Strategies for factoring nitrate in irrigation water into nutrient management plans

Agricultural Discharge Waiver 3.0

- Growers were required to report applied nitrogen from fertilizer
- Irrigation and nutrient management plan

Agricultural Order 4.0 (April 2021)

- Growers are required to report N applied and N removed (A-R)
- A-R is estimate of N loading to the aquifer
- Time-table of targets and limits for N discharge
- Irrigation and nutrient management plan

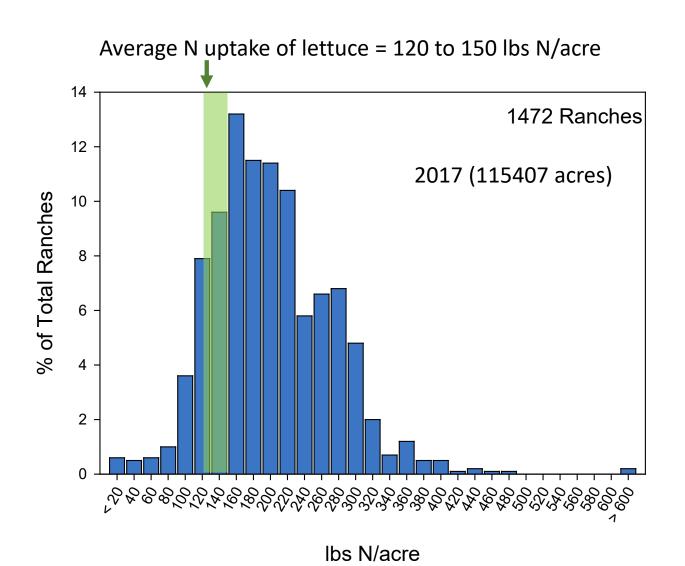
Table C.1-3. Compliance Dates for Nitrogen Discharge Targets and Limits

	Compliance Date			
	Target	500	12/31/2023	
	Target	400	12/31/2025	
Compliance Pathway 1	Limit	300	12/31/2027	
$A_{FER} + (C \times A_{COMP}) + (O \times A_{ORG}) + A_{IRR} - R =$	Limit	200	12/31/2031	
	Limit	150	12/31/2036	
	Limit	100	12/31/2041	
	Limit	50	12/31/2051	

Targets and limits are for physical acres per year

 A_{IRR} = amount of nitrogen applied in the irrigation water estimated from the volume required for crop evapotranspiration (ET) or volume of water applied.

In complying with the Ag Order you will need to:


- 1. Include N in irrigation water as part of your nutrient budget
- 2. Report on how much N was applied in irrigation water for your entire ranch

Ag Order targets will be a challenge for vegetables:

R is often less than half of the N that the crop takes up over a season

Applied N fertilizer (N_{fer}) was more than N uptake of lettuce for more than 70% of ranches

A – R Scenarios

Romaine (Crop 1) Broccoli (Crop 2)

Low to moderate levels of N in irrigation water

	crop 1	crop 2	
			Seasonal
Applied N $(A_{fert} + A_{irr})$	romaine lettuce	broccoli	Total
Applied N (lbs N/acre)	150	200	350
Crop ET (inches)	7	10	
nitrate-N concentration (ppm)	15	15	
Applied N in water (lbs N/acre)	24	35	59
Total Applied N (lbs N/acre)	174	235	409
Removed N			
Yield (lbs/acre)	30,000	16,000	
N coefficient	0.00184	0.0046	
Total N removed (lbs N/acre)	55	74	129
•			

A-R (lbs N/acre)

280

High level of N in irrigation water

	crop 1	crop 2	
			Seasonal
Applied N $(A_{fert} + A_{irr})$	romaine lettuce	broccoli	Total
Applied N (lbs N/acre)	150	200	350
Crop ET (inches)		10	
nitrate-N concentration (ppm)	40	40	
Applied N in water (lbs N/acre)	64	92	156
		200	
Total Applied N (lbs N/acre)	214	292	506
Removed N			
Yield (lbs/acre)	30,000	16,000	
N coefficient	0.00184	0.0046	
Total N removed (lbs N/acre)	55	74	129

A-R (lbs N/acre)

