Overview of Biomass Thermal Energy & CHP

California State Wood Energy Team Meeting

June 17, 2014

Adam Sherman

Biomass Energy Resource Center (BERC)

Advancing Community-scale Biomass Energy in North America

Technical Consulting

- Project feasibility studies
- Fuel supply assessments and procurement
- Third-party expert review
- Develop and review of standards
- Market Assessments

Program Design & Implementation

- Expansion potential assessments
- Program management Training, and advisory
- Training, and advisory support services

Advocacy

- Showcasing "best practices" and case studies of successful projects
- Tracking market growth and impacts

BERC is a program of the Vermont Energy Investment Corporation A mission-driven non-for-profit whose mission is to reduce the economic and environmental impacts of energy production and consumption

US Energy Consumption by Energy Sector

Renewable Energy Matrix

	Heat	Electricity	Fuel Gas	Fuel Liquids
Solar	\checkmark	\checkmark		
Wind		\checkmark		
Geothermal	\checkmark	\checkmark		
Hydro		✓		
Biomass	\checkmark		\checkmark	\checkmark

Bioenergy Technology Pathways

Efficiency of "Off the Shelf" Conversion Technologies

Traditional Wood Heating Fuels

Chunkwood

<u>**PROS</u>**: Simple, cost effective, easy to selfsupply</u>

CONS: Manual feed, less efficient combustion, less convenient

<u>**PROS:**</u> Cost effective fuel, by-product supply, great for heating large facilities

Woodchips

<u>**CONS:</u>** High capital costs, not effective for residential heating</u>

Wood Pellets

<u>**PROS:**</u> Energy dense fuel, clean burning, efficient, and convenient

<u>CONS</u>: Slightly higher cost per MMBtu

Perceptions of "Biomass Heating"

Modern Wood Boiler Technology

Cordwood system

Pellet system

Woodchip system

Advancements in Modern Combustion

Technology	Cordwood Boilers		Single Facility Woodchip Heating	District Heating w/Woodchip Boilers	Industrial CHP
Typical heat output capacity	20kW – 100kW	20kW - 1MW	500kW – 9MW	1.5MW – 15MW	8MW - 150MW
Applications	Home heating and farm buildings	Home heating & small commercial buildings	Schools, hospitals, office buildings, etc.	College campuses and downtown communities	Merchant Power Plants
Fuel Type					
Annual Fuel Use	2-15 cords	2-20 tons	100 – 10,000 tons	500- 50,000 tons	1,000 – 500,000 tons
Fuel Sourcing	Locally harvested firewood	Premium pellets	Paper grade and screened bole chips	Bole chips and whole-tree chips	Whole-tree chips and hog fuel
Average Efficiency	65%	80%	75%	75%	28% - 40%

Steam Turbine CHP Technology

Organic Rankine Cycle (ORC) CHP Technology

Gasification to IC Engine CHP Technology

Matching Loads for CHP

Community-scale Modern Wood Heating Projects in the US

CAMPUS WOODCHIP HEATING SYSTEM MIDDLEBURY, VERMONT, UNITED STATES

- Heating Capacity (output): 8.8 MW (30 MMBtu/hr) Electric output 0.5 MW
- Year Installed: 2008
- Fuel Use: 20,000 GT/yr
- Thermal Output: Steam for heating, cooling, and power generation

WOODCHIP DISTRICT CHP SYSTEM Towns of Toblach and Olang SOUTH TYROL, ITALY

- Heating Capacity (output): One 10 MW (34 MMBtu/hr) boiler and two 4 MW (14 MMBtu/hr) boilers
- Electrical Capacity: 1.5 MW
- Emissions Reduction and Combustion Control Equipment: Multi-cyclone, electrostatic precipitator, condensation plant, moving grates, O₂ sensor control
- Year Installed: 1995
- Thermal Output: Hot water
- **District Heating Network Length:** 44 km (27 miles)
- District Heating Customers: 900

WOODCHIP DISTRICT CHP SYSTEM Vølund Gasifier Plant and Town of Harboøre JUTLAND, DENMARK

- Heating Capacity (output): 4 MW (14 MMBtu/hr)
- Electrical Capacity: 1.6 MW
- Emissions Reduction and Combustion Control Equipment: Electrostatic precipitator
- Year Installed: 2000
- Thermal Output: Hot water
- District Heating Network Length: 10 km (6 miles)
- District Heating Customers: 900

Cost of Heating Fuels in the US

Data sources: EIA and BERC

Adam Sherman, Manager Biomass Energy Resource Center at VEIC 128 Lakeside Ave. Suite 401 Burlington, VT 05401 Tel: +1 802 540 7863 Email: <u>asherman@biomasscenter.org</u> Web: <u>www.biomasscenter.org</u>

> Contact Information

The Carbon Cycle

Biomass Heated Buildings vs. Fossil Fuel Heated Buildings

Approach to Sector Focused Market Transformation

Opportunity for Expanded Biomass Heating in VT

Source: VPIRG Clean Heat Report & EIA consumption data

Spectrum of Policies and Incentives

)ffered in VT	NY	VT	NH	ME	MA
Flexible Boiler Regulations		\checkmark			
Sales Tax Exemption on Biomass			\checkmark	Partial	Partial
Appliances					
Sales Tax Exemption on Biomass			\checkmark	Residential	Residential
Fuel				Offiy	Offiy
State Income Tax Credit			N/A		
Pellet Boiler Incentives					\checkmark
PACE Financing		\checkmark			
Thermal RPS			\checkmark		Almost
State Grants for Biomass Thermal	\checkmark		\checkmark	\checkmark	\checkmark
Projects					
Government "Lead by Example" for					\checkmark
Biomass Thermal					
System Benefits Charge		Weatherization			
		Only			
Mandatory Renewable Energy					
Iargets Applied to Building Codes					

Source: http://www.veic.org/Media/berc/Summary-BT-Policy-Report10.30.13.pdf

Policy Options for Overcoming Market Barriers for Biomass Therma

Barrier	Potential Policy Solution		
High capital costs	 Federal 30% tax credit State income tax credits State funded rebate programs Thermal inclusion in RPS in a way that creates "credit worthy" thermal RECs used toward capital costs 		
Public awareness	 Adopt policies such as "lead by example" programs by state and local government Provide program support services to show case "best in class" projects using modern, efficient biomass thermal technologies Support education, outreach, and training for architectural, building construction, insurance, real estate, and engineering professions 		
Lack of regulatory framework for thermal sector	 Develop comprehensive "total energy" approach including electrical, thermal, and transportation energy Expand RPS to include thermal energy Apply SBC to heating fuels 		
Expanded natural gas service into new jurisdictions	• Apply a SBC to natural gas to further fund thermal efficiency and renewables such as biomass		
Expanded use of electric powered air source heat pumps	Create policies to encourage the combined use of biomass boilers and heat pumps as back-up systems		

