Precision nutrient management in
California orchards

Orchard variability and its implications for

!L fertility management.

Patrick Brown

University of Califormia, Davis



Premises on which adoption of Site-Specific
Management is Based.

Relevance to Tree Crops, Contrast to Field Crops.

Significant within-field and between year variability exists.

= Greater overall variability in trees than in field crops.
= Greater, but more complex, dependency between years

The causes of this variability can be identified, monitored and predicted and
crop management practices can be adjusted accordingly.

= Gross soil and topographical determinants can be addressed (deep tillage, leveling,
drainage, amendments)

= More management options in trees than in field crops (fertigation, foliar fertilization etc)

The improvement in economic output or sustainability justifies the increased
investment and ongoing management cost.

= High value and long lived species provides greater time to recover investment in
technology (fertigation systems etc).

= Fertigation investment (>70%) allows ‘management’ of topography, soil
characteristics, irrigation, nutrition and other yield determinants.



Constraints/Advantages to the Adoption of

Precision in Management in Californian
Orchards

= lrrigation
= Engineered for uniformity of application

= Irrigated to meet the demand of the most water demanding portion of
the field.

s Fertilization

s Generally uniform ‘whole field’ management . (esp. N, K)

= Rates are based on crude and generic recomendations

= Nutrient testing is inadequate and insensitive.

= Fertilized to avoid deficiency in the most demanding portion of the field

As fields get larger and fertigation becomes more
common, Site specific management becomes harder.



Precision Nitrogen Management
-the 4 R’s-

Applying the Right Rate

= Determine demand and variability.

= Account for all inputs (water, soil, plant).
At Right Time

= Determine when uptake from the soll occur.
In the Right Place

= Ensure delivery to the active roots.

= Managing variability across the orchard.

Using the Right Source and Balance
= Balanced fertility
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What do we know and how do we manage?
Leaf Sampling and Critical Value Analysis In

Orchard crops
(based on Ulrich @ U Calif in 1950-70’s)
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2\: Almond and Pistachio Grower Survey
(

AN Are tissue samples collected and if so
g j ) how often?

#Respondents

On one of your typical almond orchards, how often are
plant tissue samples collected? (Choose all that apply)

350 -
307

300 A

250 - >80% compliance

200 -

150 -+

98
100 -
50 A 40 43 32
5
0] . T T T —
Newver Less than Once/year More than When problems Idon't know
once/year once/year are detected

(California Agriculture July 2010 issue;
Google:pistachio growers survey)
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~. Are tissue samples being used

") > to guide fertilizer management?

# Respondents

200 A

150 -

100 -

50 -

Do you think the University of California critical values

are adequate to ensure maximal productivity in
almonds?

183

>70% have little to no faith in the
results or their use.

150

> Subsequent informal surveys 128
suggest these issues are
pervasive in tree crops.

51
No

I don't know

Yes Somewhat




Growth as percent of maximum

r_H
s \ Apparently tissue sampling is not trusted- Why?

b e Is the use of Plant Samples and the Critical Value or
Critical Range appropriate for Trees/Vines?

40

Development of the Critical Value concept

= von Liebig (1840), Pfeiffer et al (1919), Macy (1939),UlIrich (1952).

= analytical techniques have developed, principles/practices remain unchanged or have been
diminished with time.

= originally defined as a means to identify when a crop is ‘..just deficient..rather than just
sufficient.. to define if, but not how much, fertilizer should be added..’( Liebig, 1852)

= thus, soil depletion to sub-optimal levels is a pre-requisite to fertilization

= however, in high value crops allowing crops to become ‘just deficient’ is untenable.

= Limited consideration of unique characteristics of tree/vine crops.
= Goal is to prevent deficiencies not correct deficiencies

= Long life and high investment cost requires the practice of sustainable, balanced
nutrient management.



2000 Yield (Ibs/plot)

Variability in Plant Tissue Response to Nutrient Supply

Effect of K on Yield in Aimond

Above the critical value, tissue analysis is unreliable.
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The relationship between leaf sampling

s and critical values with yield is complex. In
trees the relationship is multi-year and
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Strong Yield Interactions
High Yield depresses Leaf Nutrients
L_eaves near fruit are not collected — Valid?
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Variability and Incorrect Interpretations
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Growers worldwide invariably target higher
tissue levels than supported by data. Why?

Leaf samples collected from an excellent grower
and critic of UC critical values.

Potassium leaf values, horizontal line indicates UC deficiency threshold
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Variation in Yield over Time

Pistachio 4820 trees individually harvested.
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How Widespread is this ‘Problem’?
Survey of leaf N distributions in Californian Orchards

Value
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July N concentration (%)



Improved sampling techniques, remote or handheld testing , re-
education, regulation will all fail if the rationale for grower behavior
is ignored.