378

Taking credit for residual N in soil and nitrate in water

	crop 1	crop 2	
			Seasonal
Applied N (A _{fert} + A _{irr})	romaine lettuce	broccoli	Total
Applied N (lbs N/acre)	120	150	270
Crop ET (inches)	7	10	
nitrate-N concentration (ppm)	40	40	
Applied N in water (lbs N/acre)	64	92	156
Total Applied N (lbs N/acre)	184	242	426
Removed N			
Yield (lbs/acre)	30,000	16,000	
N coefficient	0.00184	0.0046	
Total N removed (lbs N/acre)	55	74	129

A-R (lbs N/acre)

298

Nitrogen in irrigation water is available for plant uptake

Well water (2 to 70 ppm Nitrate-N)

Recycled water (15 to 30 ppm N as Ammonium + Nitrate)

Practical challenges to take credit for N in water

- ✓ Multiple wells often used to irrigate a crop
- ✓ Nitrate concentration in some wells changes during the season
- ✓ Need to estimate how much water will be applied between fertilizer events
- Need to adjust for residual nitrate in soil
- Many blocks to manage simultaneously in most mid to large scale vegetable and berry operations

How do you take credit for N in soil and water?

Soil Nitrate

Current N status of Soil

N in water

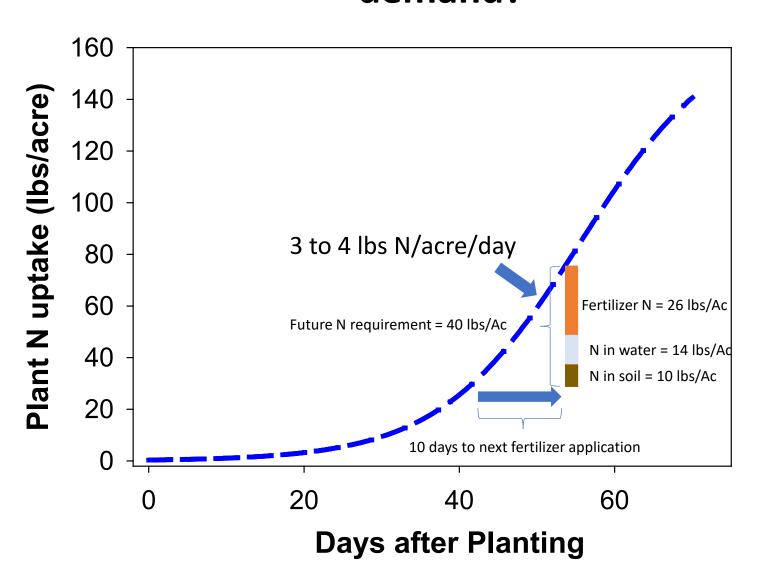
Future N contribution

The soil nitrate quick test can be used to assess available nitrate-N in the root zone

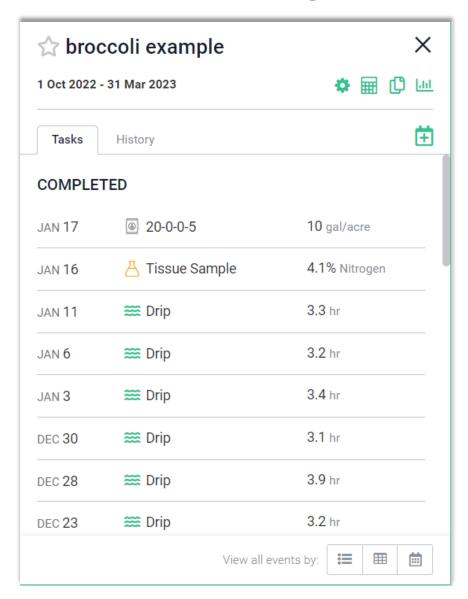
For multiple water sources, N concentration of irrigation water in a block can be evaluated with nitrate test strips:

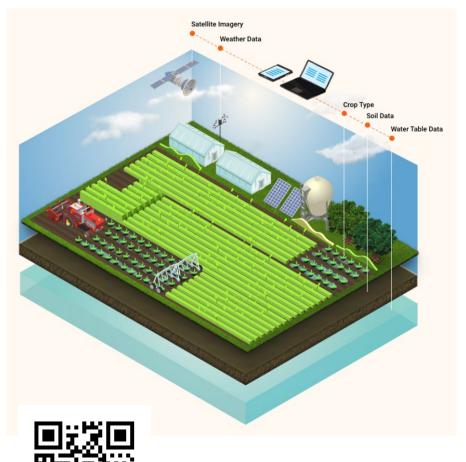
Determine average nitrate concentration in irrigation water

