Forest Management and Restoration Practices: Effects on Stream Health and Function

Ken Roby (retired) Fisheries Biologist Lassen National Forest Chris Mayes Fisheries Biologist Lassen National Forest

Objectives

- Share Results of Herger-Feinstein Quincy Library Group (HFQLG) Monitoring
 - Vegetation Management
 - Aspen Enhancement
 - Road/Culvert Decommissioning
 - Stream/Meadow Improvement
- Wildfire Effects on Stream Attributes
- Discuss Management Implications

Herger-Feinstein Quincy Library Group Pilot Project

- Implemented 1998-2012 over 1.5 million acres of the Plumas, Lassen National Forests and Sierraville RD of Tahoe NF.
- Designed to test and demonstrate the effectiveness of fuels and vegetation management activities to meet ecological, economic, and fuel reduction objectives.

Introduction	Methods	Results	Conclusions
HFQ	LG	Stream Mo	onitoring

Herger-Feinstein Quincy Library Group Monitoring Plan

- How do attributes (channel, riparian, and macroinvertebrate assemblages) of streams in the pilot project area change over time?
- What is the trend in channel and riparian attributes and macroinvertebrate assemblages **in watersheds with the highest concentration of activities**?

4th Water Creek SCI Site

Introduction	Methods	Results	Conclusions
HFÇ	HFQLG		onitoring

HFQLG Stream Monitoring: Focus and Methods

- Primary Activities: Thinning, Fuels Reduction, Group Selection
- Concern- Increased Ground Disturbance, Erosion → Increased Sediment Delivery
 - Attributes Measured: Residual pool depths, particle counts, **pool tail surface fines**, macroinvertebrates
- Concern- Reduced Stream channel shade → Increased Water Temperature
 - Attributes Measured: shade, water temperature, macroinvertebrates

USFS R5 Stream Condition Inventory Conducted at all sites, includes many attributes

Wayne Wurtchaugh

Introduction	Methods	Results	Conclusions

SCI Biological Stream Attributes

- Sampled with D-Net or Surber Sampler
- 8 ift x ift samples (2 from 4 riffles) composited
- Two metrics used to express data from community
 - Biologic Index (BI)
 - (EPT, Shannon Diversity, % scrapers, % dominant taxa)
 - Range: 4 (poor) to 20 (good)
 - Observed/Expected (O/E) ratio
 - Value closer to 1 = "good" condition

RIVPACS Reference Sites

Introduction	Metho	Methods		Results		Conclusions
Vegetation	Aspen	Road	/Culvert	Stream/Meado	ow	Wildfires
Management	Enhancement	Decom	missioning	Improvement	t	

Management Activities

- Vegetation Management
 - DFPZ treatments, area thinning, mastication, etc.
- Aspen Enhancement
- Near-Stream Road/Culvert Decommissioning
- Stream/Meadow Improvement

Introduction	Metho	ods Results		lesults		Conclusions
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	ow	Wildfires
Management	Enhancement	Decomr	nissioning	Improvement	t	

Vegetation Management

- Defensible Fuel Profile Zones (DFPZ), area thinning, mastication, group selections.
- 16 streams monitored before and after treatment
- Most treatments >100 feet away from stream channels
- Primary concerns: sediment, stream channel shade

Introduction		Methods		ls Results			Conclusions
Vegetation Management	Er	Aspen nhancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	ow t	Wildfires

- Low-gradient stream flowing through gently sloping, forested terrain.
- 2005: 61 acres of DFPZ treatment conducted upstream of the SCI monitoring reach.
- 200 foot no-treatment buffer maintained between the treatment area and Summit Creek.
- SCI surveys conducted 2003, 2006-2010

A CONTRACTOR OF CONTRACTOR

Summit Creek, lower portion of SCI monitoring reach. 2009.

Culvert over Summit Creek, 0.3 miles upstream of the SCI monitoring reach. 2003.

Introduction		Methods		s Results			Conclusions
Vegetation Management	Er	Aspen hancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvement	ow t	Wildfires

- 2006: significant increase in sediment
 - 2003 pool tail fines: 4%
 - 2006 pool tail fines:
 - Likely due to culvert failure upstream.
- Small increases in stream channel shade from 2003 to 2010.

10%

- Not attributed to project activities.
- No change/positive change in macroinvertebrate indices.

Introduction		Methods		ls Results			Conclusions
Vegetation Management	Er	Aspen hancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvement	ow t	Wildfires

Table 1. Pre- and post-project mean values for pool tail fines and percent shade for the Summit Creek monitoring reach.

