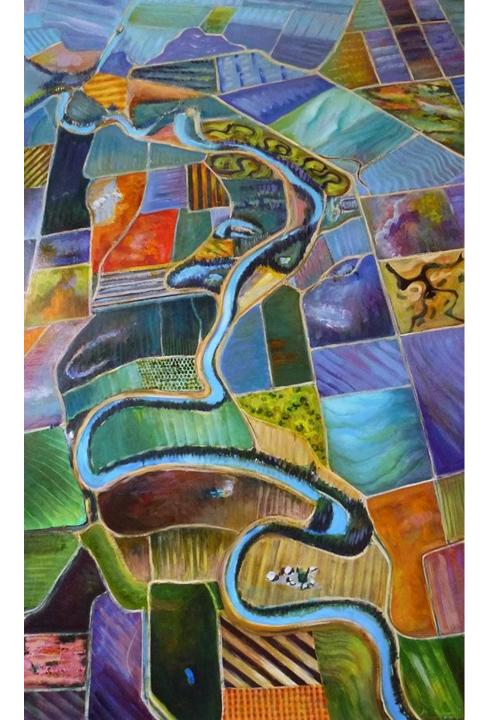
Soil microbes and plant nitrogen nutrition


Tim Bowles

Assistant Professor of Agroecology & Sustainable Agricultural Systems

DEPARTMENT of ENVIRONMENTAL SCIENCE, POLICY, AND MANAGEMENT

Joseph Bellacera, Over Yolo #2 www.josephbellacera.com

Learning goals

- 1. Describe the linkage between soil health and soil fertility.
- 2. Understand soil nitrogen cycling as highly dynamic.
- 3. Interpret soil test results from healthy soils with highly active microbes.

Soil life

1g of soil contains: 10⁹ bacteria, 6,000 – 50,000 bacterial species and up to 200m fungal hyphae

Roesch et al., ISME Journal 2007

All are important for the nitrogen cycle

Shredders, predators, decomposers

Decomposers

Photos: Bardgett a. d. van der Putten, 2014, Nature: http://copalindia.blogspu......./2013/11/indiger_us-soil-management-cost.htm; http://www.eurekalert.org/multimedia/pub/47157.phpl

Roesch et al., ISME Journal 2007

Symbionts

Today we'll focus on...

Symbionts

Decomposers

Photos: Bardgett a. d.van der Putten, 2014, Nature: http://copalindia.blogspon.t/2013/11/indiger_tas-soil-management-cost.htm; http://www.eurekalert.org/multimedia/pub/47157.phpl

Roesch et al., ISME Journal 2007

13 organic tomato fields intensively monitored over a growing season

Mean soil nitrate (0-6 in, g NO₃⁻-N/kg soil) Field Harvest Transplant Flowering group # 5.8 0.2 4.0 2 6.7 16.4 6.2 3 1.8 2.9 4.7

Bustamante and Hartz (2015) suggest 10-15 mg N kg⁻¹ soil post-transplant as "action threshold" for organic processing tomatoes

Based only on this information, which groups of fields do you think showed nitrogen deficiency and reduced yields?

Bowles et al (2015) Plos One

13 organic tomato fields intensively monitored over a growing season

Bowles et al (2015) Plos One

	Mean soil nitrate (0-6 in, g NO ₃ ⁻ -N/kg soil)				
Field group #	Transplant	Flowering	Harvest		
1	5.8	0.2	4.0		
2	6.7	16.4	6.2		
3	1.8	2.9	4.7		

Bustamante and Hartz (2015) suggest 10-15 mg N kg⁻¹ soil post-transplant as "action threshold" for organic processing tomatoes

Field group #	Plant nitrogen (%) @ flowering	Yield (US tons/acre)
1	1.7	20.2
2	3.3	41.5
3	3.2	43.0

13 organic tomato fields intensively monitored over a growing season

Low soil nitrate levels, but similar yields and plant nitrogen: Sufficient nitrogen and less potential for nitrogen losses

