page 40. Treatments highlighted in green provided the best control of kochia. Treatments highlighted in red caused unacceptable crop injury and onion stand loss. Dacthal applied post-plant was most effective at controlling kochia when combined with Prowl H₂0 at loop stage. Dacthal at rates \geq 4 pt/A reduced kochia density by more 85% when combined with Prowl H₂0. When used alone, Dacthal at rates \leq 6 pt/A had minimal efficacy at controlling kochia, and the high Dacthal rate of 8 pints per acre failed to reduce kochia density by more than 60%.

Sulfentrazone appears to have a potential fit as both a preemergence and postemergence herbicide in processing onions, but choosing the proper rate of sulfentrazone for individual soil types is critical to assure crop safety. Zeus (sulfentrazone) applied at 3 fl. oz/A preemergence (immediately after planting) and postemergence (3-4 leaf stage) gave \geq 88% kochia control. The 3 fl. oz/A rate of Zeus applied preemergence and postemergence caused minimal crop injury and no onion stand loss on IREC soil. Zeus at rates less than 3 fl. oz/A applied immediately after planting was safe on onions, but the low rates provided mediocre weed control. Conversely, Zeus at 4 fl. oz/A applied after planting gave great weed control, but the 4 fl. oz/A rate caused unacceptable crop injury. Zeus applied at the loop stage at 2 fl. oz/A caused unacceptable crop injury. Onion yield for all treatments will be collected this fall.

Special Thanks to the California Garlic and Onion Research Advisory Board for Funding Support of this Research!!

Post-Plant		Herbi Loop stage	cide Application 1.5 leaf stage	Time 2.5 leaf stage	3-4 leaf stage	1-leaf Onion	4-leaf Onion	7-leaf Onion	1-leaf Onion	4-leaf Onion	1-leaf Kochia	4-leaf Kochia	4-leaf Total Weed	
Product/A Product	Product		Product	Product	Product	Injury 2	Injury	Injury	Stand	Stand	Density	Density	Density	
Goal Tender and Goal 2XL + Buctril	Goal 2XL + Buctril	ᆕᄔ	applied via che	emigation		%	%	%	plants per	- 25 ft row	pla	ants per 50	ft row	
Intreated No Herbicide	No Herbicide	-	No Herbicide	No Herbicide	No Herbicide	S	2	1	544	549	132	112	113	Untreated
Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		10	1	0	527	566	73	44	45	Prowl H20 at Loop
acthal 2.5 pt/A		_	Goal Tender ³	Goal + Buctril ⁴		8	0	0	546	566	157	78	62	Dacthal Post-Plant
acthal 4 pt/A			Goal Tender ³	Goal + Buctril ⁴		9	2	0	572	581	185	102	104	Zeus
acthal 6 pt/A		_	Goal Tender ³	Goal + Buctril ⁴		8	1	0	558	595	118	п	и	Prowl H20 Post-Plant
acthal 8 pt/A			Goal Tender ³	Goal + Buctril ⁴		10	3	0	540	544	85	11	45	GoalTender 1.5 leaf
acthal 2.5 pt/A Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		10	2	0	578	589	42	19	71	Goal + Buctril 2.5 leaf
acthal 4 pt/A Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		10	2	0	554	569	34	15	16	
acthal 6 pt/A Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		10	2	0	539	566	17	7	7	Herbicide treatments
acthal 8 pt/A Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		10	9	0	543	559	19	6	ц	that provided the bes
eus 1 fl oz/A			Goal Tender ³	Goal + Buctril ⁴		12	4	0	547	561	63	52	ज	control of kochia
eus 2 fl oz/A			Goal Tender ³	Goal + Buctril ⁴		11	4	0	552	560	49	36	37	
eus 3 fl oz/A			Goal Tender ³	Goal + Buctril ⁴		14	8	0	535	547	21	13	13	Herbicide treatments
eus 4 fl oz/A			Goal Tender ³	Goal + Buctril ⁴		17	16	4	507	513	10	11	12	that caused
eus 2 fl oz/A Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		12	8	0	560	550	8	2	8	unacceptable crop
eus 2 fl oz/A Zeus 2 fl oz/	Zeus 2 fl oz/	A	Goal Tender ³	Goal + Buctril ⁴		30	29	15	398	397	9	5	7	injury and stand loss
Zeus 2 fl oz/	Zeus 2 fl oz/	A	Goal Tender ³	Goal + Buctril ⁴		30	21	15	458	458	13	8	6	
Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴	Zeus 3 fl oz/A	8	4	0	549	598	69	10	12	
Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		10	0	0	571	592	06	89	F 9	
rowl H ₂ 0 1.5 pt/A Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		11	1	0	570	597	11	4	4	
rowl H ₂ 0 3 pt/A Prowl H ₂ 0 ²	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		14	9	0	567	584	1	0	0	
rowl H ₂ 0 1.5 pt/A Prowl H ₂ 0 ² acthal 2.5 pt/A	Prowl H ₂ 0 ²		Goal Tender ³	Goal + Buctril ⁴		13	0	0	583	593	5	1	1	
ISD	ISD	-	(P-value < 0.05)			2	5	1	72	34	25	61	19	

Onion Injury, Onion Stand, and Weed Densities for Herbicide Treatments Tested in Processing Onions at IREC in 2013.

Prowl H₂0 applied at 1.5 pt/A at Loop (broadcast applied)

³ GoalTender at 4f1 oz/A (chemigated) ⁴ Goal 2XL at 4f1 oz/A + Buctril 2EC at 8f1 oz/A (chemigated) Plot size: 4 rows (12ft) by 25ft Reps: 5

Maggot Control in Processing Onions

Rob Wilson, IREC Farm Advisor

Maggots (the larval stage of flies) including the onion maggot, *Delia antiqua*, and the seed corn maggot, *Delia platura*, are problem pests in Klamath Basin onion fields. Larvae attack seedlings and young onion plants feeding on the developing epicotyls and roots. A single maggot can kill up to 10 seedlings. Maggot feeding can result in greater than 50% onion stand loss in fields with a large amount of decaying crop residue.

A maggot control study was conducted at the Intermountain Research and Extension Center with funding support from the California Garlic and Onion Research Board in 2011, 2012, and 2013. Study objectives were to compare insecticides and insecticide application methods (in-furrow at planting versus seed treatment) to the current in-furrow standard (Lorsban). The preceding crop at the study site was alfalfa which was rototilled shortly before planting the onions. The abundant decaying organic matter after alfalfa stand removal created optimal conditions to attract maggot flies. During May and June, sticky traps placed throughout the trial area captured high numbers of seed corn maggot and onion maggot flies all three years.

