
Tuning up your drip irrigation system: pressure regulation, system design, and scheduling.

University of **California** Agriculture and Natural Resources

Michael Cahn Irrigation and Water Resources Advisor UCCE Monterey, San Benito, and Santa Cruz Counties

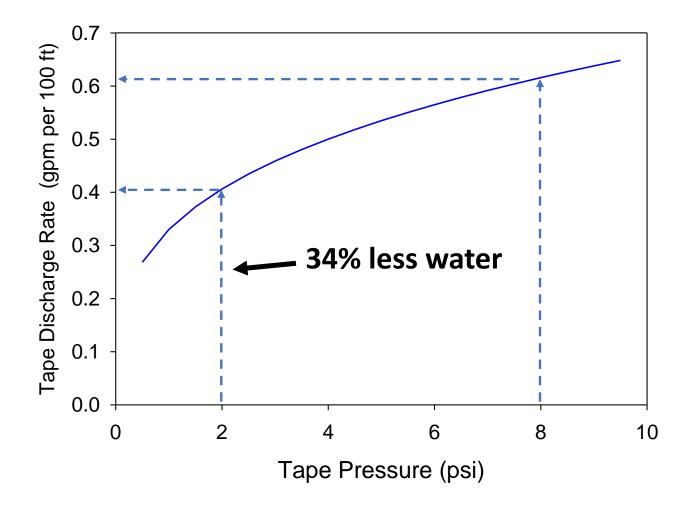
Benefits of a high Irrigation Efficiency

Minimize nutrient losses

3 Sides to Achieving High Irrigation Efficiency

Design

Operation and Maintenance


Scheduling

IE

Management of Pressure is Key to Achieving a High Application Uniformity with Drip

Discharge rate of drip tape varies with pressure

Factors that increase pressure variation

ELEVATION CHANGE UNDERSIZED FITTINGS AND PIPE DRIP LINES ARE TOO LONG

2.3 feet of elevation change = 1 psi

Or a 10 ft change in elevation would affect the pressure by 4.3 psi

Pressure Loss in Mains and Submains (psi loss per 100 ft)

Pipe Diameter					flow r	ate (ga	l/min) -				
(inches)	25	50	75	100	125	150	175	200	300	400	500
1.5	3	13	27								
2.0	1	3	7	11	17	24					
2.5	0	1	2	4	6	8	11	14	29		
3.0	0	0	1	2	2	3	4	6	12	20	31
3.5	0	0	0	1	1	2	2	3	6	10	14
4.0	0	0	0	0	1	1	1	1	3	5	8
5.0	0	0	0	0	0	0	0	0	1	2	3
6.0	0	0	0	0	0	0	0	0	0	1	1

Undersized connections between the main and submain can cause excessive pressure loss

Assure that the pressure loss along the length of the drip lines is not excessive

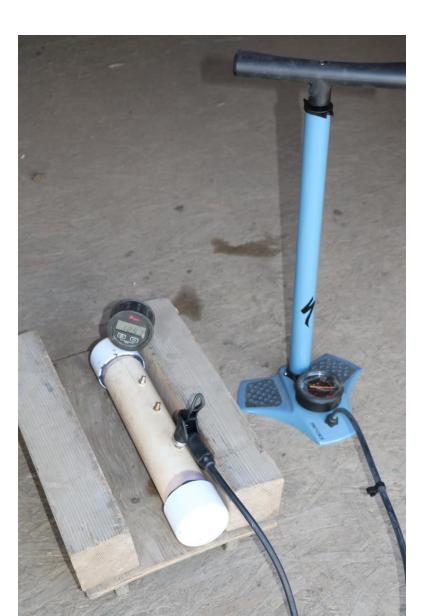
- Check pressure loss between the beginning and end of the tape lateral (< 40% loss in pressure)
- Chose tape with an appropriate discharge rate (high, medium, low flow tape)
- Increase tape diameter (5/8 inch → 7/8 inch)
- Shorten drip laterals


For very long beds (>1000 ft): Placing the submain a third of the way down the field minimized pressure differences and improved distribution uniformity

Many irrigators adjust a valve to regulate pressure of drip systems

If pressure varies then the flow rate of the drip system will vary

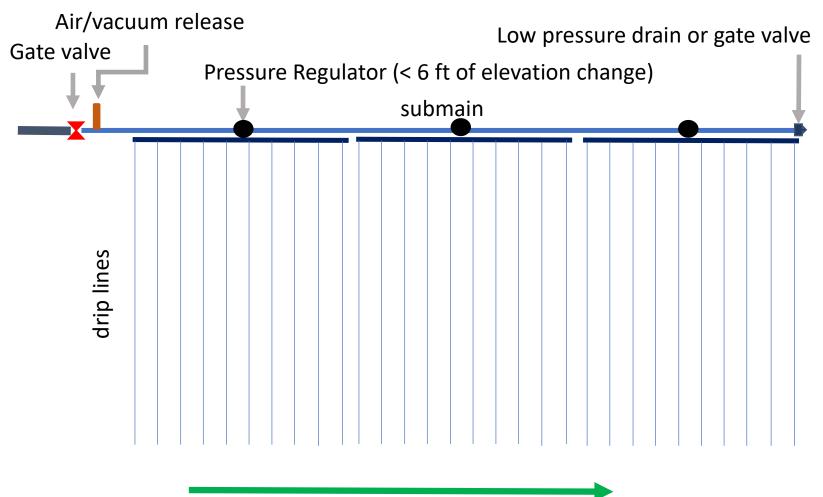
Monitoring pressure is more complicated than it seems


