Vegetable IPM in the Sacramento Valley

Amber Vinchesi-Vahl, Ph.D. UCCE Vegetable Crops Advisor and UC IPM Affiliate Colusa, Sutter and Yuba counties

Overview of IPM

- <u>Integrated Pest Management (IPM)</u>: ecosystembased strategy focusing on long-term prevention of pests and damage through a combination of techniques
 - Biological, cultural, and chemical working together
 - Pesticides are used only after monitoring indicates they are needed
 - Treatments made with the goal of removing only the target organism
 - Materials are selected and applied in a manner that minimizes risks to human health, beneficial and nontarget organisms, environment

Outline

- Processing tomatoes
 - Weed management (postharvest/pre-plant through after planting)
 - Cultivator trial
 - **O** Disease management (including surveys and projects)
 - Soilborne fungal pathogens
 - Insect-vectored viruses
- Fresh-market muskmelons
 - Insect management
 - Cucumber beetle projects
- <u>Resources</u>: UC IPM, Pest Management Guidelines for Tomatoes and Cucurbits

Postharvest and preplant weed management

• Crop rotation

- Corn allows for the use of herbicides to control nightshades, yellow nutsedge and field bindweed
- Other useful rotational crops include wheat, cotton, rice, dry beans, onions, carrots, and safflower
- Not recommended: solanaceous crops such as potatoes, peppers, and eggplant

Field preparation

- Avoid fields with severe weed infestations
- Avoid moving weed seed into fields on equipment/clean before entering fields
- Deep tilling can reduce nightshade and nutsedge populations
- Pre-irrigation/rainfall can germinate nightshade species before planting for control with cultivation or postemergence herbicides

Postharvest and preplant cont.

- Soil fumigation
 - Metam sodium, metam potassium can provide control of many weeds and other soilborne pests
 - Leave enough time between fumigant application and transplanting to prevent phytotoxicity

• Herbicides

- Herbicide applications made to fall or winter beds allow early plantings
- Rainfall is necessary to break down fall-applied herbicides so that following year's tomatoes will not be injured
- Perennial weeds (field bindweed and little mallow) can be controlled postharvest by irrigating and applying contact herbicides
- Some herbicides are best applied just before planting and incorporated into the soil
- The entire bed top may be treated or band treatments applied over the seedline

At planting

- Planting dates
 - Manipulate planting dates if possible to take advantage of weed germination under different temperatures
- Transplanting
 - Gives the crop a growth advantage over weeds
- Cultivation

After planting

- Cultural practices
 - Prevent weeds from going to seed
 - Keep canal banks free of weeds
 - Avoid moving weed seeds into fields on equipment/clean equipment
 - Keep bed tops dry (drip-irrigation)
 - With furrow irrigation, maintaining alternate row irrigation prevents overly wet conditions
- Cultivation and hand weeding
 - Mechanical cultivation close to the seedline reduces hand weeding needs later
 - In-row cultivation (ex. finger weeders)
- Herbicides
 - Postemergence herbicides
 - Apply as directed on each side of the seedline and immediately incorporate
 - Variable rate layby applications can reduce herbicide cost with no loss in weed control or tomato yield

Common weed problems

- Field bindweed
- Nightshades
- Nutsedge
- Broomrape (next slide)
- UC IPM, Integrated Weed Management
 - <u>https://www2.ipm.ucanr.edu/agriculture/to</u> <u>mato/Integrated-Weed-Management/</u>

Broomrape, Orobanche

- Broomrapes are root parasites (attach to host below ground)
- At high density, can greatly reduce yield or result in crop failure

Photo credit: B. Hanson.

- In other countries, up to 70% loss in tomato
- In CA...
 - Scouting, reporting, quarantine, crop destruct...
 - Short-term goal: minimizing spread
 - Need to develop mitigation approaches

In-row cultivator trial

- Evaluate weed control, time, and costs of using mechanical and automated in-row cultivators as part of a conventional weed management program
- Compared in-row mechanical and robotic weeders to grower standard practice and postemergence herbicides (rimsulfuron)
- Trial sites in Colusa and Merced County

Takeaways

- Robovator provided excellent control in Colusa in 2020, but caused crop injury in Merced, and in Colusa in 2021
 - High winds/non-upright plants affect precision of Robovator and led to higher % crop injury
- Finger weeder provided excellent weed control in both fields in 2020, except for one plot in Colusa field with heavy bindweed
- Rimsulfuron and finger weeder treatments reduced costs and time for hand weeding in Merced, and rimsulfuron and both cultivators reduced costs in Colusa compared to the control

