

Biochar Greenhouse Gas Offset Protocol

Bruce Springsteen Placer County Air Pollution Control District

Biomass Working Group

October 21, 2014

Forest Management Greenhouse Gas Offset Protocols

1. Biomass waste for energy

- Reduce methane from open pile burn or in-field decay/decomposition
- Avoided fossil fuel for equivalent electricity

2. Biochar

-- Sequester carbon in stable biochar

3. Black carbon

 Reduce black carbon from open pile burn

4. Forest hazardous fuel reduction thinning treatments

- -- Reduce wildfire severity and size
- -- Reduce tree mortality
- -- Stimulate forest growth
- -- Wood products, biomass energy

CAPCOA Greenhouse Gas Exchange

- Launched in February 2014
- Joint effort of Bay Area AQMD, Placer County APCD,
 Sacramento Metro AQMD, South Coast AQMD, San Joaquin
 Valley APCD, and Northern Sonoma APCD
- Provide California-based Greenhouse Gas Credits
 - Secure, transparent, and low-transaction cost exchange
 - Local jobs, air pollution co-benefits
- Responds to request from local governments and private industry for credits for compliance with CEQA, climate action plans, and other voluntary purposes
- Protocols biomass-for-energy, boiler efficiency, livestock manure, forest management, case-by-case

- Biochar -- porous, carbon-rich, charcoal -like solid
- Formed from the thermal pyrolysis / gasification of biomass
- Use as soil amendment:
 - Sequesters carbon -- highly stable and resistant to decomposition
 - Enhances soil fertility -- increases water and nutrient holding capacity
 - Reduces soil emissions, enhances biomass growth
 - Displaces fertilizer manufacturing
- Also produces renewable energy

Prasino Group,
The Climate Trust,
International Biochar Initiative

All/any Biomass

California forest and ag woody biomass that would have been open burned

2012 – Nov 2014 American Carbon Registry

Carbon sequestration GHG offset protocol

PCAPCD /
CAPCOA GHG
Exchange

Dec 2014

Water retention
Fertilizer displacement
Plant growth

Agricultural Field Trials

Planning with Cal Dept. of Food & Ag

- Protocol review and approval process
 - Draft completed -- September 2014
 - Stakeholder webinar September 9, 2014
 - 30 day public review close October 9, 2014
 - CAPCOA Engineering Protocol Review Committee --- November
 - CAPCOA Board Approval -- December
- http://www.placer.ca.gov/departments/air/apc dbiomass

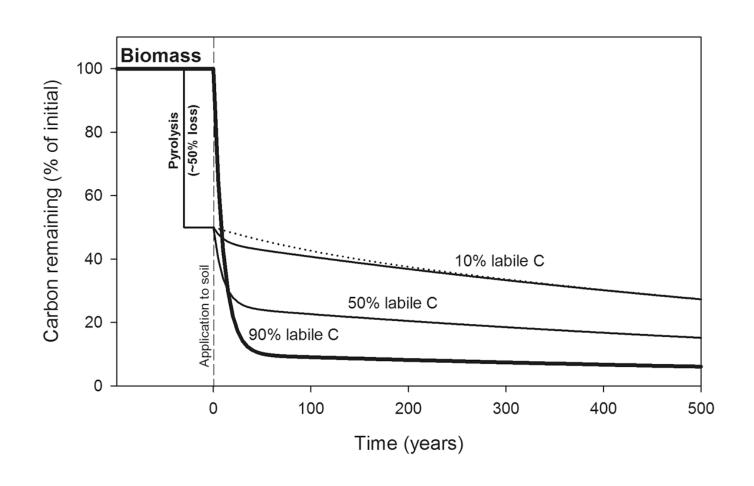
 <u>Location</u> -- Biochar production project operations that are located within the state of California, including source of feedstock.

Feedstock

- Biomass waste byproduct.
- Production operations must protect or enhance long-term productivity of the site by maintaining or improving soil productivity, water quality, wildlife habitat, and biodiversity where the biomass originated.
- Harvesting of material must meet regulations from the National Environmental Policy Act (NEPA), California Environmental Quality Act (CEQA), California Forest Practices Rules and Regulations, and/or Timber Harvest Plans.

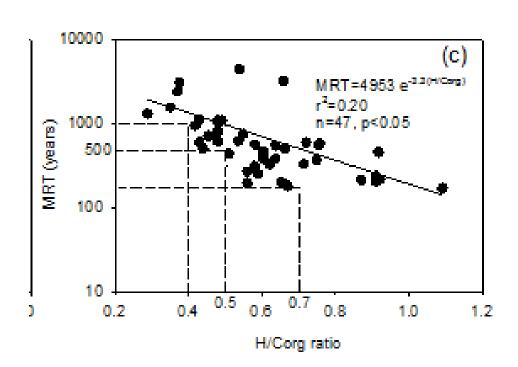
Baseline

- Open pile burned, decay in field, used for energy
- Economic test, regional common practice

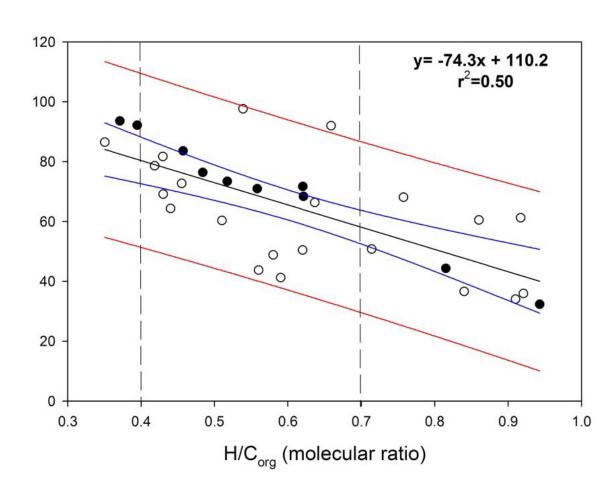

Biochar

- IBI Standardized Product Definition and Product Testing Guidelines for Biochar that is used in soil.
- H/Corg < 0.7
- Land applied or mixed with soil, compost, or medium intended as a soil amendment.