- Mechanical pressure gauges on an irrigation system are often inaccurate, in the wrong location, or broken.
- New mechanical pressure gauges may be inaccurate by as much as 1 to 2 psi (10% to 20% error for tape at 10 psi).

Use Schrader valves and calibrated pressure gauges

Periodically check the calibration of all pressure gauges

Pressure regulators can help


Non adjustable Pressure Regulators

- Up to 3-inch diameter
- Suitable for a limited range of flowrates (< 80 gpm)
- Durable (few parts)
- Fast reacting to changes in upstream pressure
- Maintain a consistent pressure downstream if within the flow rate range

Designing a submain along a slope

- 5 % slope

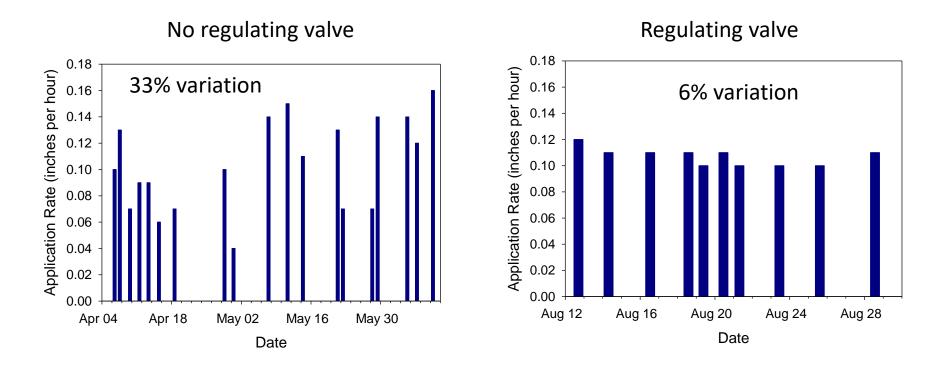
Adjustable pressure reducing valve (PRV)

Pilot

Typical operational and maintenance problems:

- Difficulty adjusting pressure at pilot
- Slow reaction time to changes in upstream pressure
- Need to reset pilot with each irrigation

Bonnets


- Flow rate outside the range of the valve
- Disconnected/broken tubes and fittings
- Clogged filters
- Trapped air

Improved Pressure Reducing Valves for large Drip Systems

- Easy to adjust
- Suitable for a large range of flow rates
- Fast reacting to changes in upstream pressure
- Maintains a consistent pressure downstream without adjustment
- Rugged

Pressure regulating valve minimized variability in the application rate of the drip system during the growing season

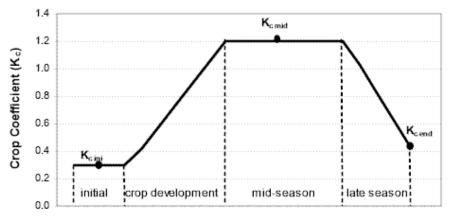
Tools for Irrigation Scheduling

Weather (ET)-based

Plant-based

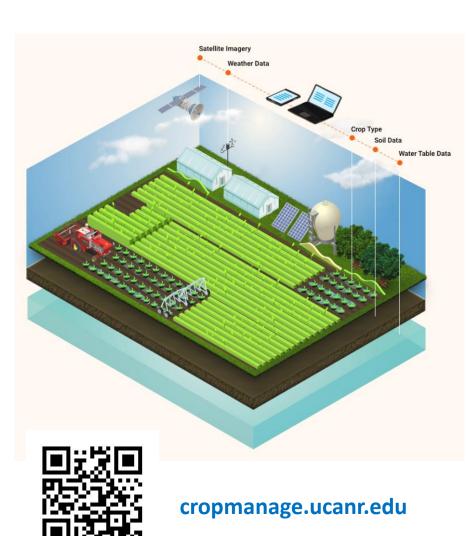
Soil-based

Flowmeters are useful tools for irrigation scheduling


Weather-based irrigation scheduling

Converting Reference ET to Crop ET:

$$\mathbf{ET}_{\mathbf{crop}} = \mathbf{ET}_{\mathbf{ref}} \times \mathbf{K}_{\mathbf{crop}}$$


