

Soil Nitrate Distribution

Total and Pre-thinning Water Applied to Lettuce

Applied Water as Percentage of Crop ET

Applied Water Post Thinning as Percentage of Crop ET

Tools for Managing Water and Nitrogen Fertilizer in Lettuce

- Quick nitrate soil test $(20 \text{ ppm NO}_3\text{-N} = 76 \text{ lb of N/acre})$
- Weather-based irrigation scheduling

Weather-based Irrigation Scheduling

Conditions of Use | Privacy Policy | Comments or Suggestions?
© 2004 State of California.

Spatial CIMIS ETo Reporting

Converting Reference ET to Crop ET:

$$\mathbf{ET_{crop}} = \mathbf{ET_{ref}} \times \mathbf{K_{crop}}$$

K_c can vary from 0.1 to 1.2

Estimated Kc of Lettuce

Irrigation Scheduling Spreadsheet

								Recom-			
					Avg			mended	Actual		
		Rooting	$Kc \times 100 \text{ or}$		Reference	Avg Crop		Irrigation	Irrigation		Irrigation
Irrigation	Irrigation	Depth	Canopy	Allowable	Crop ET	ET	Total Crop	Interval	Interval	Irrigation	Amount
Date	Method	(feet)	Cover (%)	Depletion (in)	(in/day)	(in/day)	ET (inches)	(days)	(days)	Time (hours)	(inches)
5/15/2009	sprinkler	0.25	100	0.12	0.20	0.20	0.20	0.6	1	0.9	0.00
5/16/2009	sprinkler	0.25	100	0.12	0.22	0.22	0.22	0.6	1	1.0	0.29
5/18/2009		0.25	70	0.12	0.19	0.13	0.27	0.9	2	1.2	0.35
5/23/2009	sprinkler	0.5	40	0.25	0.18	0.07	0.36	3.4	5	1.6	0.48
6/3/2009	sprinkler	0.5	15	0.25	0.15	0.02	0.25	11.0	11	1.1	0.33
6/16/2009	drip	1	20	0.49	0.18	0.04	0.47	13.7	13	4.0	0.52
6/26/2009	drip	1.5	50	0.63	0.18	0.09	0.90	7.0	10	7.7	1.00
6/30/2009	drip	1.5	90	0.63	0.18	0.16	0.65	3.9	4	5.5	0.72
7/4/2009	drip	1.75	100	0.70	0.18	0.18	0.72	3.9	4	6.2	0.80
7/8/2009	drip	2	100	0.76	0.19	0.19	0.76	4.0	4	6.5	0.84
7/12/2009	drip	2	100	0.76	0.19	0.19	0.76	4.0	4	6.5	0.84
7/16/2009	drip	2	100	0.76	0.21	0.21	0.84	3.6	4	7.2	0.93
7/20/2009	drip	2	100	0.76	0.17	0.17	0.68	4.5	4	5.8	0.76

Demonstration Trials of Irrigation Scheduling and Quick Nitrate Test

- •5 locations (North Salinas, South Salinas, King City, San Ardo)
- Commercial Iceberg and Romaine Fields (15 to 27 acres trials)
- Management treatments from wet date to harvest (Grower vs BMP)
- Relied on grower irrigation and fertilizer methods
- 3 replicate strips of each treatment
- Commerical and small plot harvests

Applied Water at Trial Sites

_	Standard	BMP	_		
			Estimated	Irrigation	Water use
	Total Applie	ed Water	Crop ETc	requirement 1	reduction
Trial Site	(inche	es)	(inches)	(inches)	(%)
King City	17.7	14.7	10.1	13.4	17
S. Salinas	9.9	8.7	7.6	8.9	12
San Ardo	19.4	11.9	6.7	8.7	39
N. Salinas	10.7	10.4	7.0	8.4	3
S. Salinas 2	10.9	10.1	6.1	7.6	7
Average	13.7	11.2	7.5	9.4	16