Calculating N applied from irrigation water:

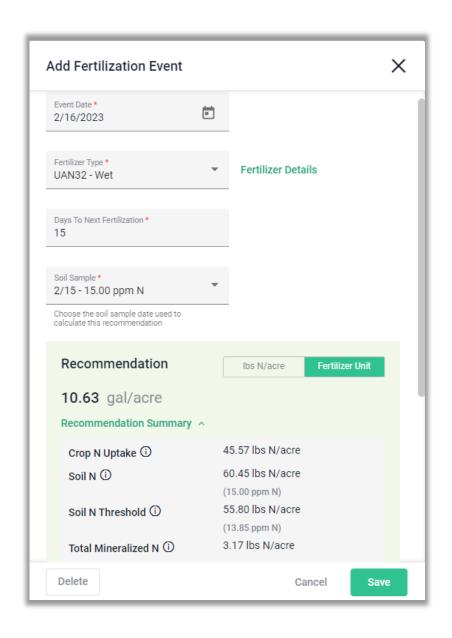

Applied water (inches) \times NO₃-N conc. (ppm) \times 0.23

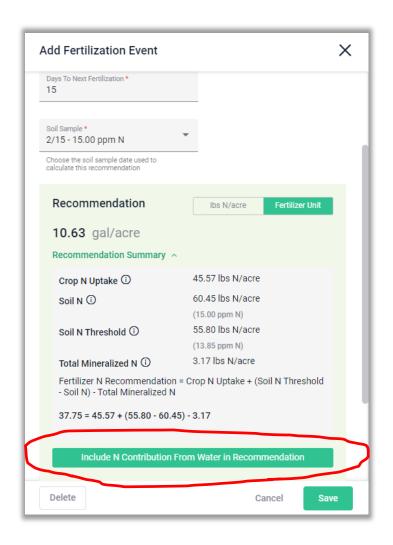
= lbs N/acre

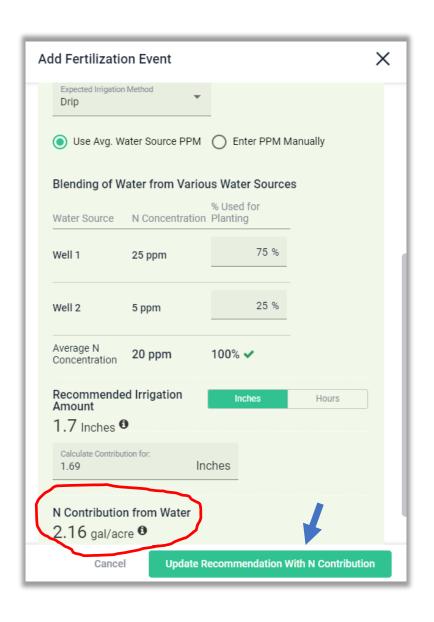

Example:

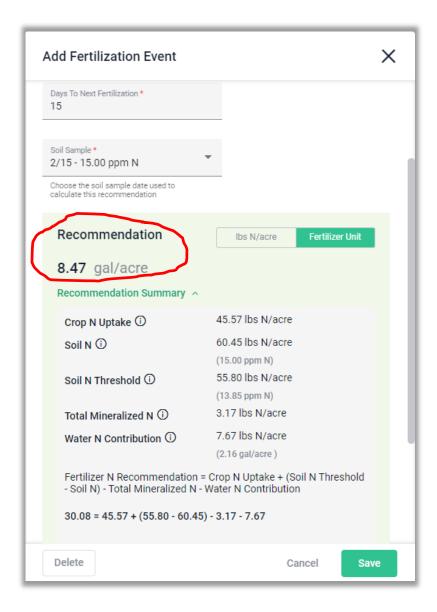

- ✓ Applied water = 2 inches
- ✓ Nitrate-N concentration = 30 ppm
- 2 inches x 30 ppm NO_3 -N x 0.23
- = 13.8 lbs N/acre

How much fertilizer is needed to meet crop N demand?