Onion stand results from the 2013 insecticide treatments are presented in the Table. Insecticide seed treatments with clothianidin (Sepresto) or spinosad (Regard) provided the best protection from maggot related onion stand loss. Applying Vydate in-furrow at planting or Folicur in-furrow at planting in combination with Regard seed treatment provided similar or better protection from maggot related stand loss when compared with Regard alone.

	l	Onion Sta	nd Density
	Insecticide	1 leaf	5-leaf
Insecticide Treatment ¹	Rate/Acre	plants p	per plot ²
Regard (spinosad) seed trt + Vydate in-furrow at planting	0.2 mg ai/seed + 32 fl. oz	662	677
Regard (spinosad) seed trt + Folicur & Lorsban 4E in-furrow at planting	0.2 mg ai + 20.5 fl. oz + 32 fl. oz	641	643
thiamethoxam + spinosad seed trt (similar ai to FarMore FI500)	0.1 mg + 0.2 mg ai/seed	625	597
Regard (spinosad) seed trt + Folicur in-furrow at planting	0.2 mg ai/seed + 20.5 fl. oz	583	586
Regard (spinosad) seed trt	0.2 mg ai / seed	581	572
Sepresto (clothianidin+imidacloprid) seed trt	0.24 mg ai / seed	561	568
Regard (spinosad) seed trt + Admire Pro in-furrow at planting	0.2 mg ai/seed + 14 fl. oz	542	531
Lorsban 4E (chlorpyrifos) in-furrow at planting	32 fl. oz/A	374	361
Cruiser (thiamethoxam) seed trt	0.2 mg ai / seed	269	256
Lorsban 15-G (chlorpyrifos) in-furrow at planting	6.6 lbs/acre	179	172
Vydate (oxamyl) in-furrow at planting	32 fl. oz/A	102	99
Untreated Control (raw seed)	none	85	73
Untreated Control with Thiram	none	67	65
Admire Pro (imidacloprid) in-furrow at planting	14 fl. oz/A	70	62
95% Confidence Interval		35	38

The Influence of In-furrow Maggot Insecticide Treatments on Onion Stand in 2013

¹ Thiram 42S at 188 mg ai/100 g seed applied as a seed treatment was included in all treatments except the untreated control

²Seeding rate was based on achieving a desired seed spacing of 2 inches or 1200 plants per plot.

Management Practices for Improved Thrips Control in Klamath Basin Onions

Steve Orloff¹, Rob Wilson², and Larry Godfrey³ ¹UC Cooperative Extension, Siskiyou County,² Director IREC, Tulelake ³Department of Entomology, UC Davis

Introduction

Thrips, both onion thrips (Thrips tabaci) and western flower thrips (Frankliniella occidentalis), are a serious insect pest in California onion fields. Their feeding causes leaf scaring and can lower bulb size and reduce yield. They are an annual problem in Klamath Basin onion fields, especially with the large number of crops grown in the area that serve as alternative hosts.

Research was conducted during the 2012 growing season to follow up on findings from 2010 and 2011. The focus was to: 1) evaluate new and standard insecticides, and 2) to compare season-long thrips control strategies using different insecticide sequences and numbers of applications over the season. The treatments included an approach proposed by Brian Nault, Department of Entomology Cornell University whereby the same insecticide was used twice in back-to-back applications and then rotating to a different insecticide class. The intent is to maximize thrips control and minimize the number of thrips generations exposed to the same insecticide active ingredient.

Figure 1. Immature thrips feeding on onion foliage.

Insecticide Comparison Study

At the first evaluation date (5 days after treatment), there was no statistical difference in thrips population (Figure 2). A second application was applied 8 days after the first, and the thrips population was assessed 6 days later. Thrips population was evaluated 5, 14 and 21 days after the second application. The relative ranking of effectiveness of the insecticides remained fairly consistent for the remaining three evaluations with a few exceptions, which will be noted. Warrior initially knocked down the thrips population but the population resurged, and by the evaluation 2 weeks after the second application, the population level was already higher than the untreated control plots and was approximately double the control plots by 21 days after the second application. This was consistent with what was observed in 2010 and 2011. The exact cause for this dramatic resurgence in thrips population is unknown but possible explanations are 1) Warrior is killing some beneficial insects that may play a role in moderating thrips population or 2) hormoligosis (reproductive stimulation by sub-lethal doses of insecticide). Torac, evaluated for the first time in these intermountain trials, was not quite as effective as some of the other treatments, particularly at the evaluation made 3 weeks after the last treatment. The addition of Aza-Direct to Radiant at most evaluation dates resulted in a slight improvement in control over Radiant applied alone, consistent with the results in 2010 and 2011. Movento was

effective in 2012, as it was in 2011. This is different from the results in 2010 when only a single application of Movento was used, indicating that perhaps two applications of Movento are needed. This behavior has been observed in other trials as well where the initial control with Movento was mediocre, but control was excellent after the second application. The tank mix combination of Movento and Lannate or Movento and Radiant was particularly effective. It is interesting to note that the thrips population was as low, or lower, in the control plots than the insecticide-treated plots 3 weeks after the second application.

Figure 2. Insecticide treatment effects on thrips population. Each insecticide was

applied twice, 7/12/12 and again on 7/20/12.

Comparison of Season-Long Inrips Control Strategies

A treatment of three consecutive Warrior applications was evaluated in the 2012 study. This is obviously not a treatment sequence that we would advocate, but the purpose was to better assess the effect of thrips population level on onion injury and yield (Figure 3). As expected, this treatment resulted in a spike in thrips population, far exceeding any of the other treatments or the control plot. The thrips population at their seasonal peak was 3.5 to 7 times higher than any of the other treatments. One treatment consisted of only two applications over the season, an initial application of Movento followed by a tank mix of Movento plus Lannate (a combination that

was highly effective in the insecticide evaluation trials in 2011 and 2012). This treatment provided excellent early season control but did not persist through the season, and at the late August evaluation, had the highest number of thrips per plant (except for the Warrior treatment). The treatment that tended to maintain thrips levels the lowest was two applications of Movento followed by two applications of Radiant (Figure 3). Surprisingly, this appeared to be more effective than the treatment with a total of 6 insecticide applications (Movento twice, Lannate twice, and Radiant twice). Apparently, the applications of Lannate in mid-summer were not as effective as the Radiant applications. The treatment with two applications of Lannate followed by two applications of Radiant was not as effective as other treatments, again because Lannate alone was not as effective as the other insecticides used in this season-long trial.

Figure 3. Effect of season-long thrips control program on weekly thrips population monitored weekly over the season (excluding Warrior/Warrior/Warrior treatment to better show differences between other treatments). Klamath Basin, 2012.

Onion yield was also measured. There was no difference in yield between any of the insecticide treatments (Table 1). This is somewhat surprising but may have been due to variable white rot pressure in the field and a slight irrigation pattern. The numerically lowest yielding treatment was the repeated treatment of Warrior—it yielded 2.5 tons lower than the highest yielding treatment (Movento twice/Lannate twice/Radiant twice).