Bowles et al (2015) Plos One

	Mean soil nitrate (0-6 in, g NO ₃ ⁻ -N/kg soil)					
Field group #	Transplant	Flowering	Harvest			
1	5.8	0.2	4.0			
2	6.7	16.4	6.2			
3	1.8	2.9	4.7			

Bustamante and Hartz (2015) suggest 10-15 mg N kg⁻¹ soil post-transplant as "action threshold" for organic processing tomatoes

Field group #	Plant nitrogen (%) @ flowering	Yield (US tons/acre)
1	1.7	20.2
2	3.3	41.5
3	3.2	43.0

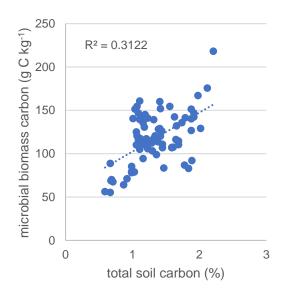
What's going on?

We need to understand linkages between soil health and soil fertility

The health metaphor

- Our health:
 - Parents (genes) ×
 - Environment ×
 - Actions (Diet, exercise)
- Soil health:
 - Parents (rocks) ×
 - Environment ×
 - Actions (Agricultural management)
- Health* (n) Soundness of body; that condition in which its functions are duly and efficiently discharged

Soil health defined


- "A healthy agricultural soil is one that is capable of supporting the production of food and fiber, to a level and with a quality sufficient to meet human requirements, together with continued delivery of other ecosystem services that are essential for maintenance of the quality of life for humans and the conservation of biodiversity."
- "Soil health is the degree to which dynamic properties have been managed for optimum function within the constraints of the soil's inherent properties."

Soil organic matter and organic matter inputs are ~half carbon: Energy for microbes

• OM inputs like...

The more soil carbon, the greater the biomass of microbes:

Data are from the same 13 fields. Microbial biomass measured at tomato flowering

When microbes have carbon available, they will look for nitrogen

- Nitrogen is a nutrient for microbes builds proteins, DNA, etc
- Microbes *mineralize* nitrogen from organic matter (soil or cover crops, compost, etc) – convert it into forms that microbes and plants can use, first amino acids, then ammonium, and then nitrate
- We typically think that only nitrogen beyond what microbes require is available for crops.

But we should think of soil nitrogen cycling more like this... Dynamic!

Microbes dying and recycling nitrogen (*turnover*)

Magnitude of these flows depends in large part on how much carbon microbes have Microbes turning organic nitrogen into available nitrogen (*mineralization*)

Microbes consuming nitrogen (*immobilization*)

The "pool" of nitrogen available for plants

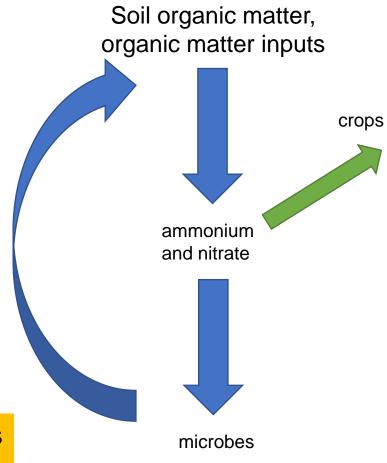
Plants can siphon off nitrogen over time

Fi

gro

13 organic tomato fields intensively monitored over a growing season

Higher levels of microbial biomass and more extractable organic carbon means bigger and more active microbial community


		Mean soil nitrate (0-6 in, g NO ₃ ⁻-N/kg soil)				
	Field group #	Transplant	Fransplant Flower		Harvest	
	1	5.8	0.2		4.0	
	2	6.7	16.4		6.2	
	3	1.8	2.9		4.7	
eld oup	Total soil	Microb bioma		"Extractable" organic carbon (g C kg ⁻¹)		
#	carbon (%)	carbo (g C kg	n		carbon	
# 1	carbon (%) 0.8		n		carbon	
		(g C kợ	n		carbon g C kg⁻¹)	
1	0.8	(g C kợ 72	n		carbon g C kg ⁻¹) 28	

Bowles et al (2015) Plos One

How can soil nitrogen cycling change as soil health improves?