Year		Pool Tail Fines (%)	Shade (%)		
Pre-Project	2003	4	64		
	2006	10	64		
	2007	2	65		
Post-Project	2008	3	74		
	2009	8	74		
	2010	2	72		

Introduction		Methods		ls Results			Conclusions
Vegetation	A	spen	Road,	/Culvert	Stream/Me	eadow	Wildfires
Management	Enhai	ncement	Decomr	nissioning	Improven	nent	

Table 2. Biotic Index (BI) and Observed/Expected (O/E) scores for the Summit Creek SCI monitoring reach. BI scores range from a minimum of 4 to a maximum of 20, with 4 considered "very degraded" and 20 considered "very healthy." O/E scores closer to 1 are considered "healthy."

Year		Biotic Index score	O/E score		
Pre-Project	2003	7	1.04		
	2006	18	1.13		
	2007	16	1.04		
Post-Project	2008	9	0.95		
	2009	11	1.13		
	2010	14	1.04		

Introduction	Method	ls Resu		esults		Conclusions	
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	ow	Wildfires	
Management	Enhancement	Decomr	nissioning	Improvement	t		

General Findings:

Vegetation Management

- 16 sites monitored
 - Ran pre-post project statistical comparisons
- Minimal/no change in sediment metrics
- No changes in stream channel shade observed.

Introduction		Methods		Results			Conclusions	
Vegetation Management	En	Aspen hancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	ow t	Wildfires	

Channel Results Consistent with Upslope BMP Monitoring

Table 3. Best Management Practice (BMP) Effectiveness monitoring results *.

BMP	# Evaluations	% Implemented	% Effective
Stream Courses	108	97.2	98.1
Skid Trails	147	91.8	99.3
Landings	147	97.3	100

* Source: HFQLG BMP monitoring, 2006-2011

Introduction		Method	ls	Results			Conclusions	
Vegetation Management	Eı	Aspen nhancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	ow t	Wildfires	

Aspen Enhancement

- Often involves removal of most conifers within 150-200 foot radius around aspen stand.
- Aspens often found close to streams.
- 5 sites monitored before and after treatment
- Primary concerns: sediment and stream channel shade
 → water temperature.

Aspen enhancement unit, eight years after treatment.

Introduction		Method	ds		Results		Conclusions	
Vegetation Management	Er	Aspen nhancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvement	ow t	Wildfires	

Case Study: Pine Creek

- Low-gradient stream flowing through flat, forested terrain.
- Aspen stands near stream competing with dense conifers.
- Work conducted from 2004 to 2007 over 3 distinct phases, including over-the-snow operations.
- 292 acre aspen enhancement project; 75 acres within 300 feet of Pine Creek.
- Mechanical equipment allowed to operate up to 15 feet from Pine Creek.

Lower Pine Creek SCI monitoring reach, 2005.

1

Introduction		Method	ls	R	Results		Conclusions	
Vegetation Management	Er	Aspen hancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	ow t	Wildfires	

Case Study: Pine Creek

Table 4. Pre- and post-project mean values for pool tail fines and percent shade for the Summit Creek monitoring reach.

Year	•	Pool Tail Fines (%)	Shade (%)				
Pre-Project	2003	8	70				
Mid-Project	2004	7	61				
	2005	1	63				
Post-Project	2008	2	56				

- Significant decline in stream channel shade.
 - Was water temperature affected?

Introduction		Method	Methods		Results		Conclusions	
Vegetation Management	Eı	Aspen nhancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	ow t	Wildfires	

Case Study: Pine Creek

Introduction		Methods		Results			Conclusions	
Vegetation Management	Er	Aspen 1hancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	ow t	Wildfires	

General Findings: Aspen Enhancement

- 5 sites monitored
- No changes in sediment metrics
- Changes in shade often observed, and expected.
 - No significant changes in water temperature at other sites.
- No changes in macroinvertebrate indices
| Introduction | Metho | Methods | | Results | | Conclusions | |
|--------------|-------------|---------|------------|--------------|---|-------------|--|
| Vegetation | Aspen | Road | /Culvert | Stream/Meado | w | Wildfires | |
| Management | Enhancement | Decom | missioning | Improvement | t | | |

Near-stream Road/Culvert Decommissioning

- Roads and stream crossings are chronic sediment sources.
- Decommissioning is expected to result in a short-term increase in fine sediment in streams.
- 5 sites monitored
- Primary concern: sediment

Introduction		Method	ls	Results			Conclusions	
Vegetation	/	Aspen	Road,	/Culvert	Stream/Mead	ow	Wildfires	
Management	Enha	ancement	Decomr	nissioning	Improvemer	nt		

Case Study: Rocky Gulch

- High-gradient stream with a boulder/cobble substrate.
- Tributary to an anadromous fishery (Mill Creek).
- 2004: large culvert removed from Rocky Gulch, 1.5 miles of road decommissioned.
- Primary concern: sediment

Looking upstream towards the Rocky Gulch culvert, 2004.