1st Application	2nd Application	3rd Application	4th Application	5th Application	6th Application	Yield Tons/A
Untreated						20.4
Warrior	Warrior	Warrior				18.5
Lannate	Radiant	Radiant				20.0
Movento	Mov/Lan					19.4
Movento	Movento	Radiant	Radiant			19.8
Lannate	Lannate	Radiant	Radiant			20.2
Movento	Movento	Lannate	Lannate	Radiant	Radiant	21.0
						NS

Table 4. Effect of season-long thrips control program on onion yield (Klamath Basin 2012).

Conclusions

Both onion thrips and western flower thrips were found in samples collected over the season from untreated areas in agreement with the 2010 and 2011 data. Unlike previous years the relative proportion of the two species remained fairly constant. In previous years there tended to be a higher proportion of western flower thrips early in the season. In the insecticide comparison study, acceptable thrips control was achieved with several insecticides applied twice in sequential applications spaced 8 days apart. Movento, Movento plus Lannate, or Movento plus Radiant provided very effective control. Agri-Mek, and Radiant alone or in combination with Aza-Direct were also effective. The thrips population was much different in 2012 than 2011 with high population levels early and then crashing late in the season, as shown by weekly counts taken in the untreated control plots. In the season-long study, thrips population increased dramatically with continuous applications of Warrior. This was true in both the insecticide comparison trial and the season-long trial in both 2011 and 2012. Insecticide strategies that included Movento, Lannate, and Radiant in various combinations were effective in the seasonlong comparisons. Radiant was more effective than Lannate and that appears to be the reason for one of the four application treatments (Movento/Movento/Radiant/Radiant) having lower thrips population levels than a six application treatment (Mov./Mov./Lan./Lan./Radiant/Radiant).

There may be merit to applying the same insecticide for back-to-back applications (especially with Movento) and then switching to another insecticide product but more research is needed. There was no statistical difference in yield among treatments. More research is clearly needed to determine the effect of thrips population level on onion yield in the Klamath Basin and other areas of California. In the absence of Iris Yellow Spot Virus, thrips may not have as great an impact on onion yield as has been believed. A reliable treatment threshold for thrips at various onion growth stages is clearly needed.

Effect of Nitrogen Fertilization Practices on Spring Wheat Protein Content

Steve Orloff, UC Cooperative Extension, Siskiyou County

Achieving high yield with acceptable protein content is essential for profitable wheat production in the intermountain region. Protein content is nearly as important as yield because the price a grower receives is determined by the grain protein content with a discount for wheat with less than 14% for grain marketed in the Pacific Northwest. The primary factors that influence protein content are yield level, nitrogen fertility management and variety selection. Yield and protein content are often inversely related, and is difficult to achieve both, especially without optimum nitrogen fertility management.

The total amount of N applied is important, but the timing of the application is critical as well, especially when it comes to the protein content of the wheat kernel. An adequate supply of N during vegetative growth stages is essential to maximize yield, but does not ensure an acceptable protein concentration. A late-season N application may be required to reach protein goals because only after most of the N required for yield is supplied will additional N applications increase grain protein content. Nitrogen applications made from the boot stage up to 2 weeks after flowering have proven effective for increasing grain protein. Applications close to flowering usually have the greatest impact. If the total amount of N required to reach both yield and protein goals is all applied preplant, there may be insufficient N available at heading to achieve the desired protein level because there is a risk of excessive vegetative growth and lodging and higher potential for leaching. The amount of N needed is a function of the desired protein concentration, the yield level and the wheat cultivar (varieties differ in their ability to accumulate N). The amount of N typically applied with a late-season application intended for protein enhancement is in the neighborhood of 30 to 50 pounds of N per acre. The higher the yield, the more N required to increase the protein content.

Growth Stages and N Application Timing Effects on Yield and Protein

Figure 1. Cereal growth stages and N application timing effects on yield and protein.

It is common for intermountain growers to apply all the nitrogen preplant. The research we conducted in 2011 and 2012 at IREC showed that a preplant application alone at the rates tested was insufficient, and a split application of N was needed to achieve acceptable yield and especially to meet protein goals. Further research is needed to fine tune N fertilization practices to most efficiently achieve desired yield and protein levels.

Current Research Projects

Three different nitrogen management projects on wheat are being conducted at IREC during the 2013 season. One trial is in cooperation with Michael Tarter, a Statistics Professor at UC Berkeley, to evaluate different plant sampling techniques to determine which one is most predictive of the protein content at harvest. Sampling techniques include stem nitrate concentration, flag leaf total N, the total N concentration of the penultimate leaf (leaf below the flag leaf), use of a chlorophyll meter, and measurement of the Normalized Difference Vegetation Index (NDVI). The purpose of this research is to assess whether any of these measurements or combination of measurement would be useful to determine the need for a late-season application of nitrogen fertilizer to attain protein goals. A total of 80 different nitrogen rates were applied to individual plots. The measurements listed above were

conducted when the wheat was at the 50 percent heading growth stage. The plots will be harvested and yield and protein content determined.

A second trial was established to compare different nitrogen fertilizer sources and their effect on yield and protein content. This study involves the use of several slow-release nitrogen products. The fertilizer sources included are Agrotain (a urease inhibitor), ESN (a urea granule coated with a micro-thin polymer coating) and NutriSmart (a fertilizer and humate soil amendment). These products are being evaluated at different rates and compared with urea to determine if by using these slow release fertilizers the total amount of N fertilizer applied could be reduced. They are also applied with and without a late-season application of urea at flowering to determine if by using a slower release fertilizer it is possible to eliminate a late-season application of N to increase grain protein content.

The third project evaluates the most efficient time to apply nitrogen to wheat. Specifically, what proportion of the total nitrogen should be applied at each growth stage? Can nitrogen-use-efficiency be improved by applying N at timings that more closely match periods of peak crop uptake? As mentioned above, most wheat growers in the Intermountain Region apply all or nearly all of the N fertilizer preplant. Research was needed to determine if nitrogen use efficiency could be improved by applying less of the N at planting and more of the N later in the season closer to peak uptake.

Treatments in this study included an untreated control with no fertilizer, a series of treatments with a total of 150 pounds of N per acre, a series of treatments with a total of 250 pounds of N per acre, and a single treatment with 350 pounds of N per acre. The 150 pound per acre rate represents a typical application rate for the Intermountain region and the 250 pound per acre rate represents a rate that is more likely needed to achieve maximum yield and protein based on our previous research. The 350 pound per acre rate was evaluated to be certain that we bracketed the rates needed for maximum yield at the desired protein content. Different proportions of the total amount of nitrogen fertilizer were applied at each of four application timings (preplant, tillering, boot and flowering). The fertilizer treatments were applied to a single variety, Yecora Rojo, which is the most popular variety in the area. The N was applied as urea at all treatment timings.