- 1. More carbon for microbes means more abundant and active microbes
- 2. These leads to greater *flows* of nitrogen, but *pools* may not build up, if flows to microbes and/or plants are high
- 3. Plants are good competitors for nitrogen over time – they can siphon off nitrogen as it flows

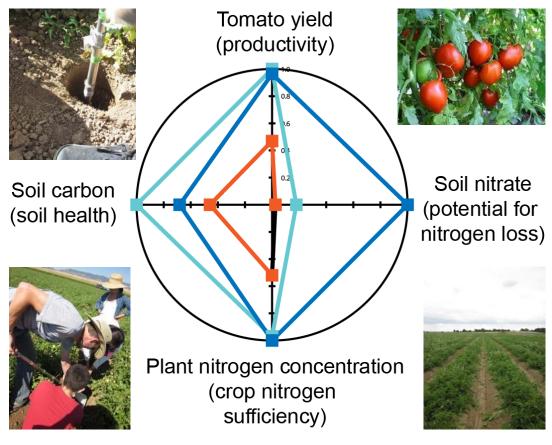
The challenge for fertility management is that flows are difficult to measure

What does this mean for soil fertility management?

- Monitoring soil nitrate is still an essential part of organic soil fertility management
- Measuring low soil nitrate can mean:
 - There is not going to be enough nitrogen available to meet crop demand – take action
 - OR, microbes are very active, and nitrate is not building up but flows may be enough to meet crop demand
- How to differentiate?
 - Low soil nitrate levels but crops that seem to have plenty of nitrogen (but this could also depend on irrigation if nitrate is being flushed below root zone)
 - Soil organic matter that is high for your area and soil type
 - Adding an additional measurement of active carbon and/or microbial activity

Healthy soils may optimize nutrient cycling

• High SOM


- Tomato yields similar to Yolo Co. average
- Some potential for nitrogen losses

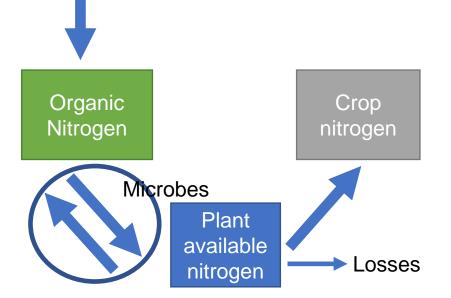
Medium SOM

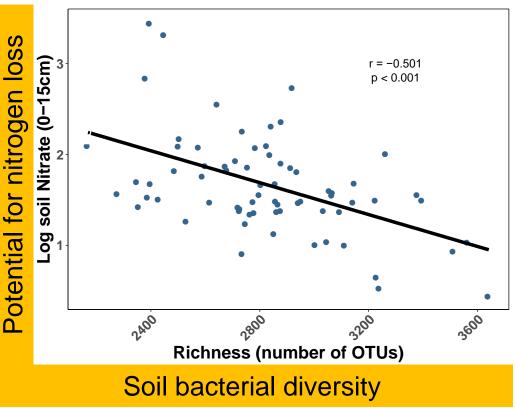
- Tomato yields similar to Yolo Co. average
- Highest potential for nitrogen losses

Low SOM

- Low tomato yields
- Low potential for nitrogen losses

- Low SOM, nitrogen deficient
- Medium SOM, nitrogen surplus
- High SOM, nitrogen ideal


*Graph shows relative levels for each variable


Bowles *et al.*, 2014; Soil Biology and Biochemistry Bowles *et al.*, 2015; *Plos One*

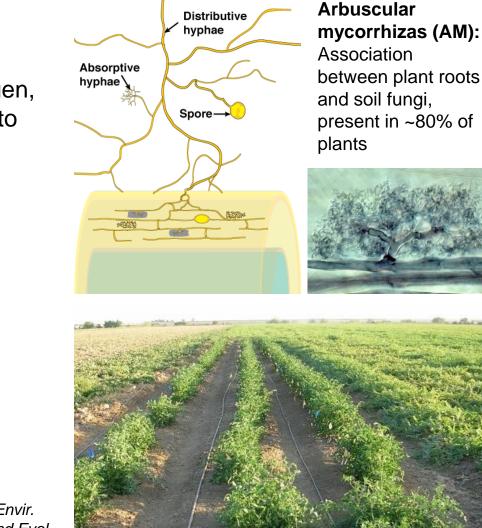
Diverse soil microbes

 Farms with greater soil microbial diversity had high tomato production, and reduced potential for nitrogen losses

Cover crops, compost, manure, reduced tillage...