Photo credit: S. Light

University of California **Agriculture and Natural Resources**

Photo credits: S. Stoddard

Processing tomato diseases

Disease/Field Issue	2016	2017	2018	2019	2020	2021	2022
Bacterial canker			1	2	4	2	
Fusarium crown and root rot		1	4	2	1	6	8
Fusarium falciforme				3	1	4	8
Fusarium wilt			18	7	3	2	4
Root-knot nematode	3			1		1	
Southern blight	1	5	2	3		1	
Verticillium wilt			2	1	1		
Beet curly top virus	2					10	11
Tomato spotted wilt virus (resistance-							
breaking)						2	2

Fusarium crown and root rot

- Fusarium oxysporum f. sp. radicis-lycopersici
- Yellowing on margin of oldest leaves, then necrosis
- Plant slowly declines over many weeks
- Crown rot is a LOCALIZED lesion
- Stem is brown on the outside and rotten on the inside
 - IF you cut at 6" and 12" the stem will be healthy looking
- Roots will also often be decaying
- Overwinters and survives for many years in the soil as spores
- Favored by cool soil temperatures
- Spread by machinery and transplants
- Management: disease-free transplants

Photo credits: C. Swett

Fusarium wilt race 3

- Fusarium oxysporum f. sp. lycopersici
- Individual branches become yellow and wilt
- Internal dark brown discoloration extends far up the stem
- Shows up later in the season compared to Verticillium wilt (45 days)
 - Favored by warm weather, drought stress, heavy fruit load
- Overwinters and survives for many years as spores in the soil and on other plants without causing them harm
- Spread is by seed, transplants, soil on machinery
- Management:
 - Resistant varieties
 - Clean farm equipment
 - Avoid nematode infestations
 - Rotate out of tomato for several years to reduce inoculum level

Fusarium falciforme

- Branch or whole plant chlorosis
- Deep leaf curling, deformity, little leaves
- Leaf speckling → leaf death → whole plant dies
- Vine decline
- Look for foot/crown/stem rot to differentiate between other Fusariums and virus/herbicide/salt damage
 - Only consistent symptoms
 - Crown rot starts below soil line

F. falciforme project

- Evaluating F. falciforme in variety trial to determine tolerance and/or susceptibility and scouting previously confirmed fields for infection in rotational crops (alternate hosts?)
- 2019-2 tomato fields and 1 pumpkin field
- 2020-1 tomato field
- 2021-4 tomato fields and 1 cucumber field
- 2022-8 tomato fields

Verticillium wilt, Verticillium dahliae

- Yellow, V-shaped areas that narrow from margin on older leaves, then turns brown and leaf dies
- Light tan discoloration appears in the vascular tissue near the base of the plant
- Fungus survives as microsclerotia in the soil and persists indefinitely
- Favored by cool soil and temperatures—early season issue usually
- Seldom kills plants but reduces vigor and yield
- Management:
 - Sanitation and washing equipment
 - Rotate to nonhost crops like corn and small grains to reduce inoculum

Southern blight, Sclerotium rolfsii

- Destructive crown rot disease
- Rapidly kills tomato plants
- Over 500 plant hosts
- Persists year to year in crop debris
- Favored by high temperatures, high soil moisture, dense canopies, and frequent irrigation
- Management:
 - Rotate with non-host crops if possible (corn, sorghum, rice, small grains) for at least 2 years to reduce inoculum
 - Deep plowing to bury plant debris may help destroy sclerotia
 - Keep bed tops dry to help reduce the disease (favored by humidity)

Root knot nematode, Meloidogyne

- Cause galling of roots
 - Galls interfere with flow of water and nutrients to the plant
- Plants yellow, wilt, and respond poorly to fertilizer patchy distribution
- Check roots of plants midseason or later, check earlier if aboveground symptoms are present
- Damage more likely in sandier soils
- Management:
 - Manage weeds
 - Use resistant varieties
 - Rotate with non-host crops
- Relationship between root knot nematode and Fusarium wilt (possibly other Fusariums) and breaking resistance
 - Poorly understood

Photo credit: E. Miyao

Root-knot nematode and Fusarium complex

- RKN feed on tomato roots, affecting nutrient uptake and reducing yield
- **RKN breaking resistance**
 - Heat events, diseases, cultivar resistance traits
- RKN-Fusarium complex→ predisposing plants to disease, overcoming resistance and increasing damage severity
- Field trials to determine efficacy of nematicides and fungicides to co-manage RKN and Fusarium wilt and how Fusarium wilt resistant cultivars interact with nematode infection

Beet curly top virus (BCTV)

- Transmitted by beet leafhopper
- Purpling, leaf curling and premature small red fruit, stunted growth in tomatoes
- Looks different for cucurbits: yellowing, wilting, leaves turn necrotic and crispy, swollen veins, proliferation of shoots