30

Critical T
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SSYield lost
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Managing Nutrition of High Value Crops
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Spatial distribution of leaf N

Identification -Management - Economics

Leaf N (%)

- Supra Optimal

— Adequate




Spatial distribution of N

Sites of Excess Fertilization have the highest potential for
Nitrous Oxide release
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ff’\\ Spatial and Temporal Variability

IN Nitrous Oxide Release
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There Is a growing consensus that nutrient management
In tree crops Is inadequate and that sustainability
matters.

How much do you think potential
environmental regulations will affect your fertilization
practices in the future?

250
206

200 +

150
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108

# respondents

[EEN
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~

not at all

a little
somewhat

a lot
tremendously
| don't know




Market Demands for Best Management Programs

(Germany and the EU are the most imprortant export market for US nuts)

How much do you think market demands
for best management practices will affect your
fertilization practices in the future?
250 - 228
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¢ CDFA-Fertilizer Research and Education Program, Almond Board, Pistachio Commission all rank
improved nutrient management as their highest research priority.

o Cal-ARB has added N emissions from Agriculture as a target for reductions



Summary: Tissue Testing for
Horticultural Crops

+ As currently practiced an inadequate technology for well managed high
value crops.

— Difficult to practice and hard to interpret (except in deficiency range —rare)
- Does not inform management practice

- Not suitable for detection of supra optimal fertilization (insensitive, uptake
and NUE decrease with application in excess of needs and induces
Interactions)

+ Grower dissatisfaction with approach is understandable

— ‘Over’ fertilization is a logical response to uncertainty and lack of viable
tools.

- Improved tools or lower cost (remote sensing, hand held meters, increased
sampling and testing, better standards) will help but are not enough.

Alternatives?



Supplemental Approaches to Nutrient

Management in Horticulture
Nutrient Budgeting

Replacing nutrients removed from the orchard or vineyard

Essential Components and Challenges:

¢ Determine or estimate demand (Yield monitoring or simulation)

— Nitrogen content in harvested crop (yield x nutrient concentration) (GIS/Remote sensing

etc)

~ Losses (pruning, leaching, runoff, volatilization)

¢ Measure and control inputs (GIS Mapping, Remote Sensing etc.)
— soil, fertilizer, irrigation

+ Manage efficiencies and interactions (Variable rate fertilization)

— Synchronize time and location of nutrient applications
— Monitoring crop response

How?



Demand: Predicting Yield Potential in Almond and Walnut
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Whole Tree N Contents by Organ In
Almond.
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Fruit Nitrogen Uptake (Ib/ac)

Fruit Potassium Uptake (Ib/ac)
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Nutrient Removal in Kernels,
Shell and Hulls

(does not include prunings and other losses.
8yo, Nonpareil test orchard)

Nutrient Nutrient Removal Nutrient Removal
(Ibs / 3560 kernel Ib) (Ibs /1000 kernel

Ib)

N 204 58

P 24 7

K 180 51

Critical Baseline Information: How Efficient can Almond be??



7 Almond

e = NITROGEN USE EFFICIENCY
d\(N removed in harvested fruit / N applied 118 trees measured in 2008)

Fertigated: 5 times in-season times with tree demand
Low rainfall, neutral soils.

Vb

1.6
:"—' Qutlier
1.4 - T An NUE of 70-80% is :j://::u:n::
among the most efficient e
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Nitrogen Use Efficiency (NUE)
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Nutrient Use Efficiency
Declines with N Rate.

Table 27.4 Influence of nitrogen (N) application on yield of Nonpareil almond and amount of N removed.

N removed
: ; , (Ib/acre)
N in fertilizer Kernel N Yield . e
(Ib N/acre) (% dry weight) (kernel Ib/acre) Crop* Prunings
0 3.0 2,290 89 3.3
56 3.2 3,158 133 3.9
112 3.6 3,651 170 >80 % NUE s
225 38 3,830 194 — —
450 39 3,679 198 ~a [ <45% NUEow

Source: K. Uriu and W. C. Micke, unpublished data.

Matching supply (fertilizer) with demand (yield) is the best way to
enhance efficiency.
How does yield vary across a field and between years?
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Results: Yield Maps

Mean

(4,280 to > 10,000 trees harvested each year) <+1 std. dev

+1 - +2 std. dev
> +2 std. dev

2002 89Ibs 95Ibs

105 Ibs




NUE

Nutrient Use Efficiency and Variability in

Pistachio.

4850-9650 individual Tree NUE estimations
(N removed in harvested fruit / applied)

2002 2003 2004 2005 2006 2007
Year

24 yo Pistachio 5 inch rainfall zone, no deep percolation.