Site of Rocky Gulch culvert removal, with erosion control measures in place. Fall 2004.

Introduction Method		ls R		Results		Conclusions	
Vegetation Management	Er	Aspen nhancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvement	ow t	Wildfires

Case Study: Rocky Gulch

- Post-project surveys completed immediately after culvert removal (2004) and one year later (2005).
- Pool tail fines showed slight changes:
 - 2002: 1%
 - 2004: 4%
 - 2005: 2%
- No significant changes in pool depths.

Introduction		Methods		Results			Conclusions	
Vegetation Management	Eı	Aspen nhancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	w t	Wildfires	

General Findings: Road/Culvert Decommissioning

- We often observed increases in fine sediment immediately following near-stream road and/or culvert decommissioning.
 - Likely to be short-term
- Macroinvertebrates appeared to be resilient to shortterm increases in sediment.

Introduction Me		hods		Results		Conclusions	
Vegetation	Aspen	Road	/Culvert	Stream/Meado	ow	Wildfires	
Management	Enhancement	Decom	missioning	Improvement	t		

General Findings: Sediment

Introduction	Introduction Methods		Results			Conclusions	
Vegetation	Aspen	Road,	/Culvert	Stream/Meado)w	Wildfires	
Management	Enhancement	Decomr	nissioning	Improvement	t		

Stream/Meadow Improvement

- Variety of activities
 - Stream bank restoration, "pond & plug"
- 4 streams monitored
- Activities took place within stream channels
- Primary concerns: sediment, water temperature

Introduction	ntroduction Methods		Results			Conclusions	
Vegetation Management	Enl	Aspen hancement	Road, Decomr	/Culvert nissioning	Stream/M Improve	leadow ement	Wildfires

Case Study: Little Truckee River

- Low-gradient stream with a wide floodplain (Perazzo Meadows).
- 2009: 152 acres of "pond and plug," rock riffle construction, and restoration of flow to a historic channel within the meadow.
- Rain-on-snow event in May 2010 resulted in breaching of 3 earthen plugs.
 - Plugs repaired September 2010.

Little Truckee River SCI monitoring reach, 2006.

Perazzo Meadows pond-and-plug restoration site. 2010.

Introduction	N	Methods		Results		Conclusions	
Vegetation Management	Aspen Enhancem	ent Deco	oad/Culvert mmissioning	Stream/Meado Improvemen	ow t	Wildfires	

Case Study: Little Truckee River

- Significant increase in fine sediment downstream of the project area.
 - 2006: 3% pool tail fines
 - 2010: 34% pool tail fines
 - Duration of increased sediment...?
- No change in stream channel shade.
- Macroinvertebrate indices showed no effect.

Introduction Metho		ds P		Results		Conclusions	
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	ow	Wildfires	
Management	Enhancement	Decomr	nissioning	Improvemen	t		

General Findings

- 4 sites monitored
- No significant changes in sedimentation following inchannel work such as "pond and plug."
 - ...unless the plugs are breached by high flows
- Minimal changes in downstream water temperatures.

Introduction	Method	Methods		Results		Conclusions	
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	ow	Wildfires	
Management	Enhancement	Decomr	nissioning	Improvement	t		

General Findings: Sediment

Introduction		Method	Methods		Results		Conclusions
Vegetation Management	Er	Aspen hancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvement	ow t	Wildfires

Wildfires

- Availability of pre-wildfire stream data provided opportunities to monitor the effects of wildfires on two streams (Cub Creek, Moonlight Creek).
- Primary concerns
 - Sediment
 - Stream channel shade \rightarrow water temperature
 - Large woody debris (LWD) recruitment

Introduction	Method	Methods		lesults		Conclusions	
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	W	Wildfires	
Management	Enhancement	Decomr	nissioning	Improvement	:		

Case Study: Cub Creek

- Originally a reference reach
- 2008: Cub Fire burned 80% of watershed
 - 27% burned at high intensity
- Low- to moderate-intensity burning within riparian area near monitoring reach.

Burned hillside along Cub Creek SCI monitoring reach, 2008.

Looking west along the southern ridgeline above Cub Creek. 2009.

