# Sequential crop termination and bed fumigation and cultivar resistance as tools for Verticillium wilt management in strawberries

Shashika Hewavitharana<sup>1\*</sup>,

Jack Koster<sup>1,2</sup>, Lydia Tavoletti<sup>1</sup>, Lilia Castellanos<sup>1</sup> Shunping Ding<sup>1</sup> and Gerald J. Holmes<sup>1</sup>

<sup>1</sup>Strawberry Center, Cal Poly, San Luis Obispo

<sup>2</sup>CSU Monterey Bay, Monterey (Current Affiliation)

\*Presenting Author

22<sup>nd</sup> Annual Strawberry Production Meeting in Ventura County 09/12/23



# Acknowledgement

#### • Funding

- Agricultural Research Institute (ARI)
- California Strawberry Commission
- Products and fumigation service:
  - TriCal Diagnostics
  - AMVAC Chemical
- Technical support
  - Vivian Longacre, Drew Summerfield, Kyle Blauer
  - Cal Poly graduate and undergraduate students





# **Verticillium Wilt-Symptoms and Signs**





#### Symptoms

Signs-Microsclerotia

#### **Disease Management**



## **Crop Termination**



11/

# Crop Termination Efficacy for Soil-borne Pathogens of Strawberry

| Pathogen                                            | Fumigant and rate                                                                                            | Results                                                                                                                             | Publication             |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Verticillium dahliae                                | 138 lb/acre AITC                                                                                             | • Reduced <i>V. dahliae</i> -below threshold                                                                                        | Chellemi et al. (2016)  |
| <i>Fusarium oxysporum</i><br>f sp. <i>fragariae</i> | Flat fumigation with chloropicrin (350<br>lb/acre) vs crop termination with<br>metam potassium (47 gal/acre) | <ul> <li>No significant difference at 10" depth</li> <li>No effect on yield in susceptible cultivars-severe symptoms</li> </ul>     | Henry et al. (2019)     |
| Fusarium oxysporum<br>f sp. fragariae               | Metam sodium 213 lbs/acre-2015<br>Metam potassium 174 lbs/acre-2018<br>vs no treatment control               | <ul> <li>Pathogen recovery from infested crowns 50-90% after metam fumigation</li> <li>Not different from untreated soil</li> </ul> | Daugovish et al. (2019) |
| Macrophomina<br>phaseolina                          | Metam potassium 58 lb/acre                                                                                   | • 100% control-bed center                                                                                                           | Khatri et al. (2020)    |





# **Objectives**

- To develop new, enhanced, soil-borne disease management practices in California strawberries
  - To determine the effectiveness of sequential crop termination and bed fumigation on decreasing *Verticillium dahliae* survival
  - Evaluate efficacy of integration of resistant cultivars to further decrease Verticillium wilt of strawberry



Jack Koster M.S. CAL POLY Strawberry Center



Lydia Tavoletti B.Sc.



Lilia Castellanos Current B.Sc. student 8

## **Materials & Methods**

- <u>Crop Termination (June 2021 and July 2022)</u>
   54% Metam potassium: 47 gal/acre
  - $\circ$  42% Metam sodium: 62 gal/acre
- Bed fumigation (Oct 2021 and August 2022)
  - 54% Metam potassium: 62 gal/acre
  - 42% Metam sodium: 75 gal/acre
  - 94% Chloropicrin: 240 lb/acre







### Materials & Methods—Experimental Design









11

Head/North

### Year 1-Plant Mortality due to Crop Termination

#### Crop terminated with

- 5% mortality and
- 45% symptom expression



7 Days after Fumigation (DAF)
14 DAF

\* denotes significance. Kruskal-Wallace, Wilcoxon signed-rank (X<sup>2</sup> = 8.31, df = 1, P = 0.0039).





### Year 2-Plant Mortality due to Crop Termination

#### Crop terminated with

- 2.4% mortality and
- 20% symptom expression



| 7 Days after<br>Fumigation (DAF) | 14 DAF |  |
|----------------------------------|--------|--|
|                                  |        |  |
|                                  |        |  |
|                                  |        |  |

denotes significance. Kruskal-Wallace, Wilcoxon signed-rank  $(X^2 = 17.0, df = 1, P < 0.001).$ 

Kruskal-Wallis chi-squared = 17.049, df = 1, p-value = 3.643e-05

\*\* denotes significance. Kruskal-Wallace, Wilcoxon signed-rank  $(X^2 = 16.4, df = 1, P < 0.001).$ *Kruskal-Wallis chi-squared* = 16.362, *df* = 1, *p*-value = 5.231e-05



# Year 1-Pathogen Survival X4 🗸







### Year 2-Pathogen Survival





# Year 1-Inoculum Density Significantly $\checkmark$ in Soil





# **Year 2-Inoculum Density**



# Year 1-Total Marketable Yield Significantly 1

#### Seascape-Susceptible UCD Valiant-Resistant







## Year 2-Total Marketable Yield



**CAL POLY** 

NW/

1



## Year 2-Total Marketable Yield





# Year 1 - Average Plant Mortality Significantly $\checkmark$







## **Year 2-Average Plant Mortality**







## **Year 2-Average Plant Mortality**







### **Lessons Learned**

#### **Crop termination**

- Make sure the drip tape is still functional
- Leaks can make the fumigant treatment ineffective
- Can be ineffective when most of the plants are dead





# Conclusions

#### • Crop Injury

- Plant mortality significantly increased at 14 DAF
- Pathogen Survival in Crop
  - Log odds of *Verticillium dahliae* survival in crop tissue roughly X4 lower in those terminated treatments compared to control
- Soil Inoculum Density
  - Sequential application on Mp/Pic (KPAM-HL/Chloropicrin) significantly reduced the pathogen inoculum
- Yield
  - Sequential application of crop termination and bed fumigation and bed fumigation by itself provided the highest yield
- Plant mortality
  - The least plant mortality was in Mp/Pic (KPAM-HL/Chloropicrin) -not significantly different from bed fumigation with Pic, Ms, Ms/Ms, or Mp/Mp





# Thank you!



Shashika Hewavitharana shewavit@calpoly.edu