Jordan Sayre and Jorge Rodrigues, UC Davis

Some key messages


• Farms can produce well with "tight" N cycling

- Tight N cycling associated with higher total C and N (SOM)
- Very low SOM contributes to N deficiency
- Of course, management plays a big role too:
 - Short term: Using highly-labile organic N inputs like guano contributes to higher soil NO₃⁻ and N excess, especially when SOM is lower
 - Longer term: Combination of organic matter inputs with relatively small inputs of labile organic N may be best to build SOM and tight N cycling
- Assessing N cycling on your farm may require more than one type of measurement
 - Unfortunately, commercial testing labs do not routinely offer tests for "active" carbon
 - Work is currently underway to validate new potential measurements
 - Cornell Soil Health test is one that contains both traditional measures of soil fertility like nitrate, as well as ones that indicate microbial activity

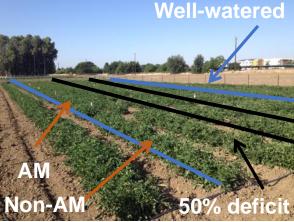
Root symbionts can increase nitrogen uptake

- On California farms with healthy soils:
 - AM increased crop uptake of nitrogen, including nitrate (most susceptible to loss)
- Other experiments show:
 - AM can reduce nitrate leaching
 - AM can reduce nitrous oxide emissions (potent GHG)

Durst Organic Growers, Esparto, CA

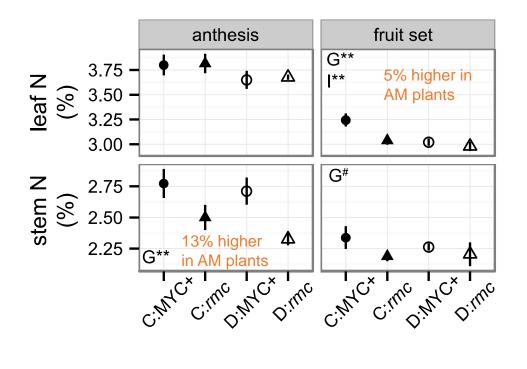
Louise Jackson UC Davis Cavagnaro *et al.*, 2012; *Plant Soil* Bender *et al.*, 2014; *ISME Journal* Bowles *et al.*, 2016; *Science of the Total Envir.* Cavagnaro *et al.*, 2015; *Trends in Ecol. and Evol.* Lazcano *et al.*, 2014; *Soil Biology and Biochemistry*

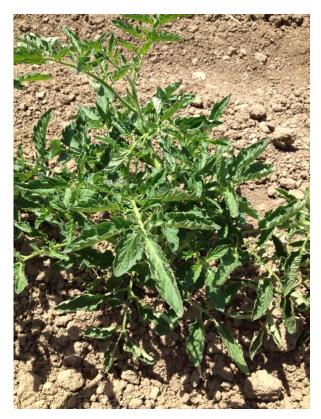
AM can increase crop water use efficiency


- Field trial in Davis, CA
- AM and non-AM tomatoes
- 50% deficit irrigation
- Higher water use efficiency (WUE) in plants associated with AM fungi:

Crop WUE (Mg yield ha ⁻¹ cm ⁻¹ water applied)					
100% irrigation 50% irrigation					
AM+	2.46	3.72			
Without AM	2.94				