K_c can vary from 0.1 to 1.2

Days after Emergence

CropManage: Online irrigation and nitrogen management decision support

☆ broccoli example ×					
1 Oct 2022	- 31 Mar 2023	💠 🖩 🗘 📖			
Tasks	History	Ē			
COMPLE	TED				
JAN 17	20-0-0-5	10 gal/acre			
JAN 16	📇 Tissue Sample	4.1% Nitrogen			
JAN 11	🗮 Drip	3.3 hr			
JAN 6	🗮 Drip	3.2 hr			
JAN 3	🗮 Drip	3.4 hr			
DEC 30	🗮 Drip	3.1 hr			
DEC 28	🗮 Drip	3.9 hr			
DEC 23	🗮 Drip	3.2 hr			
	Vie	ew all events by: 📰 🖽 🛗			

Using CropManage for Weather-based Irrigation Scheduling

Add Watering Event Watering Event				
Event Date * 1/31/2023	ē			
Irrigation Method * Drip	•			
Recommendation () 6.4 hours Recommendation Summar	y_ ~ <	inches hours	•	
Manager Amount Enter the amount recommended by a manager	hours			
Water Applied Enter the amount that was actually ap	hours			
		Cancel	ate	

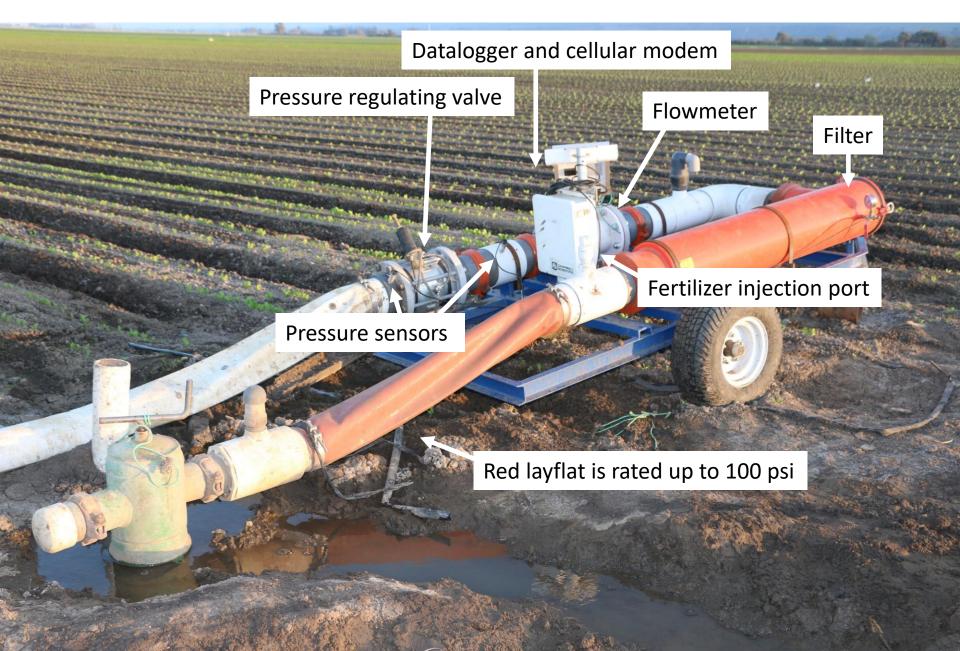
Add Watering Event Water	ing Event	×
Event Date * 1/31/2023		
Irrigation Method * Drip	•	
Recommendation 🛈	inches hours	
6.4 hours		
Recommendation Summary	x	
Average ET 🛈	0.08 in./day	
Average Crop Coefficient 🛈	0.9	
Distribution Uniformity 🛈	90%	
Days Since Last Irrigation 🛈	15 days	
Leaching Requirement 🛈	0%	
Total Precipitation 🛈	0.34 in.	
Total Crop ET = Average ET x A Last Irrigation	werage Crop Coefficient x Days Since	
1.05 in. = 0.08 x 0.90 x 15		
Recommended Irrigation Amor Uniformity x (1 - Leaching Reg	unt = Total Crop ET x 100 / (Distributio uirement)) - Total Precipitation	n
	Cancel	ate

When to irrigate?

Soil Moisture Sensors

Tension

Volumetric



An integrated, portable filter station for drip

Summary

- Achieving a high irrigation efficiency can maximize yield and quality as well as save water, fertilizer, and money.
- Design, operation and maintenance, and scheduling all affect irrigation efficiency.
- Pressure management is key to achieving high application uniformity in drip
- Tools such as flowmeters, soil moisture sensors, ET data, and calibrated pressure gauges can help you assess if you are applying water uniformly and matching irrigation applications with crop water needs.

Need Help?

- ✓ UC Cooperative Extension
- Resource Conservation District
 Santa Cruz County
- Resource Conservation District Monterey County

- Irrigation system evaluations
- Design advice
- Assistance with irrigation scheduling
- Grant and cost share programs (SWEEP)
- CropManage assistance

How to learn more:

CropManage Workshop, Santa Clara 3/29/23