Silt loam, pH 6.7-7.0, OM 0.6%, 2 bpm NO;N (100cm). Fertigated with five in-seasons split apps.

10 yr ave yield = 4,000 Ib ac= 180 Ib N ac in exported fruit
Mean N application 250.

60,000 Ib total 6yr N
application (40 ac).

41,000 Ib exported in
yield.

7,000, Ib pruning,
leaf loss and growth

12,000 Ib ‘lost’
50 Ib halyr?

» «=— Outlier
£

= 90% quantile
2 75% quantile
-=— Median

“&— 25% quantile

\ 10% quantile
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4= Influence of Precision Management
on Fertilizer Losses — first steps.
Nitrogen unaccounted for in yield (60,000 Ib N applied)
14000 - Ad_jL_Jst Ad_jl_Jst
fertilizer fertilizer To maximize NUE, fertilization
12000 - application application )
E— rate to rate for should be adjusted for:
10000 - domrual e || ol 1. Expected/actual yield
- reduction in N (-45%) 1. Yield Monitoring
127 8000 - - loss 3 cpatial and 2. Yield Prediction
p - e el | 2. Variability across and
B 60007 1 1 between fields
oo | — 1. Remote sensing, sampling
— — . and GIS mapping etc
oo | M L e
N - [
0 — N — — ——
Current practice Year ‘ Halves Year + Halves |Current practice Year Halves Year + Halves
Overfertilized Underfertilized ‘

Management regime

w2002 w2003 2004 w2005 2006 2007
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Individually controlled microsprinkler system.
Robert Coates, Mchael Delwiche, Patrick Brown

-, '
) ¥ .

PRI & A,

Individual microsprinkler with
controller. Current version
integrates wires into pipe, and
valve and actuator into sprinkler

head.




Nitrogen Demand by 20 acre block
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Whole Field Average N demand = 150 Ibs N
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Managing for Spatial Variability
Introduces greater complexity in management
Is it worth 1t?
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Current Practices: Leaf Sampling And Ciritical
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Sampling and
physiological significance
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Values are Inadequate Tools for Aimond.

Variability within a tree and
orchard is substantial. Rigorous
standardization increases
reproducibility but not
relevance.

Leaf sampling is not adequately
sensitive at supra optimal
nutrient concentrations.

Sampling protocols and
interpretation have been
misused.

As a consequence orchard level
critical values are difficult to
interpret.



Alternate Practices: Nutrient
Budgeting and Spatial and
Temporal Fertilization
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Modeled and measured yield
prediction is viable

12 year Mean NUE =072 (0.82 505) =
.z H >
= !

I i =
P . =
Eh P

T e T ==

T T T T T
2002 2003 2004 2005 2006 2007

Biological basis for variable
production remains poorly
understood..

Acceptable yield prediction, and hence
nutrient demand, can be achieved
with existing technologies and could
be improved significantly.

Variability within an orchard and over
time is substantial, but poorly
documented and understood.

Under good management, high NUE’s
are observed in Californian Almond
and Pistachio orchards.

Managing nutrients by managing for
spatial and temporal variability is
critical to efficiency.

Temporal and spatial variability is
significant. Overall NUE can be very
high.

Site specific management is
promising and viable.



Site Specific Management - Optimizing
‘\ Fertilization by applying the 4 R’s. — What Is
Needed?

APPLYING THE RIGHT RATE (estimate demand)
o Determine total demand (Inputs - Outputs)
~ Inputs (fertilizers, N in irrigation (0-80 Ib N Acre yr))
~ YIELD MONITORING OR PREDICTION
~ MAPPING
~ NUTRIENT MONITORING — REMOTE/HANDHELD/QUICK
- VARIABLE RATE/PLACEMENT TECHNOLOGY

AT THE RIGHT TIME (fertilize according to nut growth rate)

+ Timing of demand is reasonably well defined by biology
- FERTIGATION
- VARIABLE RATE/PLACE TECHNOLOGY

IN THE RIGHT PLACE (fertilize active roots and ‘hungry’ trees)
- FERTIGATION/FOLIARS/VRT, SYNCHRONIZE



2y Site Specific Management of Nutrients in
Pﬁ Tree Crops. WHAT NEXT?

Given the high value and long life of perennial systems, and the inadequacy of current
practices, now is an ideal opportunity to re-invent our approach to nutrient management

This will require: Research, Technology, Engineering, Tools

*Yield Measurement and Prediction — Integrated mathematical, biological, engineering and ecological
approaches.

*Determination of Spatial Variability - Statistical and geo-statistical tools, sampling and sensing
technologies, improved experimental designs.

*New Management Tools — Rapid yield and nutrient measurement techniques. New approaches to
precision application -sub sector fertigation to single tree fertigation; VR devices and materials
(surface/liquid).