The untreated control plots yielded over 1.5 tons/acre less per acre than the most effective fertilized treatments (Table 1). Plots that received 250 pounds of N per acre yielded higher than the 150 pound rate but the difference was only a little over 0.1 tons when compared at the same treatment timing. The single treatment that received 350 pounds of nitrogen per acre did not yield higher than most of the 250 pound treatments and, in fact, was numerically slightly less than the most effective 250 rate timing. This was likely because the majority of the N applied with this treatment was applied preplant.

Table 1. Effect of nitrogen rate and the proportion applied at different growth stages on the yield andprotein content of Yecora Rojo wheat grown at the Intermountain Research and Extension Center(Siskiyou County).

Treat	Preplant	Tillering	Boot	Flowering	Total	Yield	Protein
#		I	bs. N/acre	!		Tons/A	%
1	0	0	0	0	0	2.87	9.6
2	150	0	0	0	150	4.05	12.0
3	120	0	0	30	150	4.01	12.4
4	90	60	0	0	150	4.14	12.1
5	90	0	60	0	150	4.00	12.7
6	60	60	0	30	150	4.07	12.7
7	60	0	60	30	150	3.88	14.3
8	0	60	60	30	150	4.16	13.7
9	0	120	0	30	150	4.43	13.2
10	250	0	0	0	250	4.17	13.4
11	200	0	0	50	250	4.22	13.8
12	150	100	0	0	250	4.27	13.2
13	150	0	100	0	250	4.27	14.2

14	100	100	0	50	250	4.32	14.2
15	100	0	100	50	250	4.17	14.5
16	0	100	100	50	250	4.30	15.3
17	0	200	0	50	250	4.53	14.1
18	150	150	0	50	350	4.35	14.3
LSD 0.05						0.18	0.8

It is interesting to note that the highest yielding treatment timing was the same for both the 150 and 250 pound rates. These high-yielding treatments (9 and 17) received no preplant N but had a high rate at tillering. The treatments (8 and 16) where no N was applied preplant and the bulk of the N was split between tillering and boot did not yield as well as when the majority was applied at tillering. This may be due to the fact that the period of peak N uptake is from tillering to boot, so the majority of the N is needed at tillering, which is the beginning of the maximum uptake period. Treatments where all, or the majority, of the N was applied preplant (2, 3, 10 and 11) tended to be the lowest yielding treatments. A treatment that received a moderate rate of N preplant and then an equal amount at boot (7 and 15) did not yield nearly as well as when the same amount of N was all applied at tillering. This suggests that tillering may be a critical time to apply N, at least under the environmental conditions experienced this year. A significant amount of the total annual precipitation this year occurred in spring. Perhaps some of the N with a preplant application leached below the root zone and was subsequently unavailable for uptake, but this is not very likely in Tulelake soils (heavy clay loam with high OM) and with the careful irrigation management employed.

Nitrogen fertilization had a profound effect on protein content. There was nearly a 6 percentage point difference in protein between the control and the most effective treatment. The 250 or 350 pound per acre applications of N had significantly higher protein content than the 150 pound per acre rate. In fact, with only one of the 150 pound application rates was the protein goal of 14 percent achieved. Not only is the total amount of N applied important, timing is critical. Appling the same quantity of N had a broad range of effect on protein content depending on the timing of the application. This trial illustrated the

importance of late-season N to meet protein requirements. As was observed with yield, it was better to apply less of the N preplant (or none at all) and apply more of the N at tillering, boot and flowering. For example, applying all 250 pounds of N preplant resulted in a protein content of 13.4 percent, while applying more of the N at boot or flowering raised the protein content over 14 percent. However, when the 250 was just split between a 200 pound preplant application and 50 pounds at flowering, the protein content was only 13.8 percent. It is difficult to identify the single most effective treatment, but the treatment with zero preplant N, 200 pounds at tillering, and 50 at flowering resulted in the yield of 4.53 tons and a protein content of 14.1 percent.

Conclusion

A preplant N application alone has been a common fertilizer program for many growers in the intermountain area. However, this trial and others we have conducted at IREC and in the Scott Valley clearly demonstrate that a preplant application alone is insufficient. This study suggests that shifting away from high preplant applications and applying more of the N later in the season may have merit for both yield and protein improvement. Applying most of the N at tillering followed by an application at boot or flowering resulted in higher yield and much improved protein content—high enough to avoid dockage. These results represent just a single year of research (2012) and additional research is needed to confirm the 2012 results and is the rationale for duplicating the trial this year.

2013 WIN1	ER WHE	АT							PLOT 1	IS IN	THE
TULELAKE									SOUTH	WEST	CORNER
						REPL	ICATE				
	NO		ENTRY		1	2	3				
	1		Stephens		164	16	130				
	2		Tubbs-06		63	126	150				
	3		Goetze		18	56	131				
	4		Skiles		157	77	128				
	5		Mary		142	104	134		PLANTI	NG DATH	2
	6		Kaseberg		121	117	91		11	/15/20	112
	7		Ladd		99	136	94			/ 10/20	12
	8		Bruneau		58	64	69		PREVIC	US CROI	P
	9		02-10606A		178	24	148				
	10		99-06202A		160	37	28				
	11		03-29902A		141	106	110		SURROU	NDING (CROP
	12		IDO 1108		144	177	89		_		
	13		LCS Artdeco		161	67	149				
	14		LWW10-1018		139	55	107		PRE-PL	ANT FEI	RTILIZE
	15		LWW04-4009		158	105	129		_		
	16		WA 8151		80	47	127				
	17		WA 8153		1	- 5	71		SOIL T	YPE	
	18		YS 221		122	86	154		_		
	19		YS 461		101	96	87				
	20		YS 434		3	35	53		_		
	21		Trifecta		41	6	32				
	22		WB Junction	t 1	1/9	145	93				
	23		Exp 427 - S	tepnen	100	65	169				
	24		Exp 458		180	45	49				
	25		Legion		120	135	147				
	26		SY IU/		138	27	1 5 1				
	27		AP Badger		120	95	151				
	20		OPCE 101D		159	20	100				
	29		ORCE-101R		22	17	92				
	31		ORCF-102		163	36	90				
	32		ORCF-103	- 2 an	119	14	113				
	33		OR12101040	- 2 gei	103	116	114				
	34		WA 8143 - 2	gene E	79	165	12				
	35		AP 700 CL	50110 -1	2	44	133				
	36		WB 1070 CL		143	125	52				
	37		Cara		118	15	33				
	38		ARS 010669-	2C	23	97	51				
	39		OR2071071		78	57	48				
	40		OR2080641		43	4	73				
	41		OR08047P94		21	156	167				
	42		OR2080924		123	74	13				
	43		OR2080637		39	124	170				
	44		OR2080926		19	46	70				
	45		OR2090473		20	54	109				
	46		GALGALOS		137	75	112				
	47		NORWEST 553		98	25	152				
	48		BOUNDARY		38	115	108				
	49		YAMHILL		102	155	9				
	50		WHETSTONE		62	34	132				
	51		ARROWHEAD		100	76	153				
	52		RIMROCK		61	146	111				
	53		KELDIN		140	7	68				
	54		EXPRESSO		42	166	88				
	NUMBER	0	F TREATMENT	S =	54						