CropManage: Online irrigation and nitrogen management decision support




cropmanage.ucanr.edu

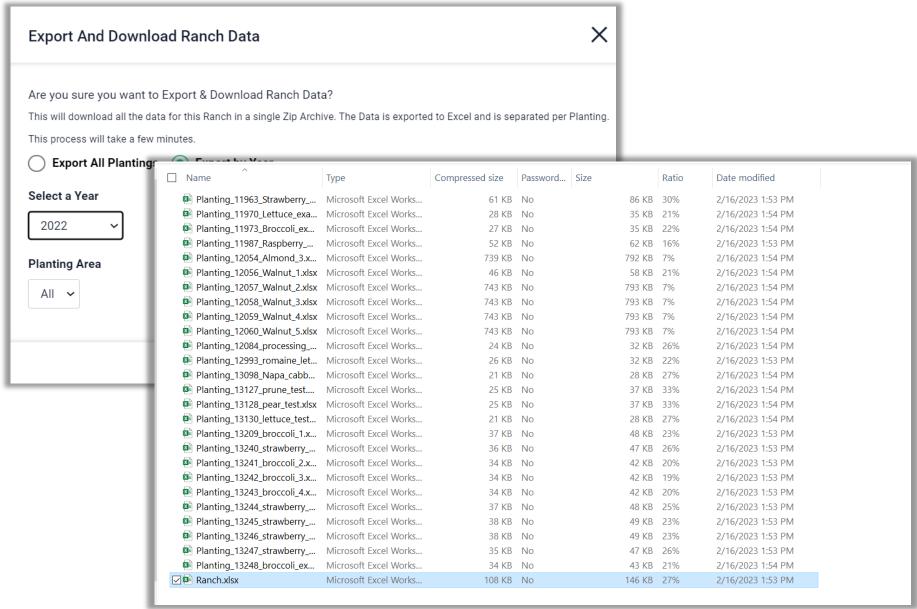

Using CropManage for N fertilizer recommendation

Contribution from N in the irrigation water

CropManage can help with AgOrder compliance and reporting

N Management

- Interpretation of soil nitrate test
- Estimate N contribution from irrigation water


Water Management

- Irrigation scheduling decision support
- Crop ET calculations

AgOrder reporting

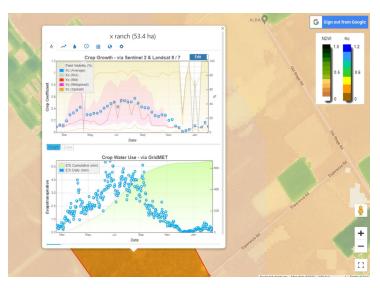
- Summarizes A_{fert} and A_{irr} by commodity
- Summarizes crop ET by commodity

Exporting applied water, Crop ET, and N in water data by ranch and crop

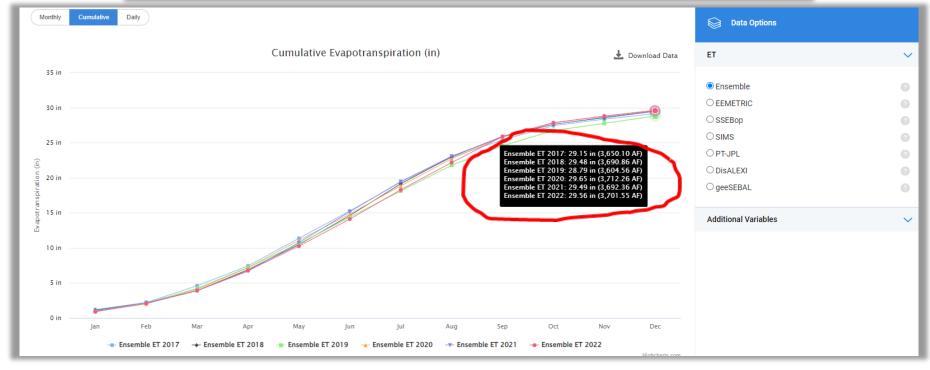
Satellite based tools for estimating Seasonal Crop Evapotranspiration for a Ranch

OpenET

https://openetdata.org/




IrriSat


https://irrisat-cloud.appspot.com/

Main Take Aways

- If you are a grower, you will need to calculate N
 applied in irrigation water during the season for the
 Ag Order.
- If you have high N levels in your water source you will need to take credit for this N in your nutrient budgets to meet upcoming targets and limits.
- Crediting for both soil nitrate and N in the irrigation water may help you greatly reduce fertilizer N rates.

