# Solar Electric Energy for Irrigation

February 19, 2008

Erik Bakke

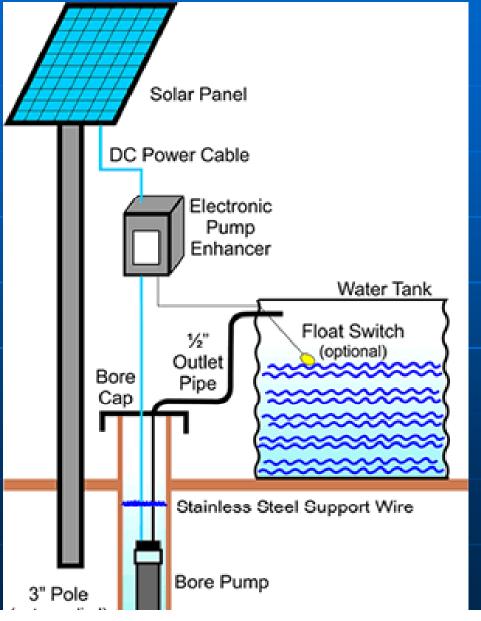


## Solar PV for Irrigation

- DC Direct Pumping Off-Grid
- Hybrid AC/DC using VFD
- AC Grid Connected PV
  - PV Module Technologies
  - Mounting Applications
  - Net-Metering Law
- Government Incentives
  - California Solar Initiative
  - Federal Incentives
- Examples



- DC Surface (non-submersible) pumps are most economical
- Reduce pumping energy by half




- Specially designed
- DC power direct from PV



- Operate on reduced power, no stalling during low sun
- Low volume positive displacement (volumetric) include diaphragm, vane and piston pumps.

- Used on small pumps.
  - Pump from PV array-direct (without battery)
  - Pump only during strong sun hours
  - Store water in a tank
  - Distribute by gravity flow.
    - Storage batteries can stabilize voltage for consistent flow and may eliminate storage need.



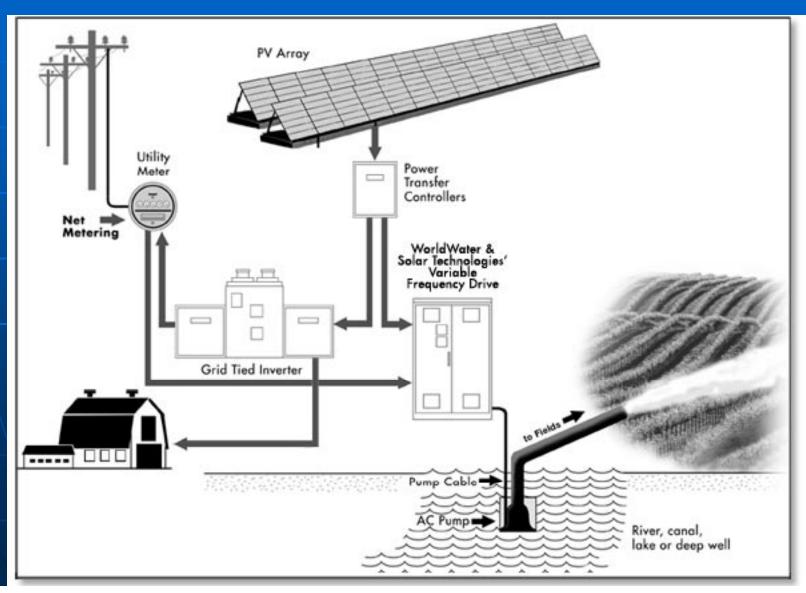
 Pump controller (current booster) helps pump start and not to stall in weak sunlight.

**Example: Surface Solar Pumping System** 

Model: Solar Force Surface Pump 302024-PV

Solar Modules: (3) BP 150W. 24VDC

Total Lift: 165 ft.


Pipeline Distance: 5,800 ft.

**Total Daily Volume: 2,100 Gallons** 

range of application: 0.5 GPM up to 70 GPM.

Surface pumps must be protected from weather and freezing situations.