Soil Moisture Tension N. Salinas

Applied Nitrogen Fertilizer

	Standard BMP		N Fertilizer
	Total Applie	Reduction	
Trial Site	(lbs N/	(lbs N/acre)	
King City	248	110	139
S. Salinas	77	65	12
San Ardo	200	154	46
N. Salinas	188	142	47
S. Salinas 2	160	130	31
Average	175	120	55

Comparison of Average Soil Nitrate levels in BMP and Grower Practice

	Standard	BMP
	Total N Uptal	ke at Harvest
Trial Site	(lbs N	/acre)
King City	133.8	141.5
S. Salinas	148.8	133.0
San Ardo	86.4	93.4
N. Salinas	165.0	173.0
S. Salinas 2	120.0	118.5
Average	130.8	131.9

Comparison of Average Soil Nitrate levels in BMP and Grower Practice

Average Soil Nitrate levels (1 foot depth)

	Standard	ВМР			
	Mean Soil Nitrate (over season)				
Trial Site	(ppm N	IO3-N)			
King City	33.3	47.0			
S. Salinas	18.3	19.5			
San Ardo	19.5	20.4			
N. Salinas	18.7	17.7			
S. Salinas 2	41.3	26.9			
Avanasa	26.2	26.2			
Average	26.2	26.3			

Commercial and Small Plot Yields

	smal	l plot harv	vest .	commerical harvest			
	Grower	BMP	BMP relative	Grower	BMP	BMP relative	
	Total CFR ¹ Yield		to Grower	Total CFR ¹ Yield		to Grower	
Trial Site	(tons/acre)		%	(tons/acre)		%	
King City	27.3	27.8	102	21.6	21.4	99	
South Salinas	26.5	23.0	87	13.9	14.0	100	
San Ardo	12.1	10.5	87				
North Salinas	38.6	40.2	104	30.0	29.5	98	
South Salinas 2	14.4	14.8	103	9.0	9.0	101	
Average	23.8	23.2	97	17.8	17.7	100	

^{1.} CFR = Cored for region

Did improving water management reduce nitrate leaching?

Estimated Nitrogen Losses due to Leaching (Sprinklers, King City July 25-July 29)

			Soil		NO3-N	Nitrogen
Management	Applied		Moisture		concentration	loss by
Treatment	Water ¹	Crop ET	Storage	Percolation	in leachate	leaching
	inches					lb/acre
BMP	0.8	0.6	0.0	0.3	173.9	11.2
Grower	1.4	0.6	-0.1	0.9	178.4	37.3

Nitrate leaching losses post thinning (S. Salinas 2)

Nitrate leaching losses (N. Salinas)

Estimated Nitrogen Losses due to Leaching (S. Salinas, Germination Water July 10-July 24)

					NO3-N		
Management	Applied		Soil Moisture		concentration in	Nitrogen los	S
Treatment	Water ¹	Crop ET	Storage	Percolation	leachate	by leaching	;)
		inch	es	ppm	lb/acre		
BMP	2.4	1.2	0.0	1.2	116.4	31.4	
Grower	3.5	1.2	0.3	2.1	104.9	49.5	

Summary

- CIMIS ET data can be used to guide irrigation scheduling in lettuce.
- Large scale trials demonstrated that combining the quick nitrate test with careful irrigation scheduling saved water, fertilizer, and reduced nitrate leaching

Irrigation strategies to consider for lettuce

- Efficient application of germination water (< 3 inches)
- Interval without water between pre-thinning and post thinning should not be excessively long.
- Irrigation amount should refill soil profile but not over-saturate soil.
- After thinning, period between irrigations should not be so long as to cause water stress in the crop.

Recommended Steps to Improve Irrigation Management

- Irrigator training.
- Measure irrigation applications.
- Evaluate irrigation system uniformity.
- Evaluate Scheduling (CIMIS ET, soil moisture).
- System maintenance.
- Take advantage of NRCS cost sharing