■ Fused aromatic carbon rings → material property most likely responsible for biochar



Hydrogen/Organic Carbon (H/C_{org})


At H/C_{org} <0.7 all biochars have MRT of >100 years

J. Lehmann, S. Abiven, M. Kleber, G. Pan, B.P. Singh, S. Sohi, A. Zimmerman. Persistence of biochar in soil. In: Biochar for Environmental Management - Science and Technology, 2nd edition. Johannes Lehmann and Stephen Joseph (eds.). Earthscan, and references therein

Amount (%) of C remaining in Biochar after 100 years

H/C_{org} and BC₊₁₀₀ equivalences at 95% confidence

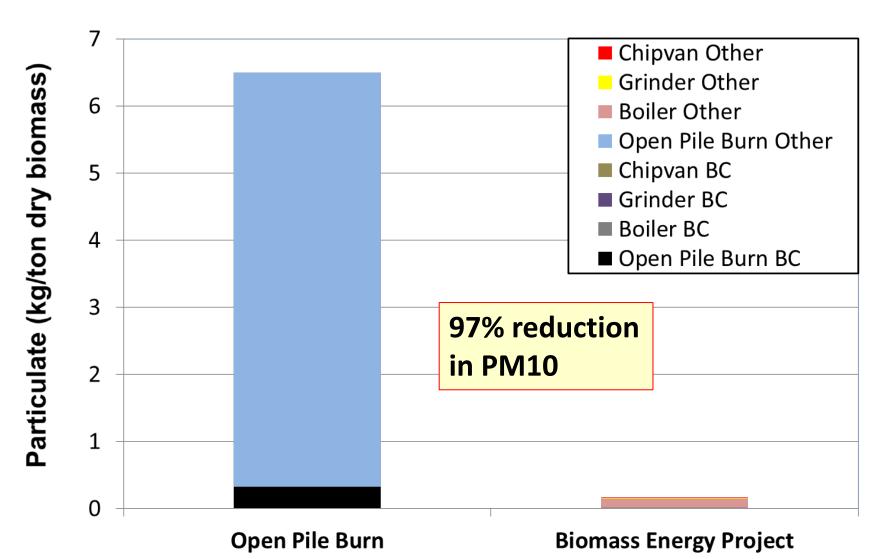
Chosen values represent **conservative estimates** of biochar C expected to remain based on experimental data Two levels identified:

- 1. $H/C_{org} < 0.4 \rightarrow$ at least 70% biochar C expected to remain after 100 years
- 2. $H/C_{org} < 0.7 \rightarrow$ at least 50% biochar C expected to remain after 100 years

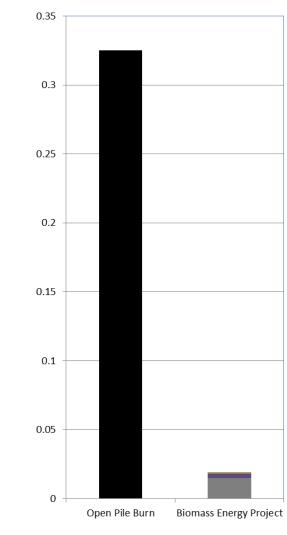
_	BC ₊₁₀₀ (%)			
H/Corg	Mean	Lower	Upper Limit	Chosen
33.9		Limit	Limit	Value
0.4	80.5	72.6	88.2	70
0.5	73.1	67.1	78.9	50
0.6	65.6	60.5	70.6	50
0.7	58.2	52.5	63.8	50

Biochar Potential

- Biochar production rate 0.10 lb biochar/lb biomass
- Carbon content of biochar 0.75 lb C/lb biochar
- CO₂ sequestered in biochar 0.28 MT
 CO₂/BDT biomass



- Product of incomplete combustion
 - Soot
- Small particles
 - Travel long distance through air
- "Short-lived climate forcing"
 - 900 times by weight more potent than CO₂



94% reduction in Black Carbon

- Chipvan BC
- Grinder BC
- Boiler BC
- Open Pile Burn BC

- Working to develop a GHG offset protocol for black carbon reductions achieved through avoided open pile burning
 - Forest slash
 - Agricultural residues (orchard thinnings, removals, food processing wastes)
- Forming a research team to characterize BC emissions from open pile burning
 - Multi-agencies including UC, CAPCOA, CAL FIRE, USFS
- Concurrent effort to evaluate black carbon reductions from wood stove upgrades and replacements

Forest Fuel Treatment Impact on Wildfires and Emissions

- Working to continue research and development of GHG offset protocol for avoided wildfire from forest fuel treatment thinning projects
 - Assembling multi-stakeholder research team USFS, CAL FIRE, Spatial Informatics Group, UC Berkeley, CEC, California Forest Association, private forest land owners
 - Securing funding
- Case study demonstration
 - Sierra Nevada forested land in watershed at risk for catastrophic wildfire, public and private ownership, on-the-ground inventory
 - Fuel treatment prescription designs considering various management alternatives
 - Evaluate wood products lifecycle specific to local mill and wood products displacement of alternative building materials (concrete, steel)
 - Develop protocol that can be practically implemented but flexible to consider site specific considerations including fire return interval and wildfire emissions on a fire-shed basis