Potassium in Vegetable Production: Soil Fertility and Plant Nutrition Aspects

Stuart Pettygrove Cooperative Extension Soils Specialist UC Davis

Winegrapes (Bloom petiole: 0.68% K)

K deficient weed

Tomato – color disorder of fruit

Cotton

Lettuce

Corn

- K soil test interpretation
- Rates of K fertilization
- Soil K fixation
- K leaching, movement in soil

- K soil test interpretation
- Rates of K fertilization
- Soil K fixation
- K leaching, movement in soil

Generic soil test interpretation

(ammonium acetate extraction)

- < 100 PPM = response likely for many crops</p>
- 100–200 PPM = response possible for high K demand crops (Examples: alfalfa, tomato)
- 200–300 PPM = yield or quality response possible for high K demand crops under certain conditions (Example: tomato in high CEC soil, fruit color response more likely than yield response)
- > 300 PPM = no response likely; K fertilization encourages luxury consumption

Source: T. Hartz

	Soil K		
	Test		
Soil Type	ppm		
Chualar Loam	182		
Metz loamy sand	112		
Metz loamy sand	182		
Gary sandy loam	147		
Cropley clay	419		
Mocho silty clay	317		
Salinas clay loam	500		
Sorrento clay loam	424		
Chualar sandy loam	370		
Clear lake clay	496		
Salinas loam	217		
Antioch sandy loam	171		
Sorrento clay loam	346		
Sorrento clay loam	261		
Mean	296		

Source: 2010 UCCE survey of

Central Coast Soils

	Soil K	Soil K
	Test	Test
Soil Type	ppm	% of CEC
Chualar Loam	182	3.2
Metz loamy sand	112	3.7
Metz loamy sand	182	2.7
Gary sandy loam	147	2.0
Cropley clay	419	3.1
Mocho silty clay	317	2.3
Salinas clay loam	500	3.8
Sorrento clay loam	424	3.7
Chualar sandy loam	370	7.9
Clear lake clay	496	3.6
Salinas loam	217	2.6
Antioch sandy loam	171	1.6
Sorrento clay loam	346	3.5
Sorrento clay loam	261	2.0
Mean	296	3.3

Source: 2010 UCCE survey of Central Coast Soils

Soil test K (ppm) distribution in 108-acre field

Spatial variability is REAL!

Directed sampling based on sand content.

Sand could be mapped from aerial photo of bare soil.

K fertilizer rates often a compromise between cost, crop security, and soil fertility maintenance

	lb K ₂ O/acre in harvest removal		
9 ton/acre alfalfa	450		
50 ton/acre tomatoes	300		
10 ton/acre cantaloupe	180		
30 ton/acre lettuce	130		
10 ton/acre grapes	80		

Sources: T. Hartz, S. Pettygrove

- ✓ K soil test interpretation
- ✓ Rates of K fertilization
- Soil K fixation
- K leaching, movement in soil

Effects of clay minerals on the fate of K

Source: Potash for heavy soils, 1999 (PDA publication)

Weathering sequence creates K fixation in coarse fraction

Soils with K fixation capacity are common on the east side of the San Joaquin Valley in soils formed on granitic alluvium.

	San Joaquin loam			Tokay sandy loam		
(K-fixing soil)			(Non K-fixing soil)			
Depth, inches	Ammon acetate K, ppm	K fixation potential, ppm	•	Ammon acetate K, ppm	K fixation potential, ppm	
0-8	133	0		213	0	
8-16	62	126		117	0	
16-24	59	161		86	5	

- ✓ K soil test interpretation
- ✓ Rates of K fertilization
- ✓ Soil K fixation
- K leaching, movement in soil

- Silty clay loam soil in lowa
- 30 lb K₂O/acre
- Liquid 0-0-8
- Surface dribble 2" to side of corn row
- After 28 days, measured avail K by resin method

Result:

Most K was found 0.5-1.5 inches deep below band.

Kovar et al. 2009. Proc Internat Plant Nutrition Colloq XVI

3 years of 90 lb K₂O/acre increased available K under emitter to 8-inch depth on K-fixing silt loam, to 24-inch depth on non-K-fixing sandy loam.

Summary...

- 1. K soil test is key tool
- 2. For most situations, K expressed in ppm (rather than as % CEC) is appropriate basis for interpretation
- 3. No risk in withholding K fert when soil test is >200 ppm
- 4. Check spatial variability of soil test K
- 5. K fertigation in drip systems is effective
- 6. Leaching of K can occur in sandiest soils
- 7. Soil K fixation unlikely in Central Coast but further investigation needed