## Variable Frequency Drive up to 600 HP



## PV Technology

- Crystalline silicon Flat Plate PV modules
  - Strengths: greatest overall output (per area).
  - Weaknesses: Crystalline silicon cells are rigid and prone to breaking under physical stress.



## Technology

- Thin Film systems
  - thin layer of photovoltaic material deposited on a substrate like glass or metal.
  - Strengths: cheaper than crystalline
  - Weaknesses: lower efficiency, require more space



#### 30 kWp system, producing 80% of power needs



PASO ROBLES, CA

The creative forces behind Clautiere Vineyard are Claudine Blackwell and Terry Brady. The couple has passionately rejuvenated and transformed a local ranch into a place of vibrant color and energy. This small winery in California's Central Coast region is reducing their electric bill by 80% with a SunTechnics 30 kWp photovoltaic system.



## Angled towards South on Roof, Increase 5% over flat install



#### Thin Film reduces costs 20% for same energy



#### Track the sun for 20% increase energy

East to West tracking follows the sun every day



## Solar energy reduces peak demand on the grid

- California's net energy metering (NEM)
   Law
  - Produce during the daylight
  - Draw from grid at night.
  - During peak demand hours, electric meter spins backwards delivering excess energy to the grid.
- Time-of-use rates favor off-peak usage
  - At night, when demand and rates are lower, the electric meter spins forward as it draws electricity from the grid.

## Overview – California Solar Initiative (CSI)

- Performance Based Incentive (PBI)
- Incentive Levels
- Eligibility Criteria and Requirements

## CSI - Performance Based Incentives

- PBI Performance Based Incentive
  - Paid monthly on the actual energy produced over 5 years
- 1 MW Cap
  - Incentives only up to the 1<sup>st</sup> Megawatt of AC

### Go Solar California!

www.gosolarcalifornia.com

#### **CSI - Levels of Incentives**

PBI Payment levels decrease as MWs installed in California

- Current Level: \$0.22 / kW-hr
  - Next step (6): \$0.15 /kW-hr
  - Decrease of \$0.07 / kW-hr = \$630,000 / MW

## Eligibility Criteria and Requirements

- Customers of PG&E, SCE, SDG&E
- Energy Efficiency audit requirement
- New equipment
- Equipment Must Serve On-Site Electrical Load
- Incentives will be paid for 1kW up to 1 MW
- Permanently installed systems to be in place for the duration of its useful life (at least 10 years)
- Insurance requirements
- 10 year warranty requirement

### Federal Incentives

- Investment Tax Credit
  - 30% of System Cost
- Accelerated Depreciation (MACRS)
  - 5 Years