Almond Board-USDA-CDFA funded projects are ongoing.

Adoption will require development of sound information, packaged with an approachable technology that
simplifies management.



: Remote Sensing of yield,

Validate ETa models

(SEBAL, NCAR-WRF) phenology, crop development
A d i (Slaughter, Upadhyaya, Whiting)

estimate orchard water
needs (Ustin, Sammis) j j j

4 ’ Develop phenology
Develop fertilizer Mod.elmg of crop nutrient anq water demand and yield based
response curve a C|ImatE/phe?\i}Ei\i/nzaSUeiiynl)eld Mogeling k nutrient demand

(Brown, Sanden S o - model (Brown,
Lampinen) and water mode |n.g in pecan and almon Sanden, Lampinen)
(Sammis, Wang)

f | \ Interactive effects of

irrigation and nutrient

Physiological/soil ‘ ‘ ‘ _ status on plant water

environmental —i ~ useand plant response
controls on N and (Shackel, Brown,

water uptake
(Hopmans, Shukla,
Lombardini)

Gaseous, sub-soil N Sanden)

losses (Smart, Brown)
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Determlne N and Water Status

Ry
a8

Evaluate spectral measurements / correlate to
crop status
(Whiting, Lampinen, Slaughter, Upadhyaya)
Relate ETa to plant water

Lol /1]

(Shackel, Smart, Sanden)

Modeling of crop nutrient and water demand
Climate/phenology based yield modeling
(Whiting, Ustin)

N and water modeling in pecan and almond
(Sammis, Wang)

Re-evaluate leaf and
orchard sampling
methods and “Critical
Value” concept
(Brown, Lampinen)




Development of web-based decision
support toolkit “NutMan”

L. L



Days After Full Bloom
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P 24 7 Figure 4. Nutrient uptake dynamics throughout the
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YIELD PREDICTION: Vegetation Index Tracking Orchard Phenology
Through Biweekly Free Satellite Imagery
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NASA DC-8 Orchard
overflight 22 & 24 July 2009,
~10,000 ft. alt., MASTER

SENsor MASTER airborne simulator instrument
for MODIS and ASTER satellite sensors




Single Trees from Scan AO3

* NonPareil ("A”) tree on the right
* Monterey ("B”) tree on the left




ONGOING RESEARCH

Yield Prediction and Monitoring , Rapid-Sensitive
Nutrient and Water Analysis, Remote Sensing,

Early Season Sampling

Ground and Aerial Imagery: In season -
nutrient status and yield prediction. 2 32)
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Large Scale Spatial Variability

2 Million Ha, 70% Fertigated, 10,000 growers, 5 Deg Latitude.

|
i
I

Camm I

o
S
i

"

) /e Pom ts

ﬂ
y




California Central Valley Dormancy Zones

6 Almond Orchard Sites
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All Sites: (>100 trees)

*5 in-season full nutrient analysis
*5 in-season Stem WP

*Soil water and irrigation volume
*Yield (100 + individual trees)
*Nitrogen Use Efficiency (NUE)
«Aerial and satellite imagery

Two Sites:
*Gaseous nitrogen loss
*‘NUE

One Site: 50 x 2 acre, (drip/FJ)
*Factorial 4N x 4K x source X
Irrigation Trial

*5 in-season full nutrient analysis, 5 in-season Stem
WP, Soil water and irrigation volume, Yield (768
individual trees)

‘NUE

*Canopy level imagery

*Aerial and satellite imagery



NutMan: Decision Support Using Predicted Yields, Real-time
Field Data, Automated Analyses, and Information Delivered to

Automated Monitoring Growers Models and Prediction

—~

Remote Sensing

Real-time Field Monitoring Stations Deliver Data
Wirelessly So Growers Know Field Conditions On
Demand

Growers can Use their Office or
= mll Field Computers, Even Their
Phones, to Access their

Remote Sensing ] oo (= | Information

Provide Block
Specific Decision
Support in Easy to
Use Format.




Nitrogen Demand by 5 acre Plot

Yield (Ibs)
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X4
~ Precision Nutrient Management Can
Be Implemented In 2010 For Free

: . fi Vi li
12 year Mean NUE = 0.72 (0.82_,,,,) ° Nutrient Fluxes (N) in Almond ,mmﬁﬁiﬂhm
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Right Rate Right Time Right Place
adjust N application to Time N to match uptake Recognize and manage your
realistic yield expectation field/block variability. Keep
Goal: Fertilize during nutrients in root zone.
Goal: Input = Demand periods of growth

Goal: Precision
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Thank You

PATRICK BROWN

phbrown@ucdavis.edu

530 304 1390