• More crop yield per drop



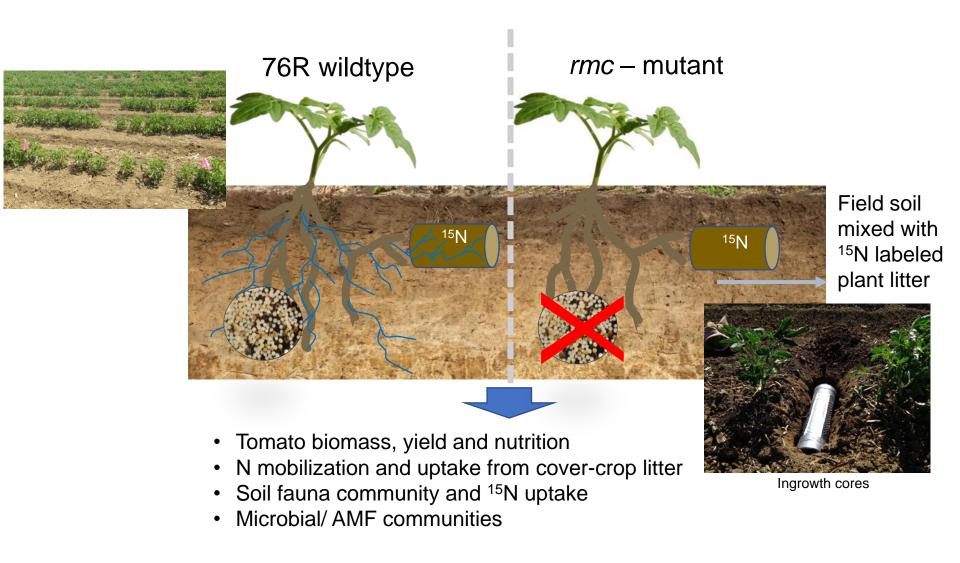

Arbuscular mycorrhizas (AM)

Bowles et al., 2017; Science of the Total Environment

AM tomatoes: slightly higher N concentration

- Plants were slightly below the "critical N concentration" minimum N concentration for maximum plant growth
- AM tomatoes at times had higher photosynthetic rates especially during heat or moisture stress

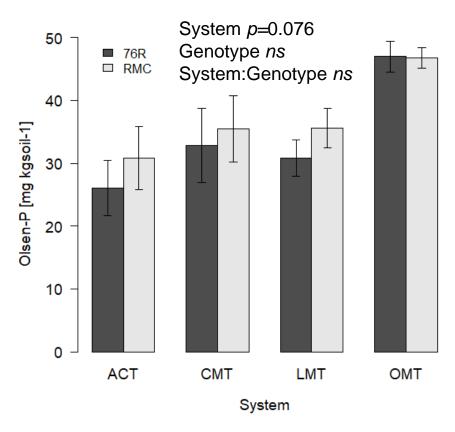
AMF and long-term agricultural management



Franz Bender UC Berkeley

Winter Plant Cash crop rotation **Fertilization** System protection cover-crops ACT Alf.-Alf.-/Corn/Tomato synthetic Conv. ves Corn/Tomato CMT synthetic Conv. no Corn/Tomato red. synthetic Conv. LMT yes **OMT** Corn/Tomato organic Org. yes

Century experiment, Russel Ranch, Davis, CA Long term comparison of different cropping systems for 25 years



Soil P levels

Due to years of composted manure application (high N:P ratio), P has built up in organic soils. When P is high, mycorrhizas can be a "cost" to the plant

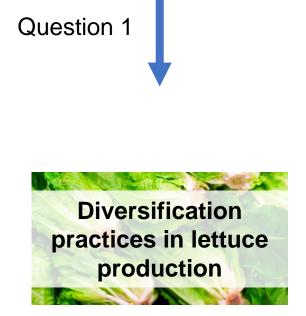
New research in organic leafy green production in the Central Coast

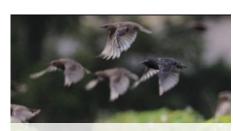
How conflicting policies and supply chain pressures influence farmers' decisions and tradeoffs in biodiversity, profitability, and sustainability