## 45 kW PV System

#### **ELECTRICAL ENERGY USAGE**

4,609 kWh 12,132 kWh 100,447 kWh Average Winter Monthly Historic Usage

Average Summer Monthly Historic Usage

Tatal Approach Historic Hoogs

Total Annual Historic Usage

#### **ELECTRICAL ENERGY PRODUCTION from Solar PV**

82,626 kWh/year estimated production

Offsets 82% of usage

#### **ENERGY COSTS/SAVINGS**

#### 45 kW PV System

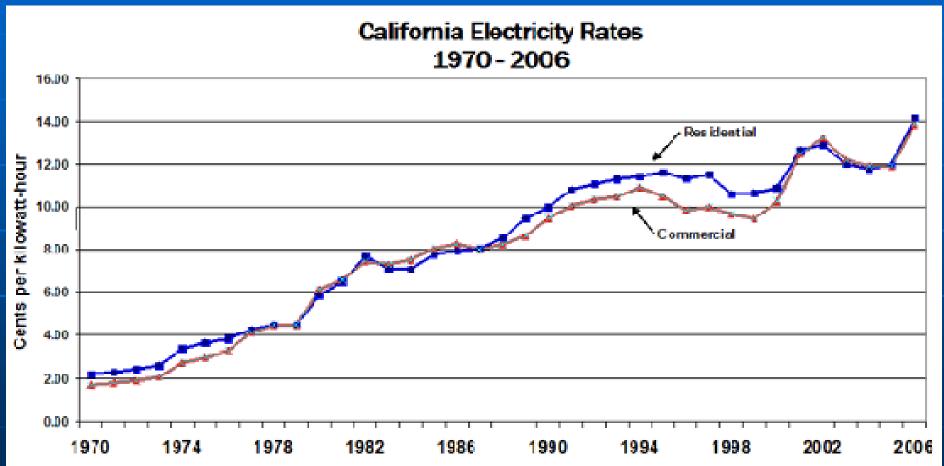
#### **ENERGY COSTS Current:**

**\$ 1,677** Average Monthly Charges

PG&E AG-1 Rate B -- Agricultural Non-TOU, Demand

#### **ENERGY COSTS with SOLAR**

**\$ 632** Average Monthly Charges with Solar

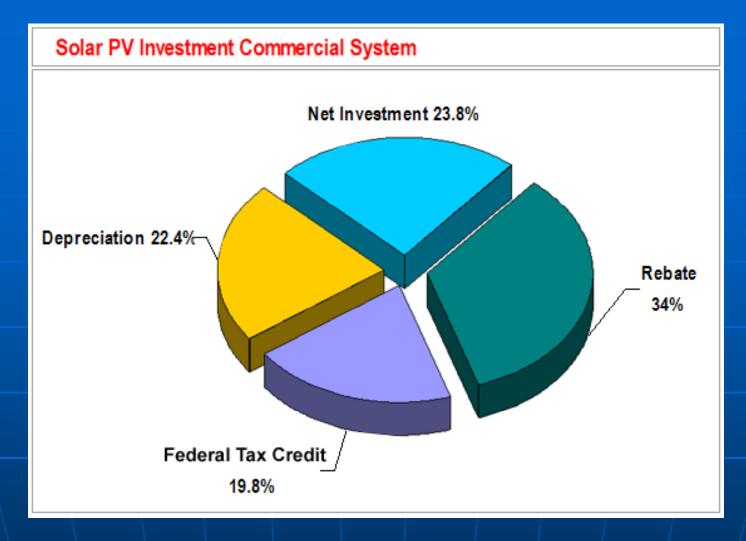

#### SAVINGS USING SOLAR:

\$ 1,045 1st month Savings

\$ 12,540 | First year savings due to solar

Savings will increase over time as electric rates rise

## Utility Rates rise 5-6% annually




Sources, Department of Brenzy, Energy Information Administration (EIA), 1970-1969 EIA State Energy and Price Report 2001, California Tables 2-4, 1910-2003 EIA Electric Fower Amusi, 2003 Historical Spreads heets, Average Price by State by Provider (EIA-861); 2004 EIA Electric Power Monthly, Narch 2005, Table 56.8; 2005 EIA Electric Fower Monthly, October 2005, Table 56.8; 2006 PG&E Advice Letter 2705-EIA-6, and E-19 Requested Increases

## PG&E changes in 2008

| Reside | ntial | - 0.8 | % |
|--------|-------|-------|---|
|        |       |       |   |

- Agriculture5.7 %
- Small Business 2.9 %
- Medium Business 3.6 %
- E-19 6.5 %
- E-20 0.7 %



Federal Internal Revenue Code (IRC section 179) special depreciation for solar systems on a 5-year accelerated schedule.