Introduction	troduction Methods		s Results			Conclusions	
Vegetation Management	Er	Aspen hancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvemen	ow t	Wildfires

Case Study: Cub Creek

- Fine sediment increased following the fire.
 - Average pool tail sediment pre-fire:
 - Average pool tail sediment post-fire:
 - 2012
- Channel shade declined post-fire.
 - Average shade pre-fire: 95%
 - Average shade 2009: 89⁰
 - Average shade 2012: 95%
- Little/no change in large woody debris in channel
- Little/no change in macroinvertebrate indices in first two years following fire
- 89%

3%

11%

10%

Introduction	Introduction Method		s Results		Conclusions	
Vegetation	Aspen	Road	/Culvert	Stream/Meado	ow	Wildfires
Management	Enhancement	Decomi	missioning	Improvement	t	

Case Study: Cub Creek

Moonlight Creek SCI monitoring reach, 2009. Two years after the Moonlight Fire. Monitoring showed results similar to those observed on Cub Creek.

More on Wildfires

Evaluated Monitoring Results From:

Storrie Fire: Moonlight Fire:

Cottonwood Creek West Branch Lights Creek Cottonwood Fire: Upper Bear Valley Creek Lower Bear Valley Creek Smithneck Creek

These are not pre-post comparisons

Moonlight Fire, as seen from Keddie Ridge. 2007. Source: http://www.wildlandfire.com/pics/fire34/fire34.htm

Introduction Methods		ds	Results			Conclusions
Vegetation	Aspen	Road,	/Culvert	Stream/Meado)w	Wildfires
Management	Enhancement	Decomr	nissioning	Improvemen	t	

Channel Gradient (among other things) Affects Sediment Transport and Deposition

Introduction Methods		s Results			Conclusions	
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	ow	Wildfires
Management	Enhancement	Decomr	nissioning	Improvement	t	

Pool Tail Fines (%)

From streams with gradients > 2.0 percent

Introduction	on Methods		Results			Conclusions	
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	ow	Wildfires	
Management	Enhancement	Decomr	nissioning	Improvement	t		

Channel Gradient (%) (log)

Introduction Metho		ls R		lesults		Conclusions
Vegetation	Aspen	Road,	/Culvert	Stream/Meado	ow	Wildfires
Management	Enhancement	Decomr	nissioning	Improvement	t	

Shade (%)

From streams with gradients > 2.0 percent

* Storrie and Cottonwood Fire Watersheds were salvage logged

Introduction Methods		ls	s Results			Conclusions
Vegetation Management	Aspen Enhancement	Road, Decomr	/Culvert nissioning	Stream/Meado Improvement	W	Wildfires

Shannon Diversity Index (macroinvertebrates)

From streams with gradients > 2.0 percent

Introduction	Methods	Results	Conclusions	
Review		Implications for	r Management	

Summary

- Able to use in-channel measurements to detect change and differences between treatments- (sediment, shade, temperature, bugs)
- Bug response seems driven by productivity (vs sediment)
- Amount of Change Varied by Activity:
 - Vegetation Treatments (essentially no change)
 - Aspen enhancement (short-term shade decline)
 - In-Channel Road Decommissioning (short term sediment)
 - Channel Construction (sediment- when they fail)
 - Wildfires (short and fairly long term sediment and shade)

Introduction	Methods	Results	Conclusions
Summary		Implications for	Management

But.... Detecting change in channel attributes is difficult.

- Differences between streams and stream types
- Annual variation (flow, temperature, etc.)
- Episodic events (response and recovery from them)

Introduction	Methods	Results	Conclusions
Summary		Implications for	r Management

Implications for Management

- Design criteria for stream protection appear to be effective
 - Streamside management zones (RCAs, RRs, SMZs, etc.)
 - Upslope Best Management Practices (BMPs)
- Reductions in stream channel shade are not always bad.
- Expect increases in sediment immediately following nearstream road/culvert work.
- Use caution when designing in-channel restoration/improvement projects.
- Variable wildfire effects, but greater impacts than veg-fuels treatments.

Acknowledgements

Dr. Ryan Foote Fisheries Biologist Lassen National Forest

Deborah Urich Fisheries Biologist Tahoe National Forest

Tina Hopkins Fisheries Biologist Plumas National Forest Pamela Edwards Research Hydrologist Northern Research Station

Ralph Martinez GIS Coordinator Plumas National Forest

Colin Dillingham HFQLG Monitoring Team Leader Plumas National Forest

And the dozens of seasonal field crew members who collected the data! Thank you!

Questions?