Tomato spotted wilt virus (TSWV) and RB-TSWV

- Transmitted by thrips
- Early infection leads to stunted growth
- Leaves curl, wilt, yellow/bronze and develop necrotic spots or rings
- Initial symptoms are leaf bronzing and wilting, then necrotic leaf spotting and some vein, stem or petiole necrosis
- Plants may look crumpled
- Fruit may be distorted and have ringspots

Pest Management Strategic Plan (PMSP)

- Planning document detailing pest-management issues and management practices in a particular crop directly from stakeholders
 - Needs Assessment
- First PMSP for processing tomatoes
- Priority research, regulatory, and education needs for California processing tomato
- Published Summer 2021
- <u>https://ipmdata.ipmcenters.org/documents/pmsps/2021_07_22_Processing_Tomato_PMSP_final.</u> <u>pdf</u>

University of California

Agriculture and Natural Resources

Insect issues in fresh-market melons

- #1 Cucumber beetle
- Loopers
- Melon aphid
- UC IPM Pest Management Guidelines for Cucurbits

Photo credit: I. Grettenberger

Loopers

- Caterpillars with a narrow, white stripe along each side and several narrow lines down the back
- Arch to their back as they crawl
- Adult moths have brown, mottled forewings marked in the center with a small, silver figure eight
- Feed on the underside of leaves, skeletonizing them
- High populations may feed on the fruit surface
- Natural enemies can keep loopers under damaging levels as long as they are not sprayed out
- Pressure varies year to year

Melon aphid (cotton aphid)

- Prefers underside of leaves
- Not deterred by high temperatures like some other aphids
- Usually more a late season problem
- Extensive host range (cucurbits, citrus, cotton)
- Host weeds include milkweed, jimsonweed, pigweed, and field bindweed
- Distort and curl leaves, produce large amounts of honeydew \rightarrow sooty mold
- Vector cucumber mosaic, zucchini yellow, and watermelon mosaic viruses
- Loss of vigor, stunting, or even death of the plants
- Preserve habitat for beneficials around the field and keep dust down to encourage parasitism and predation
- Natural enemies will help keep melon aphid under control until late in the season
- Very difficult to control with insecticides

Western striped cucumber beetle

- Acalymma trivittatum
- Difficult to control with insecticides
- Damaging to seedlings
- Fruit feeding causes scarring→ unmarketable fruit
- #1 pest of fresh-market muskmelons
- Appear to overwinter in leaf litter adjacent to melon fields

Photo credits: I. Grettenberger

Western spotted cucumber beetle

- Diabrotica undecimpunctata undecimpunctata
- Feed on the foliage, flowers, and fruit, but remain in the plant canopy
- Easier to control with insecticides
- Overwinter in other crops (alfalfa and corn) and migrate into melon fields in the spring

Photo credits: I. Grettenberger

Current management

- Fields regularly scouted for beetles
- Conventional control relies almost exclusively on insecticides when beetles are detected
- Applications are repeated as needed throughout the season to avoid crop injury

Photo credit: M. Koivunen

Cucumber beetle research

- Developing tools to better monitor and manage cucumber beetles in melons
 - Pheromone trial
 - Non-crop habitat

Photo credit: I. Grettenberger

Photo credit: J. Ramirez Bonilla

Non-crop habitat studies

• Characterize the non-crop habitat and observe the feeding behavior

 Mainly on milk thistle and mallow, will feed on milk thistle and brassicas but not mallow

CidetrakL trials 2022

- Acetamiprid combined with CideTrakL (gustatory stimulant) at full rate and ¼ rate
- Indoxacarb with CidetrakL—showed success against corn rootworm in Midwest
- Testing again 2023

Scarring severity ratings 2022

Rating	Damage for rating
0	None or small scars below damage rating 1
1	One 24mm diameter scars (quarter coin size) OR four 18 mm size scars
2	Two 24mm diameter size scars OR one 6 cm scar/patch of scars
3	Two 6cm patches OR one 6 cm patch + three 24mm scars OR four 24mm scars
4	Three 6cm patches OR five 24mm scars OR two 6cm patch + three 24mm scars OR extensive light spots
5	Extensive damage, blends together

Damage assessment 2022

 $F_{4,20} = 2.83$ P = 0.052 $F_{4,20} = 2.83$ P = 0.052 $F_{4,20} = 2.83$ P = 0.052

Conclusions

- CidetrakL paired with acetamiprid (Assail) looks very promising, even with reduced rated of the insecticide, continuing this work in 2023
- In the long-term, we hope that improved IPM practices, including monitoring and targeted management, will help prevent and suppress damage by these pests

Photo credits: I. Grettenberger

Thank you!

- Subscribe to my newsletter for research updates and local pest information on vegetable crops!
 - <u>http://cecolusa.ucanr.edu/Vegetable_Crops/</u>
- <u>acvinchesi@ucanr.edu</u>