2013 WINT	ER WHEAT																
TULELAKE				PLANTING	G DATE	11/15	/2012										
Field: 7	1			HARVEST	DATE												
		-			-												
					С	С	С	С	С	С	С	С	С	С	С	С	
FILL	FILL	FILL	FILL	FILL	38	44	17	31	6	11	52	1	3	2	27	43	FILL
10	11	30	31	50	51	70	71	90	91	110	111	130	131	150	151	170	171
С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	
49	34	25	21	24	36	8	30	12	29	45	46	15	50	13	47	23	FILL
9	12	29	32	49	52	69	72	89	92	109	112	129	132	149	152	169	172
	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	
FILL	42	10	37	39	20	53	40	54	22	48	32	4	35	9	51	28	FILL
8	13	28	33	48	53	68	73	88	93	108	113	128	133	148	153	168	173
В	В	В	В	В	В	В	В	С	С	С	С	С	С	С	С	С	
53	32	26	50	16	45	13	42	19	7	14	33	16	5	26	18	41	FILL
7	14	27	34	47	54	67	74	87	94	107	114	127	134	147	154	167	174
В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	
21	37	28	20	44	14	29	46	18	27	11	48	2	25	52	49	54	FILL
6	15	26	35	46	55	66	75	86	95	106	115	126	135	146	155	166	175
В	В	В	В	В	В	В	В		В	В	В	В	В	В	В	В	
17	1	47	31	24	3	23	51	FILL	19	15	33	36	7	22	41	34	FILL
5	16	25	36	45	56	65	76	85	96	105	116	125	136	145	156	165	176
В	В	В	В	В	В	В	В		В	В	В	В	A	A	A	A	В
40	30	9	10	35	39	8	4	FILL	38	5	6	43	46	12	4	1	12
4	17	24	37	44	57	64	77	84	97	104	117	124	137	144	157	164	177
A	A	А	A	A	А	A	A		А	А	A	A	A	A	A	А	A
20	3	38	48	40	8	2	39	FILL	47	33	37	42	26	36	15	31	9
3	18	23	38	43	58	63	78	83	98	103	118	123	138	143	158	163	178
A	A	А	A	A	А	A	A		A	A	A	A	A	A	A	A	A
35	44	30	43	54	23	50	34	FILL	7	49	32	18	14	5	28	25	22
2	19	22	39	42	59	62	79	82	99	102	119	122	139	142	159	162	179
A	A	A		A	A	A	A		A	A	A	A	A	A	A	A	A
17	45	41	FILL	21	29	52	16	FILL	51	19	27	6	53	11	10	13	24
1	20	21	40	41	60	61	80	81	100	101	120	121	140	141	160	161	180

						Days To	Lodgi
Entry	Name	Yiel	d	Test Wt	Plant Ht	Heading	Harve
		(lbs/a	cre)	(lbs/bu)	(in)	From (1/1)	
1	Stephens	6680	(26)	57.4	37	177	1.0
2	Madsen	6470	(31)	57.9	38	180	1.0
3	Tubbs-06	7280	(31)	58.2	39	177	1.0
4	ORSS-1757	6020	(40)	56.9	35	173	1.0
5	Goetze	5850	(44)	56.7	35	172	1.0
6	Skiles	6660	(27)	59.2	35	175	1.0
7	Mary	7350	(4)	58.7	33	174	1.0
8	Brundage 96	6860	(17)	57.7	36	172	1.0
9	Bruneau	6940	(15)	57.7	37	177	1.0
10	96-16702A	7540	(2)	59.1	41	172	1.0
11	IDO 663	6840	(18)	58.5	35	176	1.0
12	WA 8134	7120	(10)	58.5	39	173	1.0
13	ARS-Amber	7060	(11)	57.3	36	179	1.0
14	970161-3L	6550	(29)	59.3	35	180	1.0
15	YS 221	7330	(5)	59.9	35	176	1.0
16	YS 215	7540	(1)	59.5	35	177	1.0
17	NSA 94-2351A	6730	(23)	58.1	33	173	1.0
18	LWW 04-4009	6690	(25)	59.3	35	183	1.0
19	Westbred 528	6200	(37)	57.9	34	174	1.0
20	WB Junction	7210	(8)	59.9	36	169	1.0
21	Legion	7300	(6)	58.4	40	181	1.0
22	AP Legacy	7040	(12)	59.1	37	179	1.0
23	AP Badger	6770	(20)	56.5	34	175	1.0
24	SY Ovation	6960	(14)	59.0	34	176	1.0
25	ORCF-101R	6300	(33)	57.7	34	176	1.0
26	ORCF-102	6270	(34)	58.2	36	176	1.0
27	ORCF-103	6730	(22)	58.2	38	181	1.8
28	ORI2101835	5950	(41)	57.1	38	179	1.0
29	UICF-Brundage	6690	(24)	57.5	32	177	1.0
30	AP700CL	6780	(19)	58.8	39	179	1.0
31	WB 1070CL	6190	(38)	61.3	32	166	1.0
32	WB 1066CL	6210	(36)	61.3	40	169	1.0
33	Coda	6970	(13)	59.7	39	181	1.0
34	Cara	6220	(35)	55.5	36	185	1.0
35	ARS97230-6C	6560	(28)	58.3	34	181	1.0
36	OR2070608	5650	(45)	56.4	35	182	1.0
37	OR2070870	5870	(43)	58.2	33	180	1.0
38	OR2071071	6760	(21)	55.9	34	180	1.0
39	OR2071628	6400	(32)	55.7	33	176	1.0
40	OR2071073	6470	(30)	56.8	33	181	1.0
41	OR2080641	7370	(3)	56.8	35	177	1.0
42	OR08047P94	7200	(9)	56.2	33	179	1.0
43	OR2070422	6070	(39)	56.5	34	181	1.0
44	OR2080764	5920	(42)	54.1	35	179	1.0
45	OR2080924	6930	(16)	57.3	36	179	1.0
46	WINCAL 09196	4930	(46)	61.0	32	169	1.0
	MEAN	664	0	58.0	35	177	1.0
	CV	6.1		0.8	5.4	1.1	13.
	LSD (.05)	570)	0.9	3	3	0.2
ing sca	ale for diseases (area of	f flag-1 lea	faffecte	d), and lodgin	g: 1 = 0-3%	, 2 = 4 - 14%,	
15 200	6.4 - 30 - 49% = 5 - 50 - 69	6 - 70	8/10/ 7 -	- 85 05% 8 - 9	96-100%		