Funded by

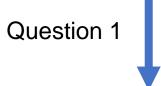
Project team	Expertise
Tim Bowles	Agroecology and soils
Claire Kremen	Biodiversity and conservation
Alastair Iles	Policy and social science
Danny Karp	Community ecology and conservation
Carl Boettiger	Modeling
Federico Castillo	Agricultural economics
Liz Carlisle	Social science
Nina Ichikawa	Policy

DEPARTMENT *of* ENVIRONMENTAL SCIENCE, POLICY, AND MANAGEMENT

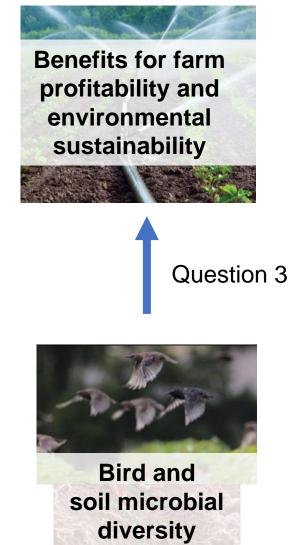


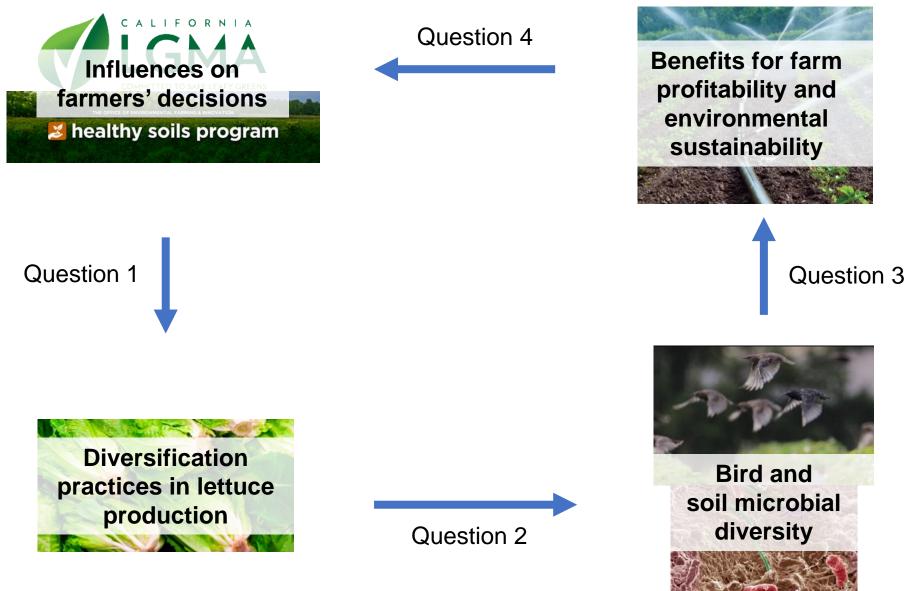

Diversification Practices

<u>Crop Diversity</u> ntercropping Crop rotation Cover cropping	Non-crop Diversity Hedgerows Flower strips Windblocks Riparian buffers Retention ponds			
<u>Organic Matter</u> Additions Mulch				
Compost Green manure	Alternative Tillage Reduce tillage Permanent beds No-till			


Question 2

Bird and soil microbial diversity





Question 2

Timeline: January 2019–September 2021

	2019				2020			
	Winter	Spring	Summer	Fall	Winter	Spring	Summer	Fall
Talk to potential participants								
Field studies								
Individual interviews & focus groups								
Advisory group meeting								

(Yr 2021 for results analyses and sharing)

Interested in participating or more information? Please see me after this session, email me at <u>timothy.bowles@berkeley.edu</u>, or call at 510-642-5277

Thank you!

- Acknowledgements to collaborators and co-authors Louise Jackson, Tim Cavagnaro, Felipe Barrios-Masias, Eli Carlisle, Franz Bender
- Lab and field technicians

Vi Truong, Malina Loeher, Julian Marquez, Rebecca Stonor, Lindsey Guan, Anna Barcellos

• Funding

USDA and NSF

United States Department of Agriculture National Institute of Food and Agriculture Bowles lab