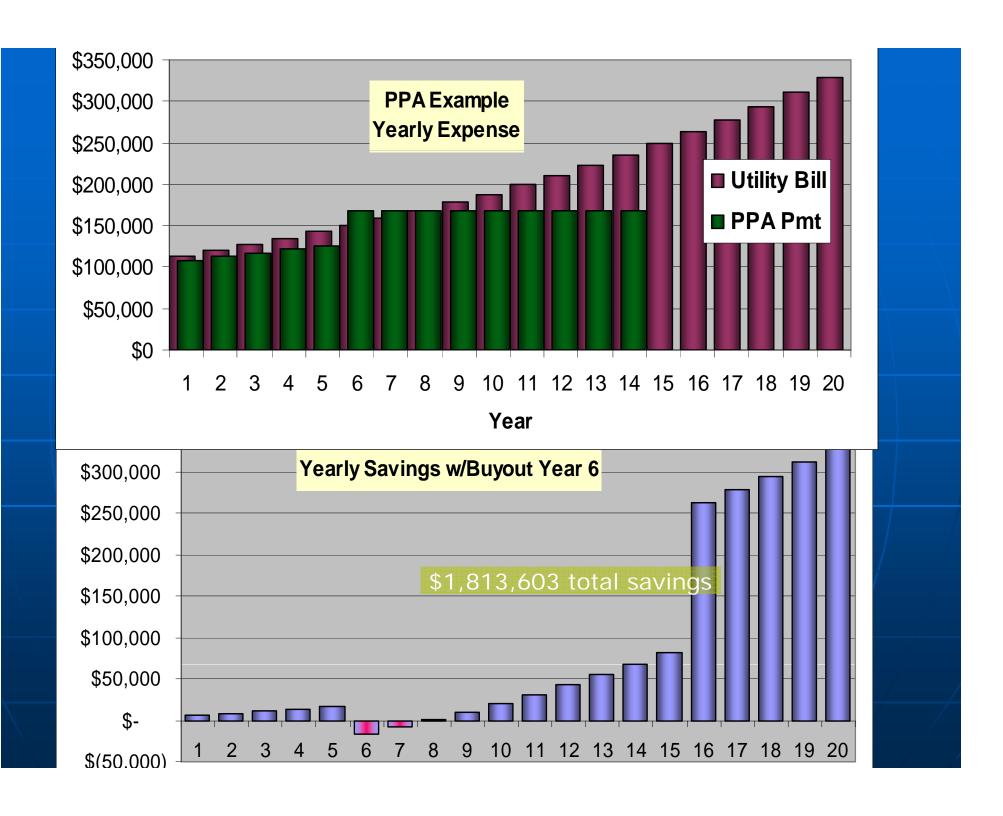
#### 77% Discount

#### **SYSTEM CAPITAL COST SUMMARY**

#### 45 KW PV System

| \$<br>371,031   | Total System                             |
|-----------------|------------------------------------------|
| \$<br>(68,942)  | EPPB Rebate (\$1,533/kW)                 |
| \$<br>302,089   | System Price after Rebate                |
| \$<br>1,050     | Estimated Permit Fees NOT in price       |
| \$<br>303,138   | Cost After Fees                          |
| \$<br>24,130    | Federal Tax on Rebate                    |
| \$<br>(111,624) | 30% Federal Tax Credit                   |
| \$<br>(128,867) | MACRS Depreciation (5 yrs)               |
| \$<br>86,777    | <b>Net System Cost with Tax Benefits</b> |

### 80% Discount


#### **SYSTEM CAPITAL COST SUMMARY**

#### 65 KW PV System

| \$        | 530,308   | Total System Cost                                   |
|-----------|-----------|-----------------------------------------------------|
| \$        | 1,251     | Estimated Permit Fees NOT in price                  |
| \$        | 531,559   | Cost After Fees                                     |
| \$        | (84,620)  | PBI Incentive after Fed Tax (\$0.22/kWhr for 5 yrs) |
| \$        | (159,468) | 30% Federal Tax Credit                              |
| \$        | (184,101) | MACRS Depreciation value (5 yrs)                    |
| <b>\$</b> | 103,370   | <b>Net System Cost with Tax Benefits</b>            |

### **Positive Cash Flow Financing**

- **BUY** System purchase financing (Finance Lease or Mortgage)
- LEASE- 10 yr payments below current electricity costs
- PPA, Power Purchase Agreement
  - Buy solar energy, not assets
  - No capital investment required
  - Host it on your roof, ground or parking facility
  - Buy the solar electricity produced at a fixed rate
    - 10 20 year terms with buyout option
  - No maintenance costs



### **PPA - Feasibility Assessment**

- 1. Current monthly electrical bill exceeds \$2500
- 2. Copies of the last **12 months utility bills** (kWh rates and volume)
- 3. **Structural drawings** (preferably CAD files) and digital photos of roof
- 4. Building self-owned or long-term lease
- 5. Good or excellent credit rating
- 6. Occupying the building for 15+ years