2013 OSEY	Т					PLOT 1	IS IN	THE
TULELAKE								CORNER
				REPLI	ICATE			
	NO	ENTRY	1	2	3			
			-		·····			
	1	Kelse	21	14	52			
	2	Glee (WA 8074)	19	76	110			
	3	WA 8166	121	97	129			
	4	Bullseve	42	7	109			
	5	Cabernet	63	36	107	PT.ANTT	NG DAT	I F.
	6	SY Steelhead (979	82	64	<u>10</u> 7	1 10/11/1 1	ING DITT	
	7	Buck Pronto	9 92	35	127	_		
	/ 8		120	105	112	DDEVIC		D
	0	IND10-0551	70	105	111	L IVE A TC	JOB CRO	E
	10	11cp0006	20	90	111			
	11	ND 0970 CI	20	16	13	CUDDO	INDINC	CDOD
	1.2	WB 9079 CL+	20	40	92	SURROU	JNDING	CRUP
	12	WB 9518	22	45	113	_		
	1.4		79	115	07			
	15	IDO 862E	99	112	33	PRE-PI	JANT FE	RIILIZE
	10		119	24	29			
	17		10	34	90	COTT		
	1.0	UC 12010/13	80	24	67	SOIL 1	TTPE	
	10	ID0694C		- 4	68	_		
	19	ID012025	59	27	94			
	20	DAIN Datain 515	40	20	4/			
	21	Patwin 515	100	100	100			
	22	UC 12010/30	102	106	128			
	23	UC 12013/22	1.01	11	114			
	24	0C 12014/15	101	26	108			
	25	Alturas	122	125	48			
	26	UI Stone	98	44	28			
	27	IDO 852	3	17	130			
	28	IDO 851	124	85	32			
	29	IDO 854	123	66	72			
	30	WB 1035 CL+	100	57	88			
	31	WB 6341	103	37	49			
	32	WB 6121	23	86	53			
	33	Alpowa	58	84	54			
	34	Louise	41	95	71			
	35	JD	118	16	12			
	36	Diva	39	116	13			
	37	Whit	61	15	91			
	38	Babe	62	56	93			
	39	WA 8162	43	75	8			
	40	WA 8189	38	65	89			
	41	EXCEDE	81	126	69			
	NUMBER	OF TREATMENTS =	41					

2013 OSE	YT			PLANTING	DATE							
TULELAKE	1											
Field: 6	2			HARVEST	DATE							
							С	С	С	С	С	С
FILL	FILL	FILL	FILL	FILL	FILL	FILL	34	16	37	2	9	27
10	11	30	31	50	51	70	71	90	91	110	111	130
С	С	С	С	С	С	С	С	С	С	С	С	С
6	35	15	28	31	1	41	29	40	11	4	8	3
9	12	29	32	49	52	69	72	89	92	109	112	129
С	С	С	С	С	С	С	С	С	С	С	С	С
39	36	26	14	25	32	18	10	30	38	24	12	22
8	13	28	33	48	53	68	73	88	93	108	113	128
В	В	в	В	С	С	С	С	С	С	С	С	С
4	1	19	16	20	33	17	21	13	19	5	23	7
7	14	27	34	47	54	67	74	87	94	107	114	127
В	В	в	В	В	в	в	В	В	в	в	В	В
10	37	24	7	11	21	29	39	32	34	22	14	41
6	15	26	35	46	55	66	75	86	95	106	115	126
В	В	в	В	В	в	в	В	В	в	в	В	В
15	35	20	5	12	38	40	2	28	9	8	36	25
5	16	25	36	45	56	65	76	85	96	105	116	125
В	В	в	В	В	в	в	В	В	в	в	A	A
18	27	17	31	26	30	6	23	33	3	13	21	28
4	17	24	37	44	57	64	77	84	97	104	117	124
A	A	A	A	A	A	A	A	A	A	A	A	A
27	16	32	40	39	33	5	9	7	26	31	35	29
3	18	23	38	43	58	63	78	83	98	103	118	123
A	A	A	A	A	A	A	A	A	A	A	A	A
18	2	12	36	4	19	38	13	6	14	22	15	25
2	19	22	39	42	59	62	79	82	99	102	119	122
A	A	A	A	A	A	A	A	A	A	A	A	A
23	10	1	20	34	11	37	17	41	30	24	8	3
1	20	21	40	41	60	61	80	81	100	101	120	121

2012 Tu	lelake Spring Whea	t Trial							
						Days To	Lod	ging	Xanthomonas
Entry	Name	Yie	ld	Test Wt	Plant Ht	Heading	Soft	88	
		(lbs/a	cre)	(lbs/bu)	(in)	From $(3/1)$	Dough	Harvest	
		(00.0, 0		(100,00)	()	((8		
1	Kelse	6420	(31)	60.6	35	126	1.0	1.3	1.0
2	Glee (WA 8074)	6030	(34)	60.4	36	122	4.3	4.0	1.0
3	Bullseye	7580	(17)	62.6	32	125	1.0	3.3	1.0
4	Cabernet	7760	(14)	63.2	32	125	1.0	1.3	1.0
5	978621 - 05	7150	(25)	62.2	39	126	1.0	3.0	1.0
6	90314	6520	(30)	59.6	29	127	1.0	1.0	1.0
7	Summit 515	7420	(19)	60.8	33	125	1.0	1.0	1.0
8	Cal Rojo	7690	(16)	61.6	28	125	1.0	1.0	1.0
9	Redwing	7470	(18)	58.5	29	127	1.0	1.0	1.0
10	Jefferson	7170	(23)	60.9	37	125	1.3	2.0	1.0
11	Buck Pronto	7160	(24)	60.9	36	123	1.0	1.3	1.0
12	C-2821	7290	(20)	61.2	42	124	1.0	2.3	1.0
13	BZ-401	6960	(27)	62.0	42	122	2.7	3.3	1.0
14	Lassik	6790	(28)	59.0	33	126	1.0	1.0	1.0
15	UC 1618	6080	(33)	58.6	36	127	1.0	1.0	1.0
16	WB-Rockland	6760	(29)	63.0	32	126	1.0	1.0	1.0
17	WB-Fuzion	8090	(10)	62.4	41	124	1.0	2.0	1.3
18	Volt	7190	(22)	62.7	38	129	1.0	1.3	1.3
19	Patwin 515	7230	(21)	58.5	28	127	1.0	1.0	1.0
20	Clearwhite 515	7980	(11)	60.3	32	122	1.0	2.0	2.7
21	WB-Hartline	8270	(8)	60.8	38	126	1.0	2.0	2.3
22	IDO 694	8710	(4)	63.2	34	122	1.0	1.3	1.0
23	WB 1035 CL+	7700	(15)	61.4	38	123	1.0	1.0	1.0
24	Alturas	8360	(5)	60.7	38	125	1.0	2.0	1.7
25	IDO 671	8100	(9)	60.1	37	126	1.3	2.3	1.0
26	IDO 644	8350	(7)	59.1	34	122	1.0	2.0	1.7
27	IDO 599	9890	(1)	59.7	39	124	1.0	1.7	1.7
28	IDO 686	7910	(12)	61.6	40	127	1.0	2.3	1.0
29	IDO 687	8950	(2)	61.9	39	126	1.0	1.0	1.3
30	Alpowa	8360	(6)	61.4	41	130	2.7	3.3	1.0
31	Louise	6160	(32)	56.4	36	125	2.7	5.7	1.0
32	JD	7040	(26)	61.4	39	127	2.7	3.7	1.0
33	Diva	5020	(35)	57.9	34	127	5.0	6.7	1.0
34	Whit	7860	(13)	61.5	39	123	2.0	2.0	1.0
35	Babe	8850	(3)	62.4	39	126	1.0	2.7	1.0
	MEAN	7490		60.8	36	125	1.4	2.1	1.2
	CV	5.8		1.1	8.2	0.6	35.4	30.8	51.7
	LSD (.05)	710		1.4	5	2	0.8	1.1	ns
Rating	scale for diseases (a	rea of flag	g-1 leaf a	affected) and l	odging: 1 =	0-3%, 2 = 4-1	4%,		
3 = 15-2	29%, 4 = 30-49%, 5 =	50-69%, 6	5 = 70-84	4%, 7 = 85-95%	6,8=96-100)%.			
Number	rs in parentheses in	dicate rela	tive ran	k in column.					

