Improving Irrigation and Nutrient Management in Ventura County Strawberry

Andre Biscaro,

Irrigation and Water Resources Advisor

Univ. of Calif. Cooperative Extension, Ventura County

Objectives

- Better understand plant growth and needs for water and N
- Create a practical and efficient tool for water and N fertilizer management

✓ 6 + 6 field studies between 2014 and 2017

Previous Years Measurements

2014 - 2017:

(4 sampling locations per field)

- Canopy cover (7 fields)
- Root depth (7 fields)

2014-15:

• Aboveground biomass N (6 fields; 4)

Canopy Cover

20%

Agriculture and Natural Resources

Canopy Cover

Root Depth

University of **California** Agriculture and Natural Resources

Aboveground Biomass N Uptake

University of **California** Agriculture and Natural Resources Challenges with N management:

- Transition from low to high uptake rates may not be very clear
- Concern with fruit quality may lower yields
- Differences among cultivars
- Irrigation efficiency (leaching nitrate)
- Use of pre-plant fertilizer

Nitrogen Uptake

University of **California** Agriculture and Natural Resources

Canopy Cover

University of **California** Agriculture and Natural Resources

www.cropmanage.ucanr.edu

How Much Water?

- Irrigation system application rate
- Irrigation system application uniformity (DU)

Х

Leaching fraction (water salinity)

Water recommendation

How is N fertilizer rate determined?

Agriculture and Natural Resources

Field Assessments

- 6 fields total:
- ✓ 3 replicated
- ✓ 3 non-replicated (block comparisons)

2 treatments:

Water and N fertilizer managed according to

CropManage (CM) vs Grower Standard (GS)

<u>Replicated</u> (4 times)

Block comparison

CM	GS	CM	CM	GS	CM	GS	GS

When irrigate?

• Tensiometers

Results Summary

Study #	County	Study type	Marketable yield	Water use	Fertilizer use
\frown			relative to	grower standa	rd:
	Ventura	Replicated	22% higher*	14% higher	34% higher
2	Ventura	Block comparison	2% higher	Same	35% lower
3	Ventura	Replicated	27% higher*	32% higher	26% higher
<u> </u>	Ventura	Block comparison	Same	22% lower	Same
_5	Monterey	Bock comparison	Non-representative**	21% higher	11% higher
	,		·	U	0
6	Monterey	Replicated	2% higher	29% lower	10% lower

* Difference is statistically significant

** Irregular lygus damage between comparison blocks

2017 Example

Field details

- ✓ Location: Oxnard, CA
- ✓ Cultivar: Fronteras
- ✓ 64" bed, two high flow tapes
- ✓ 25ft long plots
- ✓ Soil: Hueneme loamy sand (6% clay, 83% sand and 11% silt)
- \checkmark Water: EC = 1.6 dS/m
- ✓ Pre-plant fertilizer (controlled release): 176 lbs N/acre
- ✓ Main in-season N fertilizer source: CN9

СМ	GS	CM	GS	GS	CM	СМ	GS

Flow meters

Weekly soil sample for nitrate

Soil Moisture Sensors

Results

In-Season N Fertilizer Applied

*Pre-plant fertilizer (controlled release): 176 lbs N/acre

Soil NO_3 -N (0-12in)

Cumulative Drip-Applied Water

Precip (in)

Soil Moisture at 6" depth

University of **California** Agriculture and Natural Resources

Grams per fruit

Cull rate (%)

Results Summary

	СМ	GS	CM vs GS
Drip-applied water (acre-ft)	2.3	1.7	35% more
Total N fertilizer use (lbs N/acre) (Pre-plant + in-season)	286 (176 + 110)	219 (176 + 43)	30% more
Total marketable yield (fruits/plot)	5,417 (a)	4,334 (b)	25% more
Total marketable yield (grams/plot)	130,308 (a)	102,241 (b)	27% more
Cull rate (%)	15 (a)	18 (b)	3% less

(Different letters indicate statistically significant differences between treatments)

Water Use Efficiency (WUE)				
	CM	GS		
lbs/plot	287	226		
acre-in	27.0	20.1		
WUE (lbs/acre-in)	10.6	11.2		

Results Summary

	CM	CM vs GS		
	2017	2016		
Water	35% more	14% more		
N fertilizer	30% more	34% more		
Yield	27% more	22% more		
Cull rate	3% less	1% less		

2017 Field Day

2016 Field Day

Final Thoughts

- CropManage showed to be efficient in guiding irrigation and N fertilization
- Algorithms for water and N need improvement/fine-tuning + more research
- Although not perfect, it's a comprehensive approach

Final Thoughts

Answers to other pertinent issues:

- High N rates = low fruit quality? No.
- High N rates in the soil = low fruit quality? Most likely, but data doesn't answer that
- Bigger plants (due to higher N rates) = lower yield? No.
- Bigger plants + higher yields = slow down harvesting crew?
 Yes. 27% more yield = 25-30% more time to harvest

Acknowledgements

- CDFA
- Hortau[®]
- Sebastian Korob/Driscoll's
- Crisalida Berry Farms, Matt Conroy, Ezikiel, Raul
- United Growers Berry Farms, Victor
- Project cooperators and UC Cooperative Extension staff

Questions/comments?

Andre Biscaro asbiscaro@ucanr.edu 805-645-1465

> **University** of **California** Agriculture and Natural Resources