2013 SPRI	NG BARI	LEY					PLOT 1	IS IN	THE
TULELAKE									CORNER
				REPLI	CATE	 			
	NO	FNTDV	1	2	3				
	110	<u>BN11(1</u>	····· [±] ·	<i>2</i>					
	204	CHEDHOE	0.0	116	07				
	204	DIDONDOOD	90	TTO	124				
	900	BARONESSE	23	15	134				
	960	00 960	119	1.0	1.0				
	1010	MILLENNIUM	102	14	12				_
	1082	CONRAD	123	135	129		PLAN'I'J	ING DA'I'	E
	1099	UCD-TL20	38	34	128		_		
	1201	TLB 148	59	105	107				
	1217	AC Metcalfe	3	44	110		PREVIC	DUS CRO	P
	1219	BZ502-265	62	84	53		_		
	1274	UCD 4B	22	37	72				
	1278	UCD 10B	18	36	113		SURROL	JNDING	CROP
	1292	UCD 1292	120	125	127		_		
	1297	CDC COPELAND	138	86	33				
	1299	MERIT 57	2	117	68		PRE-PI	LANT FE	RTILIZE
	1300	PINNACLE	42	106	109				
	1301	CELEBRATION	63	104	89				
	1302	STELLAR-ND	21	17	54		SOIL 7	TYPE	
	1328	UCD 1328	41	66	32				
	1329	UCD 1329	124	16	92				
	1330	UCD 1330	20	56	73				
	1332	UCD 1332	19	46	90				
	1335	UCD 1335	122	65	111				
	1337	UCD 1337	79	75	94				
	1339	UCD 1339	118	7	131				
	1341	UCD 1341	60	85	8				
	1342	UCD 1342	121	5	133				
	1344	OUEST	139	25	108				
	1345	PAGMIIGGON	135	97	130				
	1362	1362	10	115	132				
	1262	UCD 1362	40	115	132				
	1264	UCD 1363	59	90	4 /				
	1004	UCD 1304	100	25	10				
	1303	UCD 1365	100	30	13				
	1366	UCD 1366	82	//	88				
	1367	UCD 1367	83	45	48				
	1368	UCD 1368	140	4	69				
	1369	UCD 1369	103	95	9				
	1370	UCD 1370	81	24	29				
	1371	UCD 1371	58	126	112				
	1372	UCD 1372	43	76	114				
	1373	UCD 1373	78	57	93				
	1374	UCD 1374	101	26	91				
	1375	UCD 1375	1	136	67				
	1376	UCD 1376	80	27	49				
	1377	UCD 1377	137	64	52				
	NUMBER	OF TREATMENTS =	44						

2013 SPRING BARLEY				PLANTING	DATE								
TULELAKE													
Field: 70			HARVEST	DATE									
								С	С	С	С	С	С
FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	1332	1374	1217	1335	1345	1339
10	11	30	31	50	51	70	71	90	91	110	111	130	131
С	С	С	С	С	С	С	С	С	С	С	С	С	С
1369	1010	1370	1328	1376	1377	1368	1274	1301	1329	1300	1371	1082	1362
9	12	29	32	49	52	69	72	89	92	109	112	129	132
С	С	С	С	С	С	С	С	С	С	С	С	С	С
1341	1365	1364	1297	1367	1219	1299	1330	1366	1373	1344	1278	1099	1342
8	13	28	33	48	53	68	73	88	93	108	113	128	133
В	В	В	В	С	С	С	С	С	С	С	С	С	С
1339	1010	1376	1099	1363	1302	1375	960	204	1337	1201	1372	1292	900
7	14	27	34	47	54	67	74	87	94	107	114	127	134
В	В	В	В	В	В	В	В	В	В	В	В	В	в
1364	960	1374	1365	1332	900	1328	1337	1297	1369	1300	1362	1371	1082
6	15	26	35	46	55	66	75	86	95	106	115	126	135
В	в	в	в	в	В	В	В	в	В	в	В	В	в
1342	1329	1344	1278	1367	1330	1335	1372	1341	1363	1201	204	1292	1375
5	16	25	36	45	56	65	76	85	96	105	116	125	136
В	в	в	в	в	в	в	в	в	в	в	в	A	A
1368	1302	1370	1274	1217	1373	1377	1366	1219	1345	1301	1299	1329	1377
4	17	24	37	44	57	64	77	84	97	104	117	124	137
A	A	A	A	A	A	A	A	A	A	A	A	A	A
1217	1278	900	1099	1372	1371	1301	1373	1367	204	1369	1339	1082	1297
3	18	23	38	43	58	63	78	83	98	103	118	123	138
A	A	A	A	A	A	A	A	A	A	A	A	A	A
1299	1332	1274	1363	1300	1201	1219	1337	1366	1345	1010	960	1335	1344
2	19	22	39	42	59	62	79	82	99	102	119	122	139
A	A	A	A	A	A	А	A	A	A	A	A	A	A
1375	1330	1302	1362	1328	1341	1364	1376	1370	1365	1374	1292	1342	1368
1	20	21	40	41	60	61	80	81	100	101	120	121	140

2012 Tu	elake Spring Barley Tria	1								
						Days To	Lodging		Shatter	Vanthomonas
Entry	Name	Vi	əld	Test Wt	Plant Ht	Heading	Soft	5115	Shatter	Mantholiolias
Lattry	Ivanic	(lbs/	acre)	(lbs/bu)	Plant Ht	From (1/1)	Dough	Homiost		
		(103/		(103/04)	(11)	110111(1/1)	Dough	Thatvest		
CULTIV	ARS									
204	STEPTOE	6940	(30)	50.8	37	181	1.0	5.0	13	1.0
900	BARONESSE	4640	(37)	52.7	37	183	1.0	60	5.0	1.0
960	UC 960	8260	(12)	50.8	31	178	1.0	2.0	1.0	13
1010	MILLENNILIM	8110	(17)	52.5	43	170	1.0	1.0	1.0	13
1082	CONRAD	7020	(28)	53.3	36	180	57	53	1.0	1.0
1217	ACMETCALEE	5250	(36)	52.7	38	181	1.0	7.0	33	1.0
1297	CDC COPFLAND	5520	(35)	53.2	38	182	67	7.0	1.0	13
1299	MFRIT 57	5910	(34)	53.5	36	181	63	63	1.0	27
1300	PINNACLE	6400	(33)	55.0	38	176	5.0	5.0	1.5	33
1300	CELEBRATION	7390	(24)	54.3	37	170	1.0	60	23	1.0
1302	STELLAR-ND	6850	(31)	54.4	38	172	1.0	3.0	2.5	1.0
1344	OUEST	6650	(32)	53.9	43	175	2.7	4.0	2.0	1.0
1345	RASMUSSON	8390	(11)	53.5	37	174	1.0	53	17	3.0
1515		0570	(11)		51	1,1	1.0	5.5	1.7	5.0
ADVAN	ICED LINES									
1099	UCD-TL20	8770	(7)	51.2	38	180	1.0	13	10	40
1201	TI B 148	9400	(7)	52.2	38	181	1.0	1.0	1.0	1.7
1201	BZ502-265	7460	(3)	54.7	38	181	5.3	5.3	1.0	1.7
1268	UCD 1A	8160	(15)	48.4	34	180	1.0	1.0	1.0	2.7
1200	UCD 4B	7820	(19)	50.6	35	187	3.0	53	1.0	4.0
1274	UCD 10B	8950	(1)	52.9	39	174	1.3	33	1.0	2.7
1270	UCD 1290	8650	(8)	52.0	41	174	1.0	2.0	1.0	1.0
1290	UCD 1292	8600	(0)	52.0	37	179	1.0	1.7	1.0	1.0
1328	UCD 1328	7000	(29)	54.4	37	187	2.0	33	1.0	1.0
1320	UCD 1329	8200	(13)	50.7	35	184	1.3	33	1.0	2.3
132)	UCD 132)	8790	(13)	50.8	36	188	2.0	3.3	1.0	1.0
1330	UCD 1330	8170	(0)	51.2	30	185	1.3	4.0	1.0	3.0
1332	UCD 1332	8530	(14)	51.1	37	184	1.0	2.0	1.0	1.0
1332	UCD 1333	7810	(20)	55.6	32	182	1.0	5.0	1.0	1.0
1334	UCD 1333	7270	(26)	54.9	33	177	1.0	2.0	1.5	1.0
1335	UCD 1335	7740	(20)	55.6	33	185	1.0	3.7	1.0	1.0
1336	UCD 1335	7340	(25)	52.8	42	175	2.0	27	1.3	2.3
1330	UCD 1330	0380	(25)	52.8	42	173	1.2	1.3	1.5	2.3
1338	UCD 1337	8000	(18)	51.0	42	175	3.3	4.3	1.0	2.7
1330	UCD 1330	0570	(10)	52.1	42	175	1.2		1.0	2.5
1339	UCD 1339	9370	(2)	51.2	42	175	2.0	4.7	1.0	4.0
1340	UCD 1340	9720	(10)	50.0	33	184	1.0	1.7	1.0	2.3
1341	UCD 1342	7110	(1)	50.3	33	176	1.0	2.7	1.0	1.0
1242	UCD 1342	7110	(27)	55.0	26	196	4.7	2.7	1.0	1.0
1545	0CD 1343	7000	(22)	33.0	50	180	1.0	2.1	1.0	1.7
	MEAN 772		20	52.5	37	179	2.1	3.6	1.4	1.9
	CV	9	.6	2.2	7.1	1.1	45.0	33.5	38.9	43.8
	LSD (.05)	12	00	2.4	4	3	1.5	2.0	0.9	1.3
Rating s	cale for diseases (area of	f flag-1 le	eaf affec	ted), lodging,	and shatter:	1 = 0-3%, 2 = 4	4-14%,			
3 = 15-29	9%, 4 = 30-49%, 5 = 50-69	9%, 6=7	0-84%,	7 = 85-95%, 8 =	96-100%.					
Number	s in parentheses indicate	relative	rank in	column.						

Thank You for Your Generous and Continued Support!

We would like to take this opportunity to sincerely thank the following sponsors who help make Field Day such a wonderful success. The support they provide allows us to offer the morning refreshments, the informational publication, the excellent catered lunch and drinks and the home-made ice cream.

- AMVAC
- BASF
- Basin Fertilizer
- California Onion and Garlic Research Advisory Board
- California Potato Research Board
- DuPont Crop Protection
- Floyd A. Boyd
- Macy's Flying Service
- Northwest Farm Credit Service
- Sensient Natural Ingredients, LLC
- Siskiyou County Ag Commissioner

2013 IREC Annual Field Day Thursday, August 1, 2013 Tulelake, CA

7:30 am	Registration Opens
8:20 am	Tour Departs from IREC Headquarters
8:30 am	<i>Weed Control in Potatoes</i> Rob Wilson, Center Director/Farm Advisor, IREC, Tulelake, CA
8:50 am	Characterizing N Fertilizer Requirements of Crops Following Alfalfa and Alfalfa Experimental Germplasm Evaluation Dan Putnam, Extension Agronomist, Dept. of Plant Sciences, UC Davis
9:10 am	Management Strategies for Suppressing White Rot Disease in Processing Onions Allison Ferry, Grad Student, Dept of Plant Pathology, UC Davis
9:30 am	Management of Two Spotted Spider Mites and Mint Root Borer in Peppermint Kris Tollerup, Post-Doctoral Researcher, Dept of Entomology, UC Davis
9:50 am	<i>Alfalfa Harvest Management: Entering a new era?</i> Steve Orloff, UC Farm Advisor, Yreka, CA
10:10 am	New Herbicide Options for Weed Control in Onions Rob Wilson, Center Director/Farm Advisor, IREC, Tulelake, CA
10:30 am	BREAK
10:40 am	Maggot Control in Processing Onions Rob Wilson, Center Director/Farm Advisor, IREC, Tulelake, CA
10:50 am	Year-Long Thrips Insecticide Control Strategies in Onions Steve Orloff, UC Farm Advisor, Yreka, CA
11:10 am	Small Grains Genetic Resources and Development Cal Qualset, Research Professor, Davis, CA
11:30 am	Nitrogen Management in Wheat to Maximize Yield & Profitability Steve Orloff, UC Farm Advisor, Yreka, CA
11:50 am	2013 Potato Research Update Rob Wilson, Center Director/Farm Advisor, IREC, Tulelake, CA
12:00 pm	